Viser: Providing Serializability in
Hardware with Simplified Cache Coherence

Swarnendu Biswas

Ohio State University (USA)
biswass@cse.ohio-state.edu

Abstract

While existing architectures like x86 and SPARC provide
strong hardware memory consistency models, such as TSO,
programming language memory models are more relaxed.
This divide nullifies the usefulness of providing strong hard-
ware memory models, since languages and compilers provide
a weaker guarantee. Moreover, current shared memory sys-
tems implement complex cache coherence protocols which
add to the complexity.

This work proposes a microarchitecture, called Viser, that
ensures strong semantics—serializability of synchronization-
free regions (SFRs)—in the absence of region conflicts even
for racy program executions. Given an execution, Viser ei-
ther reports a serializability violation or guarantees SFR-
serializability, in effect providing the same guarantees pro-
vided by languages such as C++ and Java for data-race-free
programs only. Viser’s design also allows for greatly simpli-
fying existing cache coherence protocols, without requiring
any assumptions about language-level properties such as data-
race-freedom.

Categories and Subject Descriptors C.1.0 [Computer
Systems Organization]: Processor Architectures—general;
D.3.4 [Programming Languages]: Processors—compilers,
run-time environments

Keywords Memory models; cache coherence; region serial-
izability; conflict exceptions; region conflicts; data races

1.

Existing architectures such as x86 and SPARC provide strong
memory consistency models such as fotal store order. How-
ever, programming languages such as C++ and Java provide
more relaxed memory models that provide strong semantics
only for data-race-free programs. These languages provide

Problem and Motivation

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.

Copyright is held by the owner/author(s).
SPLASH Companion’15, October 25-30, 2015, Pittsburgh, PA, USA

ACM. 978-1-4503-3722-9/15/10
http://dx.doi.org/10.1145/2814189.2815375

75

no useful guarantees about the semantics of data races. This
divide between the hardware and language memory models
nullifies the usefulness of providing strong hardware memory
models [1]. Other memory model alternatives such as sequen-
tial consistency also have drawbacks and are not particularly
strong [1]. In addition, the performance and scalability of
current shared-memory multiprocessor systems are limited
by complex cache coherence protocols [3].

2. Background and Related Work

There are two possible directions to address the suboptimal
co-design of existing hardware and programming languages.
The first option is to strengthen language memory models, but
data races present a significant impediment [1]. Programming
languages such as Java and C++ provide strong semantics—
serializability of SFRs—but only in the absence of data races.
Unfortunately, they provide few or no guarantees for racy
executions [1]. Much prior work delves into the problem
of detecting data races [4], but detecting all races in an ex-
ecution incurs high overhead which prohibit their use as a
basis for language semantics. Prior work avoids the expense
of detecting all happens-before races by instead detecting
conflicts between regions (e.g., SFRs and RFRs) [2, 5]. For
conflict-free executions, regions execute serially, otherwise a
serializability violation is reported. Existing region conflict
detectors are however impractical: software-based detectors
incur high overhead [2], whereas hardware approaches intro-
duce significant complexity and are unscalable [5].

An alternate option is to improve performance and scala-
bility of current shared-memory multiprocessor systems, by
simplifying existing complex cache coherence protocols. A
simple coherence protocol facilitates verifying correctness,
improves scalability and potentially performance, and reduces
energy requirements. However, applicability of prior work is
severely limited by assumption about data-race-freedom at
the language-level [3].

3. Viser: Serializability in Hardware

This work proposes Viser, which is a microarchitecture re-
design to solve two important problems: 1) provide strong se-
mantics even for racy executions that programming languages
can rely on, and 2) leverage the opportunity to simplify the



already-complex cache coherence protocols. Viser soundly
and precisely checks for region (e.g., SFRs, RFRs) conflicts,
and raises an exception whenever serializability is violated
(implies a true data race). An exception-free execution in
Viser implies region serializability. Our work also shows that
such “region conflict exceptions” semantics can be used to
simplify complicated coherence protocols.

Motivated by prior work [2], Viser uses a mix of eager
and lazy techniques to detect region conflicts. Accesses
to data that reside in private non-evicted cache lines use
lazy versioning and lazy conflict detection, like in software
transactional memory systems, because it is expensive to
detect all write—write and write-read conflicts eagerly. For
accesses that “hit” in a private cache, checking for conflicts
is delayed till the cache line is evicted to a shared LLC
or the core executes a synchronization operation. To check
for conflicts for accesses to a private line, the private cache
controller sends the access information to the LLC. Evicted
cache lines (i.e., LLC lines) use eager versioning and eager
conflict detection. To eagerly detect conflicts, the LLC stores
precise access metadata for each evicted line for each core
that has evicted the line. Future accesses to the LLC line
from other cores can detect a conflict eagerly by comparing
with the LLC line metadata. To account for eviction from
the LLC, Viser writes back the line along with the metadata
to memory—in effect, the memory creates an illusion of an
unbounded LLC.

Microarchitecture design and coherence protocol. The
design of Viser assumes a three-level cache hierarchy, with
writeback and inclusive private L1 and L2 caches, and a
shared non-inclusive LLC. Viser uses a directory-based coher-
ence protocol, with the directory embedded in the LLC. The
coherence protocol in Viser requires only two states: invalid
and valid. A valid line means that the data is consistent in the
system. Unlike a directory-based protocol, the LLC does
not maintain read sharers, thereby reducing space overhead
and avoiding a significant source of scalability bottleneck.
Each cache line in Viser adds one read bit and one write bit
per byte to maintain precise access information. To eagerly
detect conflicts, the LLC needs to maintain precise access
information for each evicted line from each core. Naively
maintaining the metadata in the LLC is impractical, there-
fore the design uses a sparse representation indexed with line
addresses that sits alongside the LLC and stores the access
metadata.

Ensuring serializability. In the absence of conflicts, serial-
izability of regions is guaranteed if the following conditions
are satisfied: a) a region’s writes appear to be atomic, and
(b) the values read in a region are consistent. To ensure seri-
alizability, each core writes back its writes and validates its
reads in private cache lines (i.e., not yet evicted) ar region
boundaries. Accesses that are part of evicted lines are not
processed since any conflict on them will be detected eagerly
by the LLC. In Viser, a core repeatedly executes the following

76

steps at a region boundary until either a conflict is detected
or a consistent snapshot is read:

1. Pre-commit: Write back the write access information and
the updated values for dirty lines to the LLC.

2. Read validation: Validate reads using value validation.

3. Post-commit: Clear the access information pertaining to
the current core from the LLC, and invalidate all lines
from its private caches.

A successful validation of a region’s accesses ensures
that the writes appear to happen atomically, and all the
reads observe a consistent snapshot of values, which implies
serializability.

4. Results and Contributions

Results. 'We have implemented Viser with a Pin-based sim-
ulator. Our Pintool instruments programs and generates a
trace of events which is consumed by a Java backend that
models a Viser core. To evaluate Viser’s performance, we
have also implemented a directory-based MESI coherence
protocol. Our initial experiments show that Viser improves
performance by 8% on the average over a traditional MESI
system for the PARSEC 3.0 benchmarks with the simmedium
input size. The Viser protocol increases on-chip network traf-
fic (in flits) by 60%, whereas it decreases traffic between the
LLC and memory by 65%. Viser’s simpler cache coherence
protocol translates to better scalability and reduced energy
requirements due to fewer coherence messages being issued,
and has the added benefit of being easy to validate [3].

Contributions. This work proposes Viser, a microarchitec-
ture design that associates strong semantics even to racy pro-
gram executions. For an arbitrary program execution, Viser
guarantees to either report a serializability violation or re-
gions execute as if serially. Viser introduces holistic but sim-
ple changes to existing processor architecture and cache co-
herence protocols to efficiently detect SFR conflicts. Viser’s
simplified directory-based cache coherence protocol is ex-
pected to scale well and has reduced energy requirements.
We expect Viser will provide a significant advancement in
enabling stronger semantics for all program executions.

References

[1] S. V. Adve and H.-J. Boehm. Memory Models: A Case for
Rethinking Parallel Languages and Hardware. CACM, 53:90—
101, 2010.

[2] S. Biswas, M. Zhang, M. D. Bond, and B. Lucia. Valor: Efficient,
Software-Only Region Conflict Exceptions. In OOPSLA, 2015.

[3] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand,
S. V. Adve, V. S. Adve, N. P. Carter, and C.-T. Chou. DeNovo:
Rethinking the Memory Hierarchy for Disciplined Parallelism.
In PACT, pages 155-166, Washington, DC, USA, 2011.

[4] C. Flanagan and S. N. Freund. FastTrack: Efficient and Precise
Dynamic Race Detection. In PLDI, pages 121-133, 2009.

[5] B. Lucia, L. Ceze, K. Strauss, S. Qadeer, and H.-J. Boehm. Con-
flict Exceptions: Simplifying Concurrent Language Semantics

with Precise Hardware Exceptions for Data-Races. In ISCA,
pages 210-221, 2010.



	Problem and Motivation
	Background and Related Work
	Viser: Serializability in Hardware
	Results and Contributions

