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Abstract

Defect-prediction techniques can enhance the quality assur-

ance activities for software systems. For instance, they can be

used to predict bugs in source files or functions. In the con-

text of a software product line, such techniques could ideally

be used for predicting defects in features or combinations

of features, which would allow developers to focus quality

assurance on the error-prone ones. In this preliminary case

study, we investigate how defect prediction models can be

used to identify defective features using machine-learning

techniques. We adapt process metrics and evaluate and com-

pare three classifiers using an open-source product line. Our

results show that the technique can be effective. Our best sce-

nario achieves an accuracy of 73 % for accurately predicting

features as defective or clean using a Naive Bayes classifier.

Based on the results we discuss directions for future work.

Categories and Subject Descriptors D.2.7 [Software En-

gineering]: Distribution, Maintenance, and Enhancement;

D.2.8 [Software Engineering]: Metrics; D.2.13 [Software

Engineering]: Reusable Software

General Terms Measurement, Reliability

Keywords software product lines, features, defect prediction

1. Introduction

A Software Product Line (SPL) is a family of related pro-

grams (a.k.a., variants) that typically share a common code-

base. The commonalities and variabilities among the variants

are often described in terms of features—abstract entities

mapped to implementation artifacts, such as files or compo-

nents. As such, features align more naturally with an SPL’s

functionalities than implementation artifacts, helping users
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to understand and select variants, and developers to engineer

and evolve an SPL. Reporting and discussing defects, which

easily arise in complex SPLs, is also done per feature.

Unfortunately, quality assurance (QA) of features in SPLs

is often challenging and costly. First, testing features in iso-

lation is difficult, especially when they are scattered across

the codebase [10, 11] and can only be tested at integration

time [3]. Second, testing at integration time requires selecting

individual variants, which is prone to a combinatorial explo-

sion, which in turn requires feature-sampling strategies or

lifting of QA techniques to SPLs.

Defect prediction models can reduce QA costs. Many stud-

ies investigate such models at the file [13] or code-change

(commit) level [14] and show that they can achieve satis-

factory results. However, it is still unknown if such models

can be used at the feature level. If effective, feature defect

predictions could (i) help developers to select (or prioritize)

samples of features that are prone to defects and should be

tested more thoroughly; (ii) increase the detection of defects

scattered across implementation artifacts, as these will likely

have a low impact on the prediction model if using traditional

file-based prediction; and (iii) improve the actual QA (e.g.,

code reviews) when features are used for communicating and

coordinating within and across teams.

Towards improving the cost-effectiveness of feature QA,

we conduct a preliminary case study on using prediction mod-

els for identifying defective features. We show how prediction

models can be adapted from standard file- or commit-based

approaches by using a subset of known process metrics [13]

we adapt to the feature level. We evaluate three machine-

learning (ML) algorithms on the open-source project Busy-

box and discuss their effects on the prediction accuracy.

Our results show that the prediction models can be effec-

tive with an accuracy of up to 73%, but also that further in-

vestigations of defect prediction for features should be done.

2. Study Design

Our objective is to create a defect-prediction model for

features and to evaluate three classifiers on a real system.
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Subject System. BusyBox is an open-source implementation

of more than 300 common Linux shell tools (e.g., cat, echo,

mount) in one compact, memory-efficient executable. We

selected it because it is feature-based, uses static variability

through conditional compilation (e.g., # ifdef ) and therefore

the locations of features in the codebase are easily identifiable.

We also had prior experience using it in research.

We extract BusyBox’ code history from its actively main-

tained Git repository1 until the stable release 1_25_0, which

amounts to commits over 13 releases covering the develop-

ment from 2002 (0.6.0) to 2016 (1_25_0). In total, we explore

3.860 commits contributed by 244 different authors, with 821

unique features across all releases.

Mapping Feature Metadata. Our dataset consists of vectors

that for each feature in a specific release, contain the feature

name, the release number, values of five process metrics

aggregated over all commits associated to the release (ex-

plained shortly), and the classification as defective or clean.

More precisely, for each release, we collect its commits until

the previous release. From each commit we then extract the

changed files, lines of code, author, and commit message. We

then associate the commit to it’s features. If a commit’s diff

contains code changes within (or changes of) conditional-

compilation directives that belong to one or more features

(i.e., the feature appears in the directive’s expression), we

attribute the commit to each feature. This association is used

to collect relations between the authors of the commits and

the feature, and to perform the labeling process.

Metrics. Many defect-prediction studies rely on code metrics

(e.g., cyclomatic complexity, number of distinct paths, fan in)

defined at the file, class or function level [1]. However, the

feature code does not necessarily align with these structures.

Different metrics specifically designed to evaluate the com-

plexity and size of features would need to be used to learn the

metrics’ association with defect-proneness of feature code.

On the other hand, process metrics (e.g., number of commits

made to a file, number of developers who changed the file,

percentage of the lines authored by the highest contributor of

a file, etc.) can be easily adapted to the feature level. More-

over, previous studies [9, 13] show that process metrics are

more effective for prediction than code metrics.

We define the following set of process metrics, adapted

from Rahman et al. [13]: COMM (number of commits associ-

ated to the feature in a release), ADEV (number of distinct

developers who changed the feature in a release), DDEV (cu-

mulative number of distinct developers who contributed to the

feature up to the release), EXP (geometric mean of the experi-

ences of all developers contributing to the feature in a release),

OEXP (experience of the developer who authored most com-

mits associated to the feature). For the latter two metrics,

experience is defined as the number of added, changed or

removed lines that a developer contributed to the project up

to the given release.

1 https://git.busybox.net/busybox/

Figure 1. Prediction model training and testing set

Labeling. In our study, we evaluate a binary classifier: a

feature is either defective or clean. The vector obtains the

defective label when there is a corrective commit associated

with the feature code in a later release; otherwise we label it

as clean. Recall that any labeling is done per release range,

so a feature can have different labels (e.g., after the corrective

commit, a previously defective feature is clean if no other

corrective commit is found in future releases).

We identify corrective commits by searching for the

following keywords in the commit message: ’bug’, ’fix’,

’error’, and ’fail’. This approach is commonly used [7, 14],

since commit messages with these words were shown to be

strongly correlated to actual bug-fix commits.

Model Building. To learn the association between defect

proneness of features and their properties (measured by

the metrics), the model must be trained (e.g., by creating

a decision tree) with a set vectors (features in a specific

release) labeled as defective or clean vectors and tested with

another set of vectors. Consequently, we split our dataset

into a training set, containing the first nine releases (0.6.0 to

1_21_0), and a testing set with the following three releases

(1_22_0 to 1_24_0). Note that the most recent release 1_25_0

is excluded, since its features cannot be labeled as we have

no future release to identify corrective commits touching the

code of these features. Yet, its commits are used to identify

corrective commits for features in earlier releases.

Fig. 1 summarizes our setup. Other defect-prediction stud-

ies use similar setups [13, 14], but also alternative strategies

for separating the testing and the training set (e.g., cross vali-

dation with k-folds) exist. Our setup is closer to an application

of prediction models in a real-world scenario, where devel-

opers and testers try to focus their QA efforts on defective

features in future maintenance activities.

Classifiers. A classifier takes a set of vectors—containing the

class the vector belongs to (defective or clean in our case) and

the attributes (the metric values in our case)— as input, learns

a prediction model, and is then able to accurately predict the

class to which a new vector belongs. Recall that the same

feature in different releases is treated independently, since a

feature can have completely different attributes on different

releases, or even a different class.

We explore three different classifiers: one based on deci-

sion trees (J48), one based on a variation of decision trees in

case of overfitting (Random Forest), and one with indepen-

dent attributes not based on decision trees (Naive Bayes). J48

is an open-source Java implementation of the popular C4.5
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Figure 2. Accuracy of predicting the testing set

decision-tree algorithm [12]. We chose it as it was ranked

first in a selection of the ten most influential data-mining

algorithms [16]. Random Forest (a.k.a., Random Decision

Forest) also relies on decision trees. When such trees become

very deep, they tend to learn highly irregular patterns and

describe random error or noise instead of the underlying rela-

tionship (overfitting). This happens in excessively complex

models with too many parameters relative to the number of

vectors in the training set. Random forest overcomes this

problem by maintaining multiple deep decision trees trained

on different parts of the training set, reducing the variance [4].

Naive Bayes (a.k.a., simple Bayes) is one of the most impor-

tant methods to solve supervised classification problems. It

is easy to construct (e.g., no need for complicated iterative

parameter-estimation schemes), applicable to huge data sets,

and usually has a good performance [5, 16]. An important

assumption is that attribute values are independent from each

other. For example, in our study, COMM (number of commits to

the feature) and ADEV (number of distinct developers chang-

ing the feature) contribute independently to the probability of

a feature being defective or clean.

Tooling. We use Codeface to extract commits with their re-

spective authors and to analyze dependencies between fea-

tures, commits, and the authorship. Codeface is a framework

for the social and technical analysis of software development

projects [7]. We write a custom tool in Python and Bash to cal-

culate the five process metrics and to store the collected data

in a MySQL database. Finally, we use the WEKA toolchain

to run the three classifiers in their standard implementation.

3. Results

We obtained a training set with 1099 vectors and trained

models using all three classifiers. As Fig. 2 shows, all models

achieve a similar prediction accuracy. Naive Bayes with a

correct classification of 73% testing-set vectors, J48 with

71%, and Random Forest with 70%. To better understand

the quality of the model we need to look at results per class.

For instance, a poorly designed model that predicts 100 %

of features as clean in a system with few detective instances

will have a high accuracy level (a.k.a., accuracy paradox).

The balance of data is important to evaluate the results.

Ideally, both classes have a reasonable number of vectors.

From our full set of 1455 vectors (training plus testing set),

531 are defective and 924 are clean. So, our data is slightly

imbalanced, which can considerably affect the performance

of a prediction model [14]. However, this scenario is expected,

since a real system does likely have fewer defective features.

The confusion matrices in Table 1 help us to understand

how the balancing of our data impacts the three classifiers.

Although Naive Bayes has the best overall accuracy, J48

performs best for predicting defective features.

Table 2 shows details about the prediction performance

separated by class (defective or clean), including precision,

recall, true positive (TP) rate, false positive (FP) rate, F-

measure, and Receiver Operating Characteristic (ROC).

Good models have both high precision and recall. How-

ever, since increasing one often reduces the other we also

check the F-measure (harmonic mean of both). It relies on a

threshold to declare a feature as defective or clean. We use

a common threshold of 0.5 [13, 17]. To evaluate the perfor-

mance with a threshold invariant measure (which does not

depend on a fixed threshold) we also use the ROC, which is a

curve that plots the TP rate (or recall) against the FP rate for

all possible thresholds between 0 and 1. The area under the

curve (AUC) is used to evaluate how good the model is, from

0 (worst model) to 1 (best model), by comparing the model

to random prediction (where AUC would always be 0.5).

All classifiers achieve good F-measures: 0.718 (Random

Forest), 0.720 (Naive Bayes), and 0.724 (J48). Defect fea-

tures are identified with a very low FP rate (0.146) with Naive

Bayes. However, the same algorithm detects clean features

with the highest FP rate (0.724). This contrast can be ex-

plained by the imbalanced data, but more investigation is still

necessary. Overall, J48 performs best considering F-measure

(0.724) and ROC area (0.653), as opposed to Random Forest

with lower F-measure (0.718) and ROC (0.594).

To understand how the classifiers work, Fig. 3 shows the

decision tree generated by J48 and how the attributes affect

the model. For example, when the number of developers who

changed the feature in a given release (ADEV) is greater than

one, the classifier very likely labels the feature instance as de-

fective. If ADEV is less or equal 1, the classifier assesses other

attributes (e.g., COMM, EXP) before making a decision.

4. Discussion

Based on our results, we plan to improve the prediction tech-

nique and investigate the effects of different configurations.

Table 1. Confusion matrices

Predicted -> Defective Clean Total

J
4
8 Actual Defective 43 33 76

Actual Clean 72 208 280
Total 115 241 356

R
a
n
d
o
m

F
o
re

st

Actual Defective 37 39 76
Actual Clean 67 213 280

Total 104 252 356

N
a
iv

e
B
a
y
e
s Actual Defective 21 55 76

Actual Clean 41 239 280
Total 62 294 356
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Table 2. Results obtained with the three algorithms
Defective Clean Weighted Avg.

J
4
8

TP rate 0.566 0.743 0.705
FP rate 0.257 0.434 0.396
Precision 0.374 0.863 0.759
Recall 0.566 0.743 0.705
F-measure 0.450 0.798 0.724
ROC area 0.653 0.653 0.653

R
a
n
d
o
m

F
o
re

st

TP rate 0.487 0.761 0.702
FP rate 0.239 0.513 0.455
Precision 0.356 0.845 0.741
Recall 0.487 0.761 0.702
F-measure 0.411 0.801 0.718
ROC area 0.594 0.594 0.594

N
a
iv

e
B

a
ye

s

TP rate 0.276 0.854 0.730
FP rate 0.146 0.724 0.600
Precision 0.339 0.813 0.712
Recall 0.276 0.854 0.730
F-measure 0.304 0.833 0.720
ROC area 0.612 0.612 0.612

We also aim at studying more and larger systems. In addition,

our study suggests the following improvements.

Imbalanced Data. Our dataset had much less defective

(37 %) than clean features. Resampling techniques could

mitigate potential effects (accuracy paradox) and increase

the percentage of defective features in the training set. A

simple approach would be to randomly select features from

the training set and remove (if clean) or duplicate the instance

(if defective) until a balance is reached. Similar resampling

techniques are used by others with satisfactory results [14].

Metrics. Although process metrics usually perform better

than code metrics at the file-level, it is not clear whether

that holds for the feature level. Additional metrics should be

adapted and evaluated to investigate their effect on predic-

tion performance. Examples could include variability model

related metrics [2] or feature-related code metrics [8].

Stability. We evaluated the prediction for future releases

using the software history up to a given point. However,

if a major shift of activities or feature-code refactoring

happened in the training set, the prediction performance

can be compromised after this point. The aspects that cause

defects in features may also shift over time. A prediction

model is stable when it adapts well to major changes. We want

to investigate how stable the models are. For example, we can

investigate if a model trained with only the features from the

Figure 3. Decision tree generated with J48

previous release (or a limited release window) performs better

than a model trained with features from all prior releases.

Evaluate Stasis. A good metric for defect prediction must co-

evolve significantly with the defect occurrence of the feature.

When a metric stagnates, it tends to predict the same feature

as defective in all releases. We need to investigate the stasis

of our model to detect if the same features are repeatedly

being predicted as defective. The model can still have a good

performance if the same features repeatedly become defective

over releases. However, features that are not defective in the

training set, but in the testing set, may not be detected.

Cost-Effectiveness. A feature can comprise a significant

amount of code and, unlike a file, can be scattered across the

codebase. Even if successfully predicted as defective, large

and scattered features are more costly to inspect. We want to

investigate the prediction’s cost-effectiveness, evaluating if

the investment pays off in terms of defects covered.

5. Related Work

Many studies target prediction models for various domains

and propose performance improvements. However, we do not

know any study on such models for features in SPLs.

Rahman et al. [13] investigate the efficacy of code and

process metrics for defect prediction in a large number of

releases from many systems. They compare both kinds of

metrics to understand when and why each kind may be

suitable for a prediction model, suggesting that process

metrics are preferable. We follow this advice.

Tan et al. [14] investigate defect prediction based on

change classification (commit level). They perform a case

study on a proprietary Cisco system and analyze the reasons

for any low performance of the method. Among others, to

address the problem of imbalanced data, they add a gap

between training and testing set to allow more bugs to be

detected. Although a better performance is achieved, the

precision is still low, requiring further investigations.

Wang et al. [15] propose using deep learning to learn

semantic representations of programs from source code. The

goal is to go beyond traditional attributes and use semantic

information for characterizing defects and improving defect

prediction in within- and cross-project defect predictions.

They achieve an average F-measure of 0.641 on 13 systems.

Jeon et al. [6] propose a defect-prediction model for con-

secutive software products in an SPL. They study historical

trends in bug-tracking systems to predict the number of de-

fects in upcoming products, but not for individual features.

6. Conclusion

We investigated how defect prediction models can be used to

identify defective features using machine learning techniques,

aiming at improving the cost-effectiveness of QA activities

for features in SPLs. Providing a classification of features

based on their error-proneness can help developers to better

focus their testing and bug-detection efforts.
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Our results show preliminary evidence of the technique’s

effectiveness. Already with a small set of five process metrics

we achieved an accuracy of up to 73 % on predicting features

as defective or clean. Yet, a high FP rate is still a challenge.

We plan to extend our study to systems from more do-

mains, different sizes, and different developer communities.

We also plan using different process metrics, comparing the

performance of process metrics with code or model metrics,

and evaluating different experiment setups (e.g., k-fold cross

validation to separate training and testing set). Finally, im-

proving the defect labeling and taking feature-code outside

# ifdefs into account are further directions for future work.
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