
Symbolic and Spatial Database
for Structural Biology

Dan Benson, Greg Zick
Department of Electrical Engineering, FT-10

University of Washington / Seattle, WA 98 195
benson@ee.washington.edu

zick@ee.washington.edu

ABSTRACT
This paper describes the development of a
database to support three-dimensional image
reconstruction of structural biology using object-
oriented technology. The requirements of this
system encompass many of the popular
justifications for the application of object-oriented
technology, such as non-standard data types and
complex composite data, but we also find
advantage in the increased functionality obtained
for spatial relationship operations and access
methods. We focus attention on the
implementation of the spatial data, its
representation, operations, indexing, and queries.

1 INTRODUCTION
Biomedical imaging is making a tremendous
impact on medical knowledge, teaching, and
practice due to the fact that images provide a great
deal of information that is otherwise unobtainable.
Improvements on the acquisition, dissemination,
understanding, and use of this information
comprise the bulk of imaging research activities. A
brief summary of them includes the development
of new image modalities, image acquisition
techniques, image processing, feature extraction,
object recognition, and applications which make

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

Q 1991 ACM 89791-446.5/91/0010/0329...$1.50

use of the extracted information. As these
technologies advance, and even become
automated, the crucial missing component is the
organization and management of the underlying
data that is generated [DUER83]. Shown
graphically in Figure 1, data generated by these
biomedical imaging activities can be organized in
a database that supports multiple data types and
multi-level models.

Figure 1. The role of a Biomedical
Database

Imaging

Images contain information about real world
objects. Once acquired, each stage in the process
carries this information along while “squeezing
out” certain elements of the image contents
forming an internal model or representation that
can be used by applications. These stages are all
related, in fact, they build off of each other.

OOPSTAW> pp. 329.-339

329

Likewise, there exists relationships among the data
each stage generates.

There are two basic categories of data a
biomedical imaging database must support,
symbolic and spatial. Symbolic data is the sort of
alphanumeric data commonly found in traditional
databases, such as patient accounting information,
or employee records. Spatial data, on the other
hand, consists of geometric information, such as
maps, images and their contents, or three-
dimensional anatomical objects.

A traditional relational database stores information
describing real world entities but is limited in the
ways these entities can be represented and
accessed. There exists a semantic gap between the
user’s representation of the world and the
representation in the database. This gap is
substantially narrowed through an object-oriented
implementation that provides multiple layers of
abstractions closely modeling the user’s world
view.

In this paper, we describe the development of a
database to support three-dimensional image
reconstruction of structural biology using object-
oriented technology. This application involves all
of the stages of biomedical imaging mentioned
above. The requirements of this system encompass
many of the popular justifications for the
application of object-oriented technology, such as
non-standard data types and complex composite
data, but we also find advantage in the increased
functionality obtained for spatial relationship
operations and access methods. We place
particular attention to the implementation of the
spatial data, its representation, operations,
indexing, and queries.

The current prototype consists of the Gemstone
[GEMS901 object-oriented database running as a
server on an IBM RS/6000 and Objectworks for
Smalltalk- v. 2.5 [PARC901 running on a
Macintosh IIfx as the application interface. We
based our selection of these tools on their

prototyping capabilities, data impedance matching,
and availability at the time the project was
initiated.

The organization of this paper is as follows:
Section 2 provides the background and context of
the application domain. Section 3 describes the
spatial data representation and operations of
spatial relationship. Section 4 presents an object-
oriented spatial index that augments the vendor-
supplied access to object sets. Section 5 describes
spatial queries and how the application of object-
oriented technology improves accuracy and
precision in spatial search. Section 6 concludes
with a summary and discussion of future work.

2 BACKGROUND
For a number of years, researchers in the
department of Biological Structures at the
University of Washington have been developing
and refining methods for 3-D image
reconstruction [STIMSS, PROT89, MCLE91] in
which three-dimensional images of anatomical
objects are reconstructed from sets of ordered 2-D
cross-sectional slices, somewhat like a loaf of
sliced bread. The images and animations produced
by these techniques reveal anatomical structures in
ways never seen before and allow interactive
manipulation of accurate quantified data in
anatomy.

The data acquisition process leading up to the 3-D
reconstruction begins with various specimens
prepared in ways that allow millimeter-thin slices
to be removed as images are acquired of each new
surface. The objects of interest are then traced
manually by professional anatomists for each
image taken, similar to contour lines on a map.
These surface boundaries are labeled and digitized
into computer-readable form for input to a 3-D
graphics editor where the data is edited and
displayed as three-dimensional surface
reconstructions.

330

Currently underway is a project to acquire data
encompassing the entire human body, providing
the foundation for a distributed knowledge base of
structural biology that will be used to solve
problems in basic science, teaching, and clinical
medicine [BRIN89]. Because anatomy is a
fundamental framework upon which most of the
basic medical sciences rest, a knowledge base of
biological structure would have profound
implications in many areas of medicine. A key
aspect to the success of this system is the
underlying management of the exceptionally large
amount of data, the complexity and structure of
the data, and its relationships. The organization of
this data must also provide efficient symbolic as
well as spatial access to the anatomical objects.
Symbolic access is retrieval based on attribute
values such as, “Select all images of the liver taken
after October 6, 1991,” whereas spatial access is
based on spatial properties such as, “Select all
objects within 10 mm of the heart.”

Up to now, this data has been stored in flat files
and organized in a file directory hierarchy. While
this has been adequate for relatively small sets of
data, knowledge of the relevancy and structure of
objects, as well as relationships among various
objects, exists in the minds and memories of the
biologists rather than as an integrated part of the
data itself and information retrieval does not go
beyond simple filename lookup. This method of
organization fails as the amount of data increases,
the relationships become more complex, and
access to the data more sophisticated.

Conventional relational database technology does
not meet the needs of modern imaging
applications, characterized by highly complex and
structured data, multiple data types and
relationships, and non-traditional database
processing. It lacks adequate data models and
poses a rigid table structure for the definition of
the relationships between data records, thus
preventing efficient representation and access of
spatial or complex data structures.

We believe that an object-oriented database
approach offers many advantages in supporting
biomedical applications having spatial data. It
shortens the semantic gap between real-world
objects and their corresponding abstractions and
thus offers a more flexible model for dealing with
complex data, The data modeling capabilities
provided by the object-oriented model make it
possible to support not only multiple types of
images but also highly structured data such as
graphics. Furthermore, the extensibility of an
object-oriented database allows us to implement
user-defined index structures which are essential in
achieving adequate performance in spatial data
access.

3 SPATIAL DATA
Spatial data can be defined as anything having a
location in a given global space with zero size
(point) or non-zero size (occupies space). A
spatial database, then, supports data structures for
the representation of spatial data, efficient spatial
access capabilities, and may also support a subset
of geometric operators on the data [GUNT88].
Spatial data is found in many application areas
including anatomy, solid modeling, geography,
computer aided design (CAD), robotics, and
others.

Anatomical objects make up the primary data set
for the structural biology database. Each three-
dimensional object is described spatially in terms
of its boundary. This information is obtained from
a series of images taken of 2-D cross-sectional
slices in which objects of interest are identified
explicitly as ordered sets of points that trace their
contours. Each set of ordered 2-D contours
describe an object in three dimensions. The
relationship between the original images, the 2-D
contours, and the 3-D surface reconstruction is
depicted in Figure 2.

331

Images Contours
Surface

Reconstruction

Figure 2. Spatial data abstractions

In an object-oriented implementation, the internal
representation is hidden and can be modified with
minimal effect on the overall system. No matter
which representation is used internally, the object
interface reflects generalizations about all spatial
objects. For instance, each object is located at a
point in space. All spatial objects, therefore,
respond to the message requesting their location.
Another generalization is that all spatial objects
occupy a portion of space (a point having zero
size). Because the description of the regions
occupied by objects can be arbitrarily complex, a
common approximation of an object’s extent is a
bounding box, defined by an n-dimensional
rectangle describing intervals in n dimensions that
completely enclose the bounds of the object.

We represent spatial data types through a class
hierarchy defining 3-D objects, shown in Figure 3.

ThreeDObject
(boundingBox)

\ . ..)
ThreeDBox ThreeDPolyline

(origin, comer) (vertices)

I ThreeDSphere
(center, radius)

Image
(bitmap, contours)

ThreeDPolygon

I
Contour

(tube, image)

Figure 3. ThreeD class hierarchy.

The generalizations of all 3-D objects are captured
in the common superclass called ThreeDObject.
Some of the basic attributes ThreeDObjects can be
asked for include:

boundary

bounding box

returned in various forms such
as points, lines, contours, etc.
defined as the minimum
ThreeDBox containing all of the
object’s extent

center

location

defined as the center point of the
object’s hounding box
defined as the closest point of
the object’s hounding box to
the origin

surface area area of object’s surface
volume volume of object’s hounds

Each subclass of ThreeDObject may override these
basic methods and may have additional specialized
attributes, ThreeDPolygons, for instance, are
confined to a plane and can therefore be asked for
their area and perimeter; a ThreeDPolyline can
answer its length and a ThreeDSphere can provide
its radius.

The basic 3-D anatomical object is called a Tube.
A Tube has instance variables describing symbolic
information and one instance variable describing
spatial data called contours that is an ordered
collection of instances of the class Contour. As a
subclass of ThreeDPolygon, each Contour is
defined by an ordered collection of ThreeDPoints
and is associated with its Tube and Image that
contains the original bitmap data. Besides the
general-purpose polyhedra objects, other
specialized 3-D object classes are defined that are
useful for spatial queries: ThreeDBox,
ThreeDPolyline, and ThreeDSphere.

The various attributes that can be obtained from 3-
D objects are used in determining spatial
relationships between objects. The two basic spatial
relationships are intersection and containment
between two objects. For example, an object can
determine whether it intersects or contains another
object through the messages, intersects:
aSpatialObject and contains: aSpatialObject,

332

respectively. The argument to these messages,
aSpatiaZObject, can be any spatial object.

Each class of spatial object may rely on a specific
set of tests when determining its relationship with
other spatial objects. A brute-force
implementation of the intersects: method would be
to first determine the type of object passed and
then invoke the appropriate algorithm for
intersection test based on the argument type. For
example, the intersects: method for the Tube class
would look like:

intersects: aSpatialObject
(aSpatialObject isKindOf: Tube)

iffrue: [. . . code to test for intersection
with another Tube . . . I.

(aSpatialObject isKindOf: ThreeDPolygon)
ifDue: [. . . code to test for intersection

with a ThreeDPolygon . . .].
(aSpatialObject isKindOf: ThreeDSphere)

ifTrue: [. . . code to test for intersection
with a ThreeDSphere . . . 1.

. . .

This, however, results in a lengthy case-like
statement that is both inefficient and difficult to
maintain for each type of spatial object in the
system.

For spatial relationship operations, we prefer to
implement a double-dispatching technique, similar
to that used in the Smalltalk- kernel classes for
handling arithmetic operations among Number
subclasses [GOLD83]. In double-dispatching, the
receiver object returns the result of sending the
argument object a more specific message with
itself as the argument. It is a useful technique for
efficiently choosing an algorithm based on the
class of the argument of a message and the class of
the receiver. Using the previous example, the Tube
intersects: method becomes:

intersects: aSpatialObject
*aSpatialObject intersectsTube: self

A complete implementation requires that all spatial
object classes implement an intersectsTube:
method containing the appropriate code to test
specifically for intersection with a Tube object.
The same would apply for other types of spatial
objects. Double-dispatching provides significant
speed at the expense of a large number of typed
methods and makes it possible to send the generic
intersects: message to all types of spatial objects. If
the number of classes participating in double-
dispatching becomes too large, other techniques
can be incorporated, such as coercion [PARC90].

The intersection relationship is commutative so
double-dispatching simply reverses the arguments.
However, the containment relationship must be
rephrased to an equivalent relationship when
double-dispatching. For instance, the contains:
method would return the result of sending
containedIn[seZfClassName] : self to the argument
object.

4 SPATIAL ACCESS
An important aspect of a database containing
spatial information is providing efficient spatial
access to objects. For large data sets, indices can
aid the search process in order to obtain adequate
performance. Retrieval of spatial objects in the
database is based on symbolic and/or spatial
properties. Current database systems support
conventional indices, such as B-tree, ISAM, and
hashing on simple data types, but do not provide
spatial data indexing [ULLM88]. Spatial access,
then, is limited to linear iterative search across the
entire collection of objects.

An object-oriented database, being extensible,
allows us to construct a user-defined indexing
structure using high-level objects. An ideal
solution would implement the index at a low level
inside the database kernel as close to the disk
activity as possible. Although implemented at a
higher level than conventional indices, an object-
level index does offer several advantages. The

333

database administrator has direct control and
design of the index and it can be tuned for
specific applications. If desired, the index can be
easily replaced if an improved index is found.
Care must be taken, however, to see that the index
maintains consistency and operates as a built-in
index would.

A number of index structures for organizing
spatial data have been proposed. The most
common consist of variations of hierarchical and
bucket methods such as quad-trees, act-trees, k-d
trees, k-d-B trees, grid files, RTrees, and cell trees
[GUNT88]. Most methods are designed primarily
for point data. Of those that support objects of
non-zero size, we chose the RTree as the most
suitable structure for the anatomical data because
it readily supports extended objects, such as lines,
regions, and volumes, it does not sub-divide
objects, and does not restrict occupancy to fixed-
grid cells.

We have designed and implemented an object-
oriented R*Tree [BECK901 spatial index. The
R*Tree, an enhanced variant of the original RTree
[GUTT84], is in the family of spatial access
methods that are based on the approximation of
complex spatial objects by their bounding boxes.
This approximation makes the R*Tree efficient in
terms of both space and time because the
information stored at each node in the tree
consumes a limited number of bytes and simple
rectangular regions can be compared quickly.

Based on a high-level tree-structure, the R*Tree is
inherently object-oriented. It lends itself well to
data and behavior encapsulation and is designed to
intermix spatial objects of multiple dimensions.
The basic behavior of an R*Tree object is
specified through the actions of insertion, deletion,
and searching.

The R*Tree organizes spatial objects in a height-
balanced tree structure by essentially grouping
objects into neighborhoods. Each tree has one
root node; each node can have a maximum of A4
children. Leaf nodes contain references to the
actual spatial objects and intermediate nodes
contain references to children nodes and a parent
node. Each node also stores its own bounding box
representing the total region covered by its
children.

34

Database objects are stored in the database in
container objects, such as Sets or Bags, similar to
the function of a relation storing records in a
relational database. For spatial objects the
container class, IndexedSpatialSet, is defined that
has two instance variables, objectset, an instance of
Set that acts as the holder for all spatial objects
inserted into the container, and spatiazlndex, an
instance of R*Tree that provides spatial access to
the set of objects.

When an object is inserted into an
IndexedSpatialSet it is inserted into the objectset
and the spatiallndex, where the objectset
organizes objects based on a hashing method and
the spatiallndex organizes them based on their
spatial properties. Deletion of objects occurs in a
similar fashion. An IndexedSpatialSet, with its
instance variables, is depicted graphically in Figure
4.

anIndexedSpatialSet

yzG2-p

Figure 4. An IndexedSpatialSet

During insertion, the R*Tree object needs to know
the bounding box of the object to be inserted,
obtained through the boundingBox message. The
R*Tree object need not be concerned with the
type of spatial object it is inserting as long as the
object responds appropriately to the boundingBox
message. In fact, an n-dimensional R*Tree is able
to accept a spatial object of n dimensions or lower
since all comparisons between bounding boxes are
done by the bounding box objects themselves
which can handle differences in dimensionality.

5 SPATIAL QUERIES
Spatial queries on objects are formulated in terms
of spatial properties such as location and regions
of occupancy. The two most common queries are:

l Object intersection query: Given a spatial
object S, find all objects, 0, where
OfiS# 0

l Object containment query: Two
variations: Given a spatial object S, find
all objects, 0, where
(1) S 2 0, and (2) 0 1 S

Two problems encountered with spatial search,
accuracy of results and precision of query region,
are related to the index structure. Conventional
implementations of non-point spatial indices
cannot provide completely correct answers to
spatial queries [OREN90]. Furthermore, each
index structure imposes a restriction on the type of
query region that can be specified. Most methods,
for example, allow for only a rectangular region
parallel to the global object space coordinate axes.
While this may be adequate for some applications,
there is often a need to specify other types and
more precise search regions. For instance, given a
set of three-dimensional anatomical objects, a
possible query might be, “Find all objects inside
the skull.” Restricting the search region to a
rectangular cube makes it impossible to describe
precisely the volume inside the skull.

We have shown that an object-oriented spatial
index overcomes the problems of inaccuracy and
precision of query region [BENS91]. Spatial
index search operations are inaccurate because
they are each based on an approximation of the
data objects (e.g., bounding box) so the accuracy
of the search is only as good as the
approximation. The object-oriented R*Tree
returns completely accurate answers because each
candidate object, identified at the leaf node level, is
interrogated as to whether or not it actually does
fulfill the search criteria rather than only its
approximation. Secondly, through polymorphism
and late binding, any arbitrary spatial object may
be specified as the search region so that the
precision of the query depends only on the
precision of the query object. The object-oriented
R*Tree uses the query object’s bounding box
during the tree traversal but the final intersect or
contain operation is performed with the actual
query object, thereby guaranteeing accurate
results.

The flexibility of the IndexedSpatialSet class is
seen in its ability to perform symbolic queries,
spatial queries, or combined symbolic and spatial
queries. For purely symbolic queries, such as
“Find all objects with names between ‘K’ and

‘M’ 9” the query request is redirected to the
objectset where the built-in accessing methods are
utilized. For purely spatial queries, such as “Find
all objects intersecting object 0,” the query
request is redirected to the spatiallndex which is
more efficient in finding objects spatially.

Queries that combine symbolic and spatial
predicates are more complicated. The current
system relies on the spatial access for any queries
containing spatial predicates. However, at the leaf
nodes, when the actual objects are interrogated, the
symbolic predicates are checked before the final
spatial requirements. This heuristic is based on
experience gained from testing various
combinations of queries and appears to provide
the best performance so far. Additional

335

investigation is needed in query optimization for a
more thorough solution to this problem.

We have constructed a very simple interface to
experiment with spatial query concepts on a data
set of randomly generated two-dimensional
objects. Figure 5 shows the layout of the query
interface with a set of 1000 spatial objects from
classes we’ve named City, Crop, Lake, River, and
Road.

Figure 5. A simple spatial query interface

The set of possible spatial query objects are
displayed as drawing tool icons on the left-hand
side as: rectangle, polygon, polyline, point, and
circle. The two-dimensional search space is shown
as a bitmap image (Smalltalk Form) containing all
the objects in the data set. This image can be
scaled and scrolled in all directions within its
window.

Spatial and symbolic query predicates are
specified on the right-hand side of the interface.
Check boxes indicate inclusion/exclusion of the
predicate in the query, currently combined only
by the AND operator. Specific operations for each
type of predicate are selected through radio
buttons. The set of objects returned by the query
appear as a scrolling list in the lower right-hand
comer of the interface.

Spatial queries are formulated graphically. The
spatial query object is specified by selection of an
appropriate drawing tool and is drawn directly in
the search space, denoting its location and
boundary. Figure 6 shows the result of executing a
spatial intersect query with a polygon object. For
purely spatial queries such as this example, the
R*Tree index uses the bounding box of the
polygon object during tree traversal but relies on
the polygon query object itself to check the final
spatial predicate. The objects returned are listed by
name and are drawn in the search space.

Figure 6. All objects intersecting a polygon

Combinations of spatial and symbolic queries are
formulated by checking multiple check boxes in
the query predicate area. Figure 7 shows the result
of a query involving all four possible predicates.
The query asks for instances of the class Lake that
are inside the circle object having names <=
‘West’ and areas between 400 and 600. In this
case, the R*Tree index uses the bounding box of
the circle object during tree traversal. As each
candidate object is found, the symbolic predicates
are checked before the final spatial predicate using
the circle query object.

336

Figure 7. Combination spatial and symbolic query

Queries in an object-oriented database can be
done in many ways. As yet there does not exist an
equivalent SQL-like declarative language for
specifying arbitrary queries. The Gemstone
database includes the OPAL language, which
closely resembles Smalltalk, for data definition
and data manipulation. In the current prototype
we generate a Gemstone Block object for
symbolic predicates. This block is passed to the
IndexedSpatialSet object in the database for
evaluation. For queries involving spatial and
symbolic predicates, the block object is passed to
the R*Tree where it is evaluated at the leaf node
level.

6 SUMMARY & FUTURE WORK
In this paper, we have described the development
of a database to support three-dimensional image
reconstruction of structural biology using object-
oriented technology. The application domain is
characterized by multiple data types and multi-
levels of abstraction of data obtained from images.
Much of this information is spatial data, so
particular attention was placed on the
implementation of the spatial data, its
representation, operations, indexing, and queries.

We represent spatial data through the class
hierarchy of three-dimensional objects. The

ThreeDObject class contains generalizations of all
3-D objects and serves as the superclass for current
and future specializations. We implement spatial
relationship operations through double-
dispatching techniques that provide an efficient
method of choosing appropriate algorithms based
on the class of the argument of a message and the
class of the receiver.

A container class for spatial objects was defined
that has two instance variables, a Set object that
holds the spatial objects and provides access based
on symbolic attributes, and an R*Tree index
object that provides efficient spatial access to the
object set. We have shown how the object-oriented
R*Tree extends the functionality of spatial indices
through accuracy of query results and precision of
query region. This was possible because of the
object-oriented features of polymorphism and late
binding.

Our work presented here accomplishes the
framework for a database schema that outlines the
representation, operations, and access methods for
spatial objects and a spatial/symbolic query
interface. As a prototype, the current system is in
its development stage and requires further
refinement before it can be integrated with the
data acquisition and production system in
Biological Structures. Once completed, it will have
an impact on and improve the 3-D reconstruction
efforts in Biological Structures by providing
advanced data management capabilities with
increased functionality and support for spatial
data.

The spatial query examples shown in this paper
were done with a set of two-dimensional objects.
Formulation of 3-D query objects will be
accomplished through an enhancement to the 3-D
editor application currently in use [PROT89] to
include support for arbitrary 3-D query object
construction and connection to the database. The
R*Tree spatial index is designed to support
objects of any dimension so it requires no
modifications.

337

One path of research currently underway is the
presentation of symbolic queries in a more
generalized fashion. The interface should be
dynamic such that the choices presented reflect the
set of instance variables in the scope of target
objects. For instance, queries over all
ThreeDObjects can be formulated according to
those instance variables common to all
ThreeDObjects. However, if the query is narrowed
to only Contour objects, then the predicate choices
should include those variables common to all
Contours. In this way, the presentation of query
predicates can be generated as the query is
formulated interactively.

One observation we have regarding spatial queries
is the proportion of time spent on computation of
spatial relationships done by the objects compared
to the time spent in traversal of the index.
Intersection seems to be the most computationally
intensive operation and appears to be the
bottleneck that overshadows the index search. As
some spatial operations are hindered by the data
representation, we are looking at alternative
representations, the roles they play in aiding
spatial operations, and the feasibility of object
conversions in the database.

ACKNOWLEDGEMENTS
We wish to thank the 3D Reconstruction
researchers in the Department of Biological
Structures for their assistance on the work
presented here. We also wish to thank IBM for
support provided through a Graduate Student
Fellowship awarded to the first author, and the W.
M. Keck Foundation for initial support of this
research.

REFERENCES

BECK90

BENS9 1

BRIN89

DUER83

GEMS90

GOLD83

GUTT84

GijNT88

N. Beckmann, H-P Kriegel, R.
Schneider, B. Seeger. The R*Tree: An
Efficient and Robust Access Method for
Points and Rectangles. Proceedings
ACM-SIGMOD International
Conference on the Management of
Data, 322-33 1, 1990.

D. Benson, G. Zick. Obtaining
Accuracy and Precision in Spatial
Search. Technical Report DEL-91 -01,
Department of Electrical Engineering,
University of Washington, 1991.

J. F. Brinkley, J. S. Prothero, J. W.
Prothero, C. Rosse. A Framework for
the Design of Knowledge-Based
Systems in Structural Biology.
Proceedings Thirteenth Annual
Symposium on Computer Applications
in Medical Care, IEEE Computer
Society Press, 61-65, 1989.

A. J. Duerinckx, S. J. Dwyer. Guest
Editors’ Introduction: Digital Picture
Archiving and Communication Systems
in Medicine. Computer, Vol. 16, No. 8,
Special Issue on Digital Image
Archiving in Medicine, 14-16, August
1983.

Gemstone Object-Oriented Database
Management System, Version 2.0,
Servio Corporation, 1990.

A. Goldberg, D. Robson. SmaZZtalk-80
The Language and its Implementation.
Addison-Wesley, 714 pgs., 1983.

A. Gunman. R-Trees: A Dynamic Index
Structure for Spatial Searching.
Proceedings ACM-SIGMOD
International Conference on the
Management of Data, 47-57, 1984.

0. Gunther. Efficient Structures for
Geometric Data Management, Lecture
Notes in Computer Science 337, edited
by G. Goos and J. Hartmanis, Springer
Verlag, 1988.

338

MCLE91 M. McLean, J. Prothero. Three-
dimensional reconstruction from serials
sections. V. Calibration of dimensional
changes incurred during tissue
preparation and data processing.
Analytical & Quantitative Cytology and
Histology (in press), 1991.

OREN J. Orenstein. A Comparison of Spatial
Query Processing Techniques for
Native and Parameter Spaces.
Proceedings ACM-SIGMOD
International Conference on the
Management of Data, 343-352, 1990.

PARC90 Objectworks for SmaIltalk-80, Version
2.5, ParcPlace Systems, Inc. 1990.

PROT89 J. S. Prothero, J. W. Prothero. A
software package in C for interactive 3-
D reconstruction and display of
anatomical objects from serial section
data. NCGA Conference Proceedings.
1:187-192, 1989.

STIM88 G. K. Stimac, J. W. Sundsten, J. S.
Prothero, J. W. Prothero, R. Gerlach, R.
Sorbonne. Three-dimensional Contour
Surfacing of the Skull, Face, and Brain
from CT and MR Images and from
Anatomic Sections. AJR 15 1: 807-8 10,
1988.

ULLM88 J. Ullman. Principles of Database and
Knowledge-Base Systems, Vol. I.
Computer Science Press, 1988.

339

