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ABSTRACT 
This paper describes the development of a 
database to support three-dimensional image 
reconstruction of structural biology using object- 
oriented technology. The requirements of this 
system encompass many of the popular 
justifications for the application of object-oriented 
technology, such as non-standard data types and 
complex composite data, but we also find 
advantage in the increased functionality obtained 
for spatial relationship operations and access 
methods. We focus attention on the 
implementation of the spatial data, its 
representation, operations, indexing, and queries. 

1 INTRODUCTION 
Biomedical imaging is making a tremendous 
impact on medical knowledge, teaching, and 
practice due to the fact that images provide a great 
deal of information that is otherwise unobtainable. 
Improvements on the acquisition, dissemination, 
understanding, and use of this information 
comprise the bulk of imaging research activities. A 
brief summary of them includes the development 
of new image modalities, image acquisition 
techniques, image processing, feature extraction, 
object recognition, and applications which make 
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use of the extracted information. As these 
technologies advance, and even become 
automated, the crucial missing component is the 
organization and management of the underlying 
data that is generated [DUER83]. Shown 
graphically in Figure 1, data generated by these 
biomedical imaging activities can be organized in 
a database that supports multiple data types and 
multi-level models. 

Figure 1. The role of a Biomedical 
Database 

Imaging 

Images contain information about real world 
objects. Once acquired, each stage in the process 
carries this information along while “squeezing 
out” certain elements of the image contents 
forming an internal model or representation that 
can be used by applications. These stages are all 
related, in fact, they build off of each other. 
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Likewise, there exists relationships among the data 
each stage generates. 

There are two basic categories of data a 
biomedical imaging database must support, 
symbolic and spatial. Symbolic data is the sort of 
alphanumeric data commonly found in traditional 
databases, such as patient accounting information, 
or employee records. Spatial data, on the other 
hand, consists of geometric information, such as 
maps, images and their contents, or three- 
dimensional anatomical objects. 

A traditional relational database stores information 
describing real world entities but is limited in the 
ways these entities can be represented and 
accessed. There exists a semantic gap between the 
user’s representation of the world and the 
representation in the database. This gap is 
substantially narrowed through an object-oriented 
implementation that provides multiple layers of 
abstractions closely modeling the user’s world 
view. 

In this paper, we describe the development of a 
database to support three-dimensional image 
reconstruction of structural biology using object- 
oriented technology. This application involves all 
of the stages of biomedical imaging mentioned 
above. The requirements of this system encompass 
many of the popular justifications for the 
application of object-oriented technology, such as 
non-standard data types and complex composite 
data, but we also find advantage in the increased 
functionality obtained for spatial relationship 
operations and access methods. We place 
particular attention to the implementation of the 
spatial data, its representation, operations, 
indexing, and queries. 

The current prototype consists of the Gemstone 
[GEMS901 object-oriented database running as a 
server on an IBM RS/6000 and Objectworks for 
Smalltalk- v. 2.5 [PARC901 running on a 
Macintosh IIfx as the application interface. We 
based our selection of these tools on their 

prototyping capabilities, data impedance matching, 
and availability at the time the project was 
initiated. 

The organization of this paper is as follows: 
Section 2 provides the background and context of 
the application domain. Section 3 describes the 
spatial data representation and operations of 
spatial relationship. Section 4 presents an object- 
oriented spatial index that augments the vendor- 
supplied access to object sets. Section 5 describes 
spatial queries and how the application of object- 
oriented technology improves accuracy and 
precision in spatial search. Section 6 concludes 
with a summary and discussion of future work. 

2 BACKGROUND 
For a number of years, researchers in the 
department of Biological Structures at the 
University of Washington have been developing 
and refining methods for 3-D image 
reconstruction [STIMSS, PROT89, MCLE91] in 
which three-dimensional images of anatomical 
objects are reconstructed from sets of ordered 2-D 
cross-sectional slices, somewhat like a loaf of 
sliced bread. The images and animations produced 
by these techniques reveal anatomical structures in 
ways never seen before and allow interactive 
manipulation of accurate quantified data in 
anatomy. 

The data acquisition process leading up to the 3-D 
reconstruction begins with various specimens 
prepared in ways that allow millimeter-thin slices 
to be removed as images are acquired of each new 
surface. The objects of interest are then traced 
manually by professional anatomists for each 
image taken, similar to contour lines on a map. 
These surface boundaries are labeled and digitized 
into computer-readable form for input to a 3-D 
graphics editor where the data is edited and 
displayed as three-dimensional surface 
reconstructions. 
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Currently underway is a project to acquire data 
encompassing the entire human body, providing 
the foundation for a distributed knowledge base of 
structural biology that will be used to solve 
problems in basic science, teaching, and clinical 
medicine [BRIN89]. Because anatomy is a 
fundamental framework upon which most of the 
basic medical sciences rest, a knowledge base of 
biological structure would have profound 
implications in many areas of medicine. A key 
aspect to the success of this system is the 
underlying management of the exceptionally large 
amount of data, the complexity and structure of 
the data, and its relationships. The organization of 
this data must also provide efficient symbolic as 
well as spatial access to the anatomical objects. 
Symbolic access is retrieval based on attribute 
values such as, “Select all images of the liver taken 
after October 6, 1991,” whereas spatial access is 
based on spatial properties such as, “Select all 
objects within 10 mm of the heart.” 

Up to now, this data has been stored in flat files 
and organized in a file directory hierarchy. While 
this has been adequate for relatively small sets of 
data, knowledge of the relevancy and structure of 
objects, as well as relationships among various 
objects, exists in the minds and memories of the 
biologists rather than as an integrated part of the 
data itself and information retrieval does not go 
beyond simple filename lookup. This method of 
organization fails as the amount of data increases, 
the relationships become more complex, and 
access to the data more sophisticated. 

Conventional relational database technology does 
not meet the needs of modern imaging 
applications, characterized by highly complex and 
structured data, multiple data types and 
relationships, and non-traditional database 
processing. It lacks adequate data models and 
poses a rigid table structure for the definition of 
the relationships between data records, thus 
preventing efficient representation and access of 
spatial or complex data structures. 

We believe that an object-oriented database 
approach offers many advantages in supporting 
biomedical applications having spatial data. It 
shortens the semantic gap between real-world 
objects and their corresponding abstractions and 
thus offers a more flexible model for dealing with 
complex data, The data modeling capabilities 
provided by the object-oriented model make it 
possible to support not only multiple types of 
images but also highly structured data such as 
graphics. Furthermore, the extensibility of an 
object-oriented database allows us to implement 
user-defined index structures which are essential in 
achieving adequate performance in spatial data 
access. 

3 SPATIAL DATA 
Spatial data can be defined as anything having a 
location in a given global space with zero size 
(point) or non-zero size (occupies space). A 
spatial database, then, supports data structures for 
the representation of spatial data, efficient spatial 
access capabilities, and may also support a subset 
of geometric operators on the data [GUNT88]. 
Spatial data is found in many application areas 
including anatomy, solid modeling, geography, 
computer aided design (CAD), robotics, and 
others. 

Anatomical objects make up the primary data set 
for the structural biology database. Each three- 
dimensional object is described spatially in terms 
of its boundary. This information is obtained from 
a series of images taken of 2-D cross-sectional 
slices in which objects of interest are identified 
explicitly as ordered sets of points that trace their 
contours. Each set of ordered 2-D contours 
describe an object in three dimensions. The 
relationship between the original images, the 2-D 
contours, and the 3-D surface reconstruction is 
depicted in Figure 2. 
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Images Contours 
Surface 

Reconstruction 

Figure 2. Spatial data abstractions 

In an object-oriented implementation, the internal 
representation is hidden and can be modified with 
minimal effect on the overall system. No matter 
which representation is used internally, the object 
interface reflects generalizations about all spatial 
objects. For instance, each object is located at a 
point in space. All spatial objects, therefore, 
respond to the message requesting their location. 
Another generalization is that all spatial objects 
occupy a portion of space (a point having zero 
size). Because the description of the regions 
occupied by objects can be arbitrarily complex, a 
common approximation of an object’s extent is a 
bounding box, defined by an n-dimensional 
rectangle describing intervals in n dimensions that 
completely enclose the bounds of the object. 

We represent spatial data types through a class 
hierarchy defining 3-D objects, shown in Figure 3. 

ThreeDObject 
(boundingBox) 

\ . ..) 
ThreeDBox ThreeDPolyline 

(origin, comer) (vertices) 

I ThreeDSphere 
(center, radius) 

Image 
(bitmap, contours) 

ThreeDPolygon 

I 
Contour 

(tube, image) 

Figure 3. ThreeD class hierarchy. 

The generalizations of all 3-D objects are captured 
in the common superclass called ThreeDObject. 
Some of the basic attributes ThreeDObjects can be 
asked for include: 

boundary 

bounding box 

returned in various forms such 
as points, lines, contours, etc. 
defined as the minimum 
ThreeDBox containing all of the 
object’s extent 

center 

location 

defined as the center point of the 
object’s hounding box 
defined as the closest point of 
the object’s hounding box to 
the origin 

surface area area of object’s surface 
volume volume of object’s hounds 

Each subclass of ThreeDObject may override these 
basic methods and may have additional specialized 
attributes, ThreeDPolygons, for instance, are 
confined to a plane and can therefore be asked for 
their area and perimeter; a ThreeDPolyline can 
answer its length and a ThreeDSphere can provide 
its radius. 

The basic 3-D anatomical object is called a Tube. 
A Tube has instance variables describing symbolic 
information and one instance variable describing 
spatial data called contours that is an ordered 
collection of instances of the class Contour. As a 
subclass of ThreeDPolygon, each Contour is 
defined by an ordered collection of ThreeDPoints 
and is associated with its Tube and Image that 
contains the original bitmap data. Besides the 
general-purpose polyhedra objects, other 
specialized 3-D object classes are defined that are 
useful for spatial queries: ThreeDBox, 
ThreeDPolyline, and ThreeDSphere. 

The various attributes that can be obtained from 3- 
D objects are used in determining spatial 
relationships between objects. The two basic spatial 
relationships are intersection and containment 
between two objects. For example, an object can 
determine whether it intersects or contains another 
object through the messages, intersects: 
aSpatialObject and contains: aSpatialObject, 
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respectively. The argument to these messages, 
aSpatiaZObject, can be any spatial object. 

Each class of spatial object may rely on a specific 
set of tests when determining its relationship with 
other spatial objects. A brute-force 
implementation of the intersects: method would be 
to first determine the type of object passed and 
then invoke the appropriate algorithm for 
intersection test based on the argument type. For 
example, the intersects: method for the Tube class 
would look like: 

intersects: aSpatialObject 
(aSpatialObject isKindOf: Tube) 

iffrue: [ . . . code to test for intersection 
with another Tube . . . I. 

(aSpatialObject isKindOf: ThreeDPolygon) 
ifDue: [ . . . code to test for intersection 

with a ThreeDPolygon . . .]. 
(aSpatialObject isKindOf: ThreeDSphere) 

ifTrue: [ . . . code to test for intersection 
with a ThreeDSphere . . . 1. 

. . . 

This, however, results in a lengthy case-like 
statement that is both inefficient and difficult to 
maintain for each type of spatial object in the 
system. 

For spatial relationship operations, we prefer to 
implement a double-dispatching technique, similar 
to that used in the Smalltalk- kernel classes for 
handling arithmetic operations among Number 
subclasses [GOLD83]. In double-dispatching, the 
receiver object returns the result of sending the 
argument object a more specific message with 
itself as the argument. It is a useful technique for 
efficiently choosing an algorithm based on the 
class of the argument of a message and the class of 
the receiver. Using the previous example, the Tube 
intersects: method becomes: 

intersects: aSpatialObject 
*aSpatialObject intersectsTube: self 

A complete implementation requires that all spatial 
object classes implement an intersectsTube: 
method containing the appropriate code to test 
specifically for intersection with a Tube object. 
The same would apply for other types of spatial 
objects. Double-dispatching provides significant 
speed at the expense of a large number of typed 
methods and makes it possible to send the generic 
intersects: message to all types of spatial objects. If 
the number of classes participating in double- 
dispatching becomes too large, other techniques 
can be incorporated, such as coercion [PARC90]. 

The intersection relationship is commutative so 
double-dispatching simply reverses the arguments. 
However, the containment relationship must be 
rephrased to an equivalent relationship when 
double-dispatching. For instance, the contains: 
method would return the result of sending 
containedIn[seZfClassName] : self to the argument 
object. 

4 SPATIAL ACCESS 
An important aspect of a database containing 
spatial information is providing efficient spatial 
access to objects. For large data sets, indices can 
aid the search process in order to obtain adequate 
performance. Retrieval of spatial objects in the 
database is based on symbolic and/or spatial 
properties. Current database systems support 
conventional indices, such as B-tree, ISAM, and 
hashing on simple data types, but do not provide 
spatial data indexing [ULLM88]. Spatial access, 
then, is limited to linear iterative search across the 
entire collection of objects. 

An object-oriented database, being extensible, 
allows us to construct a user-defined indexing 
structure using high-level objects. An ideal 
solution would implement the index at a low level 
inside the database kernel as close to the disk 
activity as possible. Although implemented at a 
higher level than conventional indices, an object- 
level index does offer several advantages. The 
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database administrator has direct control and 
design of the index and it can be tuned for 
specific applications. If desired, the index can be 
easily replaced if an improved index is found. 
Care must be taken, however, to see that the index 
maintains consistency and operates as a built-in 
index would. 

A number of index structures for organizing 
spatial data have been proposed. The most 
common consist of variations of hierarchical and 
bucket methods such as quad-trees, act-trees, k-d 
trees, k-d-B trees, grid files, RTrees, and cell trees 
[GUNT88]. Most methods are designed primarily 
for point data. Of those that support objects of 
non-zero size, we chose the RTree as the most 
suitable structure for the anatomical data because 
it readily supports extended objects, such as lines, 
regions, and volumes, it does not sub-divide 
objects, and does not restrict occupancy to fixed- 
grid cells. 

We have designed and implemented an object- 
oriented R*Tree [BECK901 spatial index. The 
R*Tree, an enhanced variant of the original RTree 
[GUTT84], is in the family of spatial access 
methods that are based on the approximation of 
complex spatial objects by their bounding boxes. 
This approximation makes the R*Tree efficient in 
terms of both space and time because the 
information stored at each node in the tree 
consumes a limited number of bytes and simple 
rectangular regions can be compared quickly. 

Based on a high-level tree-structure, the R*Tree is 
inherently object-oriented. It lends itself well to 
data and behavior encapsulation and is designed to 
intermix spatial objects of multiple dimensions. 
The basic behavior of an R*Tree object is 
specified through the actions of insertion, deletion, 
and searching. 

The R*Tree organizes spatial objects in a height- 
balanced tree structure by essentially grouping 
objects into neighborhoods. Each tree has one 
root node; each node can have a maximum of A4 
children. Leaf nodes contain references to the 
actual spatial objects and intermediate nodes 
contain references to children nodes and a parent 
node. Each node also stores its own bounding box 
representing the total region covered by its 
children. 
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Database objects are stored in the database in 
container objects, such as Sets or Bags, similar to 
the function of a relation storing records in a 
relational database. For spatial objects the 
container class, IndexedSpatialSet, is defined that 
has two instance variables, objectset, an instance of 
Set that acts as the holder for all spatial objects 
inserted into the container, and spatiazlndex, an 
instance of R*Tree that provides spatial access to 
the set of objects. 

When an object is inserted into an 
IndexedSpatialSet it is inserted into the objectset 
and the spatiallndex, where the objectset 
organizes objects based on a hashing method and 
the spatiallndex organizes them based on their 
spatial properties. Deletion of objects occurs in a 
similar fashion. An IndexedSpatialSet, with its 
instance variables, is depicted graphically in Figure 
4. 

anIndexedSpatialSet 

yzG2-p 

Figure 4. An IndexedSpatialSet 



During insertion, the R*Tree object needs to know 
the bounding box of the object to be inserted, 
obtained through the boundingBox message. The 
R*Tree object need not be concerned with the 
type of spatial object it is inserting as long as the 
object responds appropriately to the boundingBox 
message. In fact, an n-dimensional R*Tree is able 
to accept a spatial object of n dimensions or lower 
since all comparisons between bounding boxes are 
done by the bounding box objects themselves 
which can handle differences in dimensionality. 

5 SPATIAL QUERIES 
Spatial queries on objects are formulated in terms 
of spatial properties such as location and regions 
of occupancy. The two most common queries are: 

l Object intersection query: Given a spatial 
object S, find all objects, 0, where 
OfiS# 0 

l Object containment query: Two 
variations: Given a spatial object S, find 
all objects, 0, where 
(1) S 2 0, and (2) 0 1 S 

Two problems encountered with spatial search, 
accuracy of results and precision of query region, 
are related to the index structure. Conventional 
implementations of non-point spatial indices 
cannot provide completely correct answers to 
spatial queries [OREN90]. Furthermore, each 
index structure imposes a restriction on the type of 
query region that can be specified. Most methods, 
for example, allow for only a rectangular region 
parallel to the global object space coordinate axes. 
While this may be adequate for some applications, 
there is often a need to specify other types and 
more precise search regions. For instance, given a 
set of three-dimensional anatomical objects, a 
possible query might be, “Find all objects inside 
the skull.” Restricting the search region to a 
rectangular cube makes it impossible to describe 
precisely the volume inside the skull. 

We have shown that an object-oriented spatial 
index overcomes the problems of inaccuracy and 
precision of query region [BENS91]. Spatial 
index search operations are inaccurate because 
they are each based on an approximation of the 
data objects (e.g., bounding box) so the accuracy 
of the search is only as good as the 
approximation. The object-oriented R*Tree 
returns completely accurate answers because each 
candidate object, identified at the leaf node level, is 
interrogated as to whether or not it actually does 
fulfill the search criteria rather than only its 
approximation. Secondly, through polymorphism 
and late binding, any arbitrary spatial object may 
be specified as the search region so that the 
precision of the query depends only on the 
precision of the query object. The object-oriented 
R*Tree uses the query object’s bounding box 
during the tree traversal but the final intersect or 
contain operation is performed with the actual 
query object, thereby guaranteeing accurate 
results. 

The flexibility of the IndexedSpatialSet class is 
seen in its ability to perform symbolic queries, 
spatial queries, or combined symbolic and spatial 
queries. For purely symbolic queries, such as 
“Find all objects with names between ‘K’ and 

‘M’ 9” the query request is redirected to the 
objectset where the built-in accessing methods are 
utilized. For purely spatial queries, such as “Find 
all objects intersecting object 0,” the query 
request is redirected to the spatiallndex which is 
more efficient in finding objects spatially. 

Queries that combine symbolic and spatial 
predicates are more complicated. The current 
system relies on the spatial access for any queries 
containing spatial predicates. However, at the leaf 
nodes, when the actual objects are interrogated, the 
symbolic predicates are checked before the final 
spatial requirements. This heuristic is based on 
experience gained from testing various 
combinations of queries and appears to provide 
the best performance so far. Additional 
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investigation is needed in query optimization for a 
more thorough solution to this problem. 

We have constructed a very simple interface to 
experiment with spatial query concepts on a data 
set of randomly generated two-dimensional 
objects. Figure 5 shows the layout of the query 
interface with a set of 1000 spatial objects from 
classes we’ve named City, Crop, Lake, River, and 
Road. 

Figure 5. A simple spatial query interface 

The set of possible spatial query objects are 
displayed as drawing tool icons on the left-hand 
side as: rectangle, polygon, polyline, point, and 
circle. The two-dimensional search space is shown 
as a bitmap image (Smalltalk Form) containing all 
the objects in the data set. This image can be 
scaled and scrolled in all directions within its 
window. 

Spatial and symbolic query predicates are 
specified on the right-hand side of the interface. 
Check boxes indicate inclusion/exclusion of the 
predicate in the query, currently combined only 
by the AND operator. Specific operations for each 
type of predicate are selected through radio 
buttons. The set of objects returned by the query 
appear as a scrolling list in the lower right-hand 
comer of the interface. 

Spatial queries are formulated graphically. The 
spatial query object is specified by selection of an 
appropriate drawing tool and is drawn directly in 
the search space, denoting its location and 
boundary. Figure 6 shows the result of executing a 
spatial intersect query with a polygon object. For 
purely spatial queries such as this example, the 
R*Tree index uses the bounding box of the 
polygon object during tree traversal but relies on 
the polygon query object itself to check the final 
spatial predicate. The objects returned are listed by 
name and are drawn in the search space. 

Figure 6. All objects intersecting a polygon 

Combinations of spatial and symbolic queries are 
formulated by checking multiple check boxes in 
the query predicate area. Figure 7 shows the result 
of a query involving all four possible predicates. 
The query asks for instances of the class Lake that 
are inside the circle object having names <= 
‘West’ and areas between 400 and 600. In this 
case, the R*Tree index uses the bounding box of 
the circle object during tree traversal. As each 
candidate object is found, the symbolic predicates 
are checked before the final spatial predicate using 
the circle query object. 
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Figure 7. Combination spatial and symbolic query 

Queries in an object-oriented database can be 
done in many ways. As yet there does not exist an 
equivalent SQL-like declarative language for 
specifying arbitrary queries. The Gemstone 
database includes the OPAL language, which 
closely resembles Smalltalk, for data definition 
and data manipulation. In the current prototype 
we generate a Gemstone Block object for 
symbolic predicates. This block is passed to the 
IndexedSpatialSet object in the database for 
evaluation. For queries involving spatial and 
symbolic predicates, the block object is passed to 
the R*Tree where it is evaluated at the leaf node 
level. 

6 SUMMARY & FUTURE WORK 
In this paper, we have described the development 
of a database to support three-dimensional image 
reconstruction of structural biology using object- 
oriented technology. The application domain is 
characterized by multiple data types and multi- 
levels of abstraction of data obtained from images. 
Much of this information is spatial data, so 
particular attention was placed on the 
implementation of the spatial data, its 
representation, operations, indexing, and queries. 

We represent spatial data through the class 
hierarchy of three-dimensional objects. The 

ThreeDObject class contains generalizations of all 
3-D objects and serves as the superclass for current 
and future specializations. We implement spatial 
relationship operations through double- 
dispatching techniques that provide an efficient 
method of choosing appropriate algorithms based 
on the class of the argument of a message and the 
class of the receiver. 

A container class for spatial objects was defined 
that has two instance variables, a Set object that 
holds the spatial objects and provides access based 
on symbolic attributes, and an R*Tree index 
object that provides efficient spatial access to the 
object set. We have shown how the object-oriented 
R*Tree extends the functionality of spatial indices 
through accuracy of query results and precision of 
query region. This was possible because of the 
object-oriented features of polymorphism and late 
binding. 

Our work presented here accomplishes the 
framework for a database schema that outlines the 
representation, operations, and access methods for 
spatial objects and a spatial/symbolic query 
interface. As a prototype, the current system is in 
its development stage and requires further 
refinement before it can be integrated with the 
data acquisition and production system in 
Biological Structures. Once completed, it will have 
an impact on and improve the 3-D reconstruction 
efforts in Biological Structures by providing 
advanced data management capabilities with 
increased functionality and support for spatial 
data. 

The spatial query examples shown in this paper 
were done with a set of two-dimensional objects. 
Formulation of 3-D query objects will be 
accomplished through an enhancement to the 3-D 
editor application currently in use [PROT89] to 
include support for arbitrary 3-D query object 
construction and connection to the database. The 
R*Tree spatial index is designed to support 
objects of any dimension so it requires no 
modifications. 
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One path of research currently underway is the 
presentation of symbolic queries in a more 
generalized fashion. The interface should be 
dynamic such that the choices presented reflect the 
set of instance variables in the scope of target 
objects. For instance, queries over all 
ThreeDObjects can be formulated according to 
those instance variables common to all 
ThreeDObjects. However, if the query is narrowed 
to only Contour objects, then the predicate choices 
should include those variables common to all 
Contours. In this way, the presentation of query 
predicates can be generated as the query is 
formulated interactively. 

One observation we have regarding spatial queries 
is the proportion of time spent on computation of 
spatial relationships done by the objects compared 
to the time spent in traversal of the index. 
Intersection seems to be the most computationally 
intensive operation and appears to be the 
bottleneck that overshadows the index search. As 
some spatial operations are hindered by the data 
representation, we are looking at alternative 
representations, the roles they play in aiding 
spatial operations, and the feasibility of object 
conversions in the database. 
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