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Abstract 
A new algorithm for distributed garbage collection is 

presented. This algorithm collects distributed garbage 
incrementally and concurrently with user activity. It is 
the first incremental algorithm that is capable of collect- 
ing cyclic distributed garbage. Computational and net- 
work communication overhead are acceptable. Hosts may 
be temporarily inaccessible and synchronization between 
hosts is not necessary. The algorithm is based on asyn- 
chronous distribution of timestamp packets each contain- 
ing a list of last-access times of some relevant remotely 
referenced objects. Finally, the correctness and time 
complexity of the algorithm are discussed. 
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(I Garbage collection should be concurrent with user 
activity (called the mutator as opposed to the collec- 
tor). 

0 The fragmentation of the heap must be handled. 
0 The computational overhead of garbage collection 

must be acceptable. 
In distributed object-oriented systems like Distribu- 

tedsmalltalk [Schelvis881, objects are distributed over a 
number of hosts on a network. Each host keeps his 
objects in one or more local spaces. Collection of gar- 
bage that spans more than one host (distributed garbage) 
introduces some additional problems: 
0 Gaining access to objects on remote hosts is some- 

times impossible, because a remote host may be down 
(or just inaccessible) and even if possible, such access 
is relatively expensive because of network communica- 
tion overhead. 

0 A number of processors must cooperate and may have 
to be synchronized. 

0 Distributed cyclic garbage should be collected also. 
Until now no algorithm is known that is capable of 
doing so in an incremental fashion. 

1. The problem: distributed garbage 
In Smalltalk [Goldberg83], Lisp [Allen79], and simi- 

lar systems, storage is dynamically allocated from a 
heap. In such systems, chunks of data, which we will 
call objects, are the nodes (or vertices) of a directed 
graph. Pointers between objects are the edges of this 
graph. Some objects are predefined roots. They are 
directly accessible from outside the graph. Objects live, 
if they have a root. This is the case if they are accessible 
via a path of inter-object pointers starting from a root. 
The problem of garbage collection is that of reclaiming 
space occupied by dead objects, which is data that has 
become inaccessible and therefore useless. Some require- 
ments complicate the design of garbage collectors (see 
also section 3): 
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2. A new solution: asynchronous distribution of 
timestamp packets 

We developed, implemented and tested a new algo- 
rithm for distributed garbage collection with the follow- 
ing properties: 
0 Dead objects are incrementally collected within finite 

time, including cyclic distributed garbage. Living 
objects are not collected. 

0 Collector and mutator activities are concurrent. 
U Garbage collection is a set of independent local activi- 

ties. Any host may start such an activity at any time 
without any synchronization with other hosts being 
necessary. 

0 Hosts may be down. During the down-period of some 
host, only the collection of distributed garbage part of 
which is on this host, is blocked (temporarily). Thus, 
a host can always collect its local garbage. 

Cl Communication between hosts for garbage collection 
purposes is minimal and computational overhead is 
acceptable. 
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The algorithm is based on the following idea: all 
information needed to decide if an object lives or not is 
present in the system, although distributed across 
different hosts. A merge of some pieces of the informa- 
tion may render a complete enough picture of the 
relevant part of the distributed object graph for some 
object. This merge may be accomplished step by step 
(i.e., incrementally), by a process of repeated asynchro- 
nous distribution of information. All hosts receive infor- 
mation from some related hosts, combine this informa- 
tion with local information, and send the results to 
another set of related hosts. The flow of information will 
correspond with the pattern of remote references. Each 
unit of information is a timestamp packet containing a 
list of last access times of a few relevant remotely refer- 
enced objects. Our algorithm is explained in section 4. 

The relevance of our algorithm is not restricted to the 
distribution-aspect of distributed object-oriented systems. 
For example, it facilitates the design of persistent 
object-oriented systems or even (distributed) object- 
oriented database systems: units of persistency or data- 
base objects can be small to medium sized object spaces 
(that may migrate, be replicated, etc.). Garbage collection 
of such a space can be done without the need to immedi- 
ately access other spaces on disk or on remote hosts. 

3. Previous work on garbage collection 
A number of garbage collection techniques exist that 

can be classified as follows: 

0 

cl 

cl 

l 

Object-based methods which concentrate on the death 
of individual objects, such as reference counting. 
Object-based methods keep track of the incoming 
pointers of each object, for example, by dynamically 
updating a count of them. When this reference count 
becomes zero, the object is dead and its space is 
reclaimed. A distributed object-based method is 
weighted reference counting [Bevau87]. 

Graph-based methods which concentrate on the live- 
ness of object graphs, such as mark & copy, where the 
graph of living objects is traversed starting from the 
roots and traversed objects are moved to a free part of 
the heap. The old part may then be reused. Note that 
no dead objects are accessed. 

Hybrid methods (a mixture of object- and graph-based 
methods) such as generation scavenging ICJnga.r&Q] 
and some incremental distributed garbage collection 
algorithms [Ali84]. Also the algorithm presented in 
this paper is such an incremental distributed scheme. 

Cyclic garbage 
An important difference between object- and graph- 
based methods is the availability of information with 
respect to the state of liveness of objects. The 

information available to object-based methods reflects 
only those nodes of the graph that have direct refer- 
ences to the node in question. This information is a 
list of such nodes like remembered tables used for 
generation scavenging or it is a simple reference 
count. Object-based methods fail to collect cyclic gar- 
bage, since every node on a cycle is referenced and 
hence cannot be distinguished from a living node. 
Therefore, object-based systems periodically must 
invoke some graph-based method which does not fail 
in this respect. This is even me for cyclic reference 
counting methods in combinator machines 
[Mago [Treleaven82]. Graph-based methods for 
non-distributed systems have no problem with cyclic 
garbage. Distributed graph-based methods like 
network-wide mark & sweep need the synchronized 
cooperation of alI hosts. However, this is difficult to 
realize in a typical distributed system, where usually at 
least some hosts are not able or willing to cooperate. 

Heap compaction 
Because of heap fragmentation the living objects must 
be compacted periodically. Heap compaction is 
inherent to graph-based methods. Object-based 
methods must compact separately. 

Concurrent garbage collection 
Concurrency of collector and mutator activity, which 
allows users to continue their activities during garbage 
collection, is inherent to object-based methods (apart 
from compaction and collection of cyclic garbage). 
For graph-based methods, concurrency is possible by 
traversing the object graph stepwise and breadth-first 
[Dijkstra78] [Baker78]. 

Computational overhead 
when relatively many objects are created that die soon, 
object-based methods are expensive because each 
object is handled individually although sometimes the 
death of some short-lived objects can be foreseen and 
the overhead avoided. On the other hand, when many 
objects keep on living for a long time, graph-based 
methods are expensive, since all these long-lived 
objects are moved around the heap many times. 
Unfortunately, most systems have both characteristics 
at the same time. 

Lieberman and Hewitt proposed a hybrid method to 
solve the computational dilemma. This method is based 
on the lifetimes of objects Lieberman and is ususally 
called generation scavenging KJngar84/88]. Objects of 
about the same age are kept in a separate space (genera- 
tion), which is marked & copied independently from 
other generations. The older the generation, the less fre- 
quently it is garbage collected. Intra-space garbage col- 
lection is breadth-first mark & copy starting from objects 
that are referenced from other spaces. In order to detect 
these objects, inter-space references are kept track of 
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dynamically. As a result of garbage-collection frequency 
tuning, generation scavenging has a low computational 
overhead. Generation scavenging inherits the cyclic gar- 
bage problem from its object-based component: cyclic 
garbage that spans more than one space is not collected. 
By aging, distributed cyclic garbage is supposed to end 
up in the oldest generation of objects, and thus become 
local cyclic garbage, which can then be collected. 

A distributed hybrid scheme is proposed by [Ali84]. 
Local spaces are like Lieberman’s generations. Hosts 
cooperate, but in a very loose way. No synchronization is 
needed. Distributed cyclic garbage cannot be collected, 
because of the object-based component in the algorithm. 
Our new algorithm is also a hybrid method, but we suc- 
ceeded in overcoming the distributed cyclic garbage 
problem. In the remainder of this section [Al&l]‘s 
method will be discussed. Our algorithm will be dis- 
cussed in the following section. 

Incremental asynchronous collection of acyclic dishi- 
buted garbage is straightforward. Hosts perform garbage 
collections on their local object space whenever they 
want, and gather remote references at the same time. 
Afterwards these remote references are sent to the 
appropriate remote hosts, each of which updates a table 
of remotely referenced local objects. We will call this 
table the host’s entrance. A remote reference is a tuple 
(host identifier, index in entrance). Each entry in the 
entrance table contains a pointer to a local object, and a 
set of identifiers of hosts that reference this object. 
Entrance tables are root objects, so the objects they refer- 
ence are not collected: remotely referenced objects are 
said to live by prevention. When the set of remote host 
id’s for some entry is empty, the entry is removed, 
including the pointer to the formerly remotely referenced 
object. If the object has no other root it will be collected 
during the next garbage collection on its host. 

A solution for the distributed cyclic garbage problem, 
which is analogous to the aging solution in generation 
scavenging, is to keep track of the last-access time of 
remotely referenced objects and to move subgraphs that 
are not accessed for a long time to some host from 
which they are referenced. In our algorithm we use these 
timestamps, but we don’t need to move objects around 
before they am collected. 

4. The timestamp packet distribution algorithm 
A first, simple packet distribution algorithm resem- 

bles the scheme used for distributed deadlock detection 
in the R* system mohan861. This single-node packet 
algorithm (see fig. 2) will be discussed in more detail 
later in this section. It detects absence of roots in the 
entrance graph G in a similar way as deadlock is 
detected in the wait-for graph of distributed transactions. 

Fig. 1 (left) shows an object graph distributed over 4 
hosts. Objects painted on the edge of a host are roots of 
the object graph. Gray or black objects are remotely 
referenced. Fig. 1 (right) shows the corresponding 
entrance graph. Entrance nodes are shown as objects, 
namely the objects for which they act as entrance. 

Figure I. An object graph and its entrance graph 

An edge in G represents the set of local paths from 
some entrance node to an object with a remote reference 
to another entrance node. Node n is an entrance root 
(painted black in fig. 1) if a path exists in some local 
object graph, from a local root to an object with a 
remote reference to II. During the incremental breadth- 
lirst object-graph traversal for local garbage collection, 
G’s edges are gathered. First the local roots are 
traversed and then the entrance table. Remote references 
detected during the first phase determine entrance roots. 
The packet to be sent later, called a root-packet, con- 
tains the node id. Remote references detected during the 
second phase determine entrance edges. The packet to 
be sent later is based on the entrance entry which is 
currently the root of the traversal. During this second 
traversal, objects with remote references are not copied 
to their new space yet, but are remembered in a table 
instead, so that all paths from the local entrance table to 
these objects will be detected. The table of remembered 
objects is copied last. Our scavenge algorithm is incre- 
mental and therefore allows for concurrent garbage col- 
lection. Further discussion of the scavenge algorithm is 
outside the scope of this paper. 

Packets are asynchronously and repeatedly sent to 
each remotely referenced host; that is, after some (one or 
more) local garbage collections. If there is an entrance 
edge n +m , then the set of packets n’s host sends to 
m’s host will contain a packet n (associated with sender 
n and address m). P, is the set of packets received for 
entrance node II. Although hosts actually send and 
receive sets of packets, it is more convenient to think in 
terms of entrance nodes receiving, storing and sending 
their own packets, therefore send p in sendf rom (n ) 
means that for each entrance pointer n + m , n sends a 
packet p to m. When an entrance pointer n 3 m is 
removed as a result of either mutator or collector 
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activity, then next time m receives packets from n’s 
host, there will not be a packet sent by n anymore. In 
our algorithms this is expressed by m receiving the 
empty packet E. 

Collector : 

sendf rom (n) 
if every PEP, : p= n orp= E 
then 

“absence of roots is detected” 
send E; 
remove n 

else 
if every PEP, In 
then 

send n 
else 

if everypEP, =m andm>n 
then 

send m 
else 

send nothing 
fi 

fi 
fi 

receive (m , p , n ) 
if p =E 
then 

remove pn from P, 
eke 

replace pa in P, by p 
fi 

Mutator : 
when a remote reference m A n is created, 
a packet m is added to P, 

Figure 2. A single no& packet distribution algorithm 

If all packets on a node n are “n ” then this implies 
that all packets received by n in the past departed from 
n. Therefore n (and all nodes from which it is accessi- 
ble) are dead and can be removed. Because of the root 
packet, an entrance root and all nodes accessible from it 
will not be removed. 

In table 1, “(i )j ” for node n at time t indicates that 
the last packet received by node n from node i at time t 
is j. ‘5 k ” indicates that as long as the set of packets 
at node n is not changed, then after each garbage collec- 
tion on the host of node n a packet k will be sent to all 
nodes that n references. In fig. 3 (left) and table 1, at 
time 0, node 1 has packets 2 from node 2 and 3 from 
node 3. Since these packets are different, node 1 is 
blocked. Node 4 initially has received 1 from node 1, but 

since its own id is higher, it sends packets 4. Nodes 2 
and 3 receive 4, their own id is lower, so they also send 
4. When node 1 has received the packets 4 from both 
nodes 2 and 3, all its packets have the same source 
(apparently node 4). which is higher than the id of node 
1, so node 1 is unblocked and will send packet 4. When 
this packet is received by node 4, all packets on node 4 
(only one in this case) also started fiom node 4, and 
therefore node 4 is garbage, as are all nodes from which 
node 4 is accessible (nodes 1, 2 and 3). 

Figure 3. A dead and a living distributed cyclic graph 

Table 1 shows 6 snapshots of the packet distribution 
process, at times when significant progress has been 
made. In fig. 3 (right) and table 2, 1 (gray) is a mot of 
the object graph, and hence 2 is a root of the entrance 
graph 2+4-+3+2. As long as the graph does not 
change, the packets on node 2 will be different (1 from 
node 1, 4 from node 3). Thus node 2 will be blocked, 
node 4 will not receive packet 4, and no garbage collec- 
tion will occur. 

Iso& 1 2 3 4 

time 

0 cm 
(3)3 (4)4 (4)4 w 

1 blocked (4P-4 (4)4& (1)1*4 

2 04 
(344 

3 (W*& 

moved 

4 (4)E*& (4)&qE 

mnovd removed 

5 mf5 
(3)&a& 

ICOlOVd 

Table 1. Packet distribution process of a dead graph 

A non-cooperating host (for whatever reason, e.g., it 
is down, or there is no garbage collection needed) will 
also block packets, but only temporarily. In fig. 3 (left), 
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for example, the host of node 1 might be down for some 
period, before sending packet 4 to node 4. But eventu- 
ally packets with the highest identifier will return home 
via all incoming pointers. At this time the host of this 
object has complete enough information: its object has 
no roots and can be collected. 

nodes 2 3 4 

lime 

0 m 

(3)3 (4)4 cw 
1 (2)2 a 4 

2 (4)4*4 

3 w 
(3)4 blocked 

Table 2. Packet distribution process of a living graph 

Packets are added by the mutator only, namely, when 
it atomically transfers references from one host to 
another. In our DistributcdSmalltalk system [Schelvis88] 
all mutator activity for garbage collection purposes is 
incorporated in an atomic process-migration mechanism. 
Collectors update or remove packets. Therefore the only 
consequence of not receiving information from other col- 
lectors is that some dead nodes are not removed until 
new information is received. 

The packet exchange is the only interaction necessary 
between hosts. The frequency of it can be dynamically 
modified: low when there is little distributed garbage, 
otherwise higher. A natural policy is to send some pack- 
ets along with each mutator access of a remote host. 
Thus, collector packet exchange may partly be incor- 
porated in the process-migration mechanism, thus minim- 
izing network communication overhead. 

Since there am no rules prescribing some time order 
or any other dependency between the garbage-collection 
activities of different hosts, no synchronization is neces- 
Sary. 

The single node packet algorithm is suitable to do 
incremental distributed garbage collection in graphs that 
may contain cycles, but no subcycles in these cycles. 
Nodes on a subcycle are always blocked (see fig. 4 and 
table 3; the blocking node is painted gray). The only 
way to know if the subcycle does not contain roots (in 
which case the node could be unblocked) would be to 
unblock and let a packet pass and traverse the subcycle! 
In order to solve the dilemma, we will introduce multiple 
node packets. In case of a potential subcycle a new 
packet is created that starts from the same node where 
the old type is blocked. When all received packets are of 

the old or the new type, the node is unblocked for the 
old type of packets. The contents of the new packet is 
the old packet extended with the current node id. 

Figure 4. A cyclic graph containing a subcycle 

Another problem with the node packet algorithm is 
that the roots of living structures may not move at will 
horn one host to another. Absence of roots can be 
incorrectly detected when the roots in such a graph 
would play a pathological “hide and seek”: just before 
packets would be blocked at a node, the root moves to 
another host. 

nodes 1 2 3 4 

time 

0 m (313 (W w 
(4)4 

1 (3)3*3 

2 (2)3e.3 

3 (113 
(4)4 blocked 

Table 3. A failing packet distribution process 

The solution is to use timestamps instead of object 
identifiers as the unit of graph information. Each 
entrance entry is associated with a unique timestamp. 
Every time the entry is accessed, this timestamp is 
updated. In a living graph, as long as it is not accessed, 
packets will be blocked. As soon as there is access (with 
the possibility of moving roots) the timestamp of the 
accessed node is updated. The death of a distributed 
graph will be detected by the node with the highest 
timestamp at the time of death. In order not to be 
detected, a moving root is bound to access this node. 
But then, the timestamp of this node is updated, so the 
absence-of-roots detection process has to start all over 
again and no premature garbage collection occurs. 

The multiple-timestamp packet distribution algorithm 
(MTP) is shown in fig. 5. Nodes are identified by means 
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of their timestamp, so node n is the node with timestamp 
n. Each packet is a list of one or more timestamps. A 
timestamp is a (locultime.hostid) tuple (the hostid makes 
timestamps unique). Each host has one local root that is 
associated with timestamp 0 (zero). Root packets there- 
fore consist of (O.hostid). The last timestamp of a packet 
may carry an accent. For example fe' means rhere is no 
path from a root via e to f, whereas fe means there may 
be a path from some root via e to f. The former is 
caUed an answer packet, the latter a question packet. 
Some examples of timestamp packet operations used in 
the MTP algorithm: 

l timesrump ordering: (12.3) > (6.10) > (6.9)’ > (6.9) 

l first (feb) = f , last Cfeb) = b , length (feb) = 3 

l len’cal packet ordering: 
fed > fecb > fee, fee’ >fec 

l prefixing: E, f, fe, fee E fee 

l strip (fecb , c ) = f ec 

l timestamp adding : 
fec+b = fecb, fec+c = fee, fe+e’ = fe’ 

l if fee’ EP, then fee, fecb, f ecba’, etc. are called 
obsolete. 

For convenience, all nodes n have the empty packet 
E E P,. Note that 

MTP((e), n) = n’. 

Also note that for a node n at time t with packets 
received P, and pt = MTP (P,, , n), the following invari- 
ants hold: 

pr = tltz..t& =, tl > t2 > . . > t& 

This invariant holds, because MTP strips timestamps 
smaller than n before adding n or n’. 

This invariants holds because pn consists of mux(P,) 
with timestamps smaller than n stripped and possibly n 
or n’ added. Note that sometimes n is updated in order 
to maintain this invariant. 

This invariant states that packets sent by a node are 
equal or larger than the packets it sent in the past. This 
invariant holds because the second invariant implies that 
packets in PI cannot be replaced by smaller packets and 
because the invariant is explicitly maintained when pack- 
ets are removed. 

Collector : 

sendf rom (n) 
p +MTP(P,,n); 
send p ; 
“if no roots, remove node” 
if answer( p ) and length( p ) = 1 

then remove n 
fi 

MTPP,,, n) 
p t strip(max(P, 1, n 1; 
if for all non-obsolete q E P, : q =p+t’ or q E p 

“t some timestamp” 
then 

if answer(p) 
then 

rem( p > 
else 

rehxn( p +n’ ) 
fi 

else 
if answer(p) 
then 

n c localtime t max(localtime. last( p)+At ); 
rehun( strip( p, n) + n) 

else 
return@ +n ) 

fi 
fi 

receive (m , p , n ) 
“p,, E P, is the packet, that was previously 
received from n ; pm is the last packet created by m ” 
ifp=E 
then 

remove pn from P, ; 
if pm > MTP(P,, m) 
then 

m t localtime t msx(localtime, fkst( p )+At ) 
fi 

else 
replace p,, in P, by p 

fi 

Mutator : 
When a remote reference m +n is created, 
a packet m is added to P, ; 
When an entrance entry is created, 
it is assigned a unique timestamp; 
When an entrance entry is accessed 
its timestamp is updated; 

Figure 5. The multiple-timestamp packet algorithm 

Table 4 shows the garbage collection process of the 
multiple-timestamp algorithm for the distributed graph of 
fig. 6. 
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Figure 6. Distributed cyclic garbage containing subcycles 

5. Indication of correctness 4 

An entrance graph G is like a living organism, the 
lifetime of which is a sequence of mutations performed 
by the mutator and the collector. The mutator adds 
nodes and packets. The collector removes nodes and 
updates and removes packets. For convenience we think 
of the mutation sequence as one mutator event (the birth 
of the first node) followed by zero or more collector 
events, followed by one mutator event, etc. A series of 
collector events is thought of as being a process, that 
starts after a mutator event mi and terminates at the next 
mutator event m;+i or, in case of a dead graph, when the 
graph is removed. 

5 

6 

During a garbage collection process an entrance 
graph can be represented by a hypergraph, the nodes of 
which represent maximal strongly connected (MSC) 
entrance subgraphs (a directed graph is strongly con- 
nected if there is a path from each node to each other 
node. A subgraph of a graph is maximal strongly con- 
nected if no more nodes can be added maintaining the 
strong connectivity). Note that this hypergraph is acyclic , 
since a cycle would imply that the graphs on this cycle 
are strongly connected, and therefore these graphs would 
not be maximal strongly connected. 

7 

s 

9 

10 

11 

12 

13 

We will give an indication of the correctness of the 
MTP algorithm as follows: 

Table 4. A multiple-timestamp packet distribution process 

We present an invariance that holds for all packets 
generated in an MSC subgraph (MTP invariance). 

We show that mutator events do not violate the MTP 
invariance. 

We show that collector events do not violate the MTP 
invariance and also, by complete induction, that during 
a garbage collection process an MSC subgraph G has 
the same MTP behavior as a one node graph [n }, 
where n = max (G); n is called G’s parent. The 
pointers to G are redirected to n, the packets associ- 
ated with these pointers assigned to n, and finally, the 
pointers out of G are assigned to n . 

The entrance graph’s MTP behavior now is compar- 
able to that of the acyclic entrance hypergraph, there- 
fore the correctness of the MTP algorithm would 

follow from its correct manipulation of an acyclic 
entrance graph. 

nodes 

time 

1 

2 

3 

1 2 3 4 

m 
(3)3 e 4 

w 
(4)4 * 4:3 

w 
(3)4:3 * 4:3:1 

(1)4:3:1 

(4)4 3 4:3:2 

(2)4:3:2 

(3)4:3 =a 4:3:2:1’ 

(1)4:3:2:1’ 

(4)4 * 43~2 

(2)4:3:2 

(3)4:3 =+ 4~3~2 

(1)4:3:2’ 

(4)4 =a 4:3’ 

(2)4:3:2 

(3)4:3’ =a 4:3’ 

(1)4:3’ 

(4)4 a 43’ 

(2)4:3’ 

(3)4:3’ * 4’ 

moved 

(1)4:3’ (1)4:3’ 

(4)4%4 (4)4’ =a 4’ 

XdlMXTd XdllOVed 

(2)4 
(3)4’ a 4’ 

mnovd 

We first prove the correctness of MTP for acyclic 
entrance graphs. A node n of an acyclic entrance graph 
is either 

l a dead leaf: if n is dead then in finite time P, = (E) 
and IZ is removed (after sending packet n’). 

l not a dead leaf: (n has incoming pointers or is 
entrance root; in both cases the number of packets (E 
is not counted) I P, I > 0. If 

then 
s = strip(max(P,), n) = E, 

MTP(P,, n) = n 

(since the graph is acyclic, n can not receive packets 
containing n , such as nm’, which is necessary to 
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satisfy the requirement to produce packet n’ instead of 
n (see also fig. 5)). If s+ c, then 

MTP(P,, n) = sn (IP, l>l) or 

MTP(P,, n) = sn’ (IP, I=l) 

In neither of the three cases will n be removed. 

QED Given a semi-MSC graph with parent n, then for all 
Before we discuss the remaining part of the proof, we mEG, 

will analyse the structure of an MSC graph. Each MSC 
subgraph consists of a parent node, which is the node 
with the currently highest timestamp, and a number of 
semi-MSC subgraphs. semi-MSC means that these sub- 
graphs are strongly connected only via the parent node. 
Each Semi-MSC subgraph itself consists of one parent 
node and a number of Semi-MSC subgraphs, and so on 
recursively. 

MTP(P,,,, m) I MTP(PG, n) or 

MTP(PG, n) E MTP(P,, m) 

(every packet generated in G is smaller than (or equal 
to) the packet that n would create if it would receive 
G’s packets, or the latter packet is a prefix of the 
former). Initially, that is, before any mutator or collector 
events, the invariance holds, since for all nodes 5 

4 

B 
2.2 3 

.;:.:. 1.3 
Figure 7. Entrance graph and its hypergraph 

In fig. 7 an entrance graph is shown along with the 
corresponding hypergraph. MSC graphs are represented by 
their respective parent nodes, for example, node 1.3 
represents MSC graph (1.3, 1.2, 1.1). Entrance node 4 is 
accessible from outside the graph, and is therefore a root. 
Nodes 4 and 5 live, the other nodes are dead and will be 
removed. In MSC graph (1.3, 1.2, l.l), 1.3 is parent and 
(1.2, 1.1) is the (only) semi-MSC subgraph. In (1.2, 1 .l), 
1.2 is parent and (1.1) is the (only) Semi-MSC subgraph. 
The hypergraph of the graph in fig. 6 consists of node 4 
only, which represents parent 4 and the semi-MSC sub- 
graph (1, 2, 3). Node 3 is the parent of this subgraph, 
etc. 

The parent-child relationships within a semi-Msc 
graph can be represented by a tree. When a tree 
corresponding with a Semi-MSC graph has depth k, the 
graph itself is said to be k deep. The graph in fig. 7 has 
depth 3, the one in fig. 6 has depth 4. 

A semi-MSC graph does not contain roots if the 
parent is not a root and if none of its child Semi-MSC 
subgraphs contains a root. The absence-of-roots detec- 
tion algorithm is based on this recursive definition. The 

parent n asks his children (the semi-MSC subgraphs) if 
they have roots by means of a packet n. A child in its 
turn contains a parent node (say m) and a number of 
Semi-MSC subgraphs. This parent node will ask the ques- 
tion nm to its children, and so on recursively. If eventu- 
ally all children of m respond nml’ (no roots), then m 
responds nm’ to its parent n. 

The MTP invariance 

rnczG : ml n and max(P,) 5 max(PG). 

Mutator events 

A node r E G which is accessed by the mutator is an 
entrance root per definition, because the mutator is the 
root of the local object graph from which the entrance 
node is apparently accessible. The mutator updates r’s 
timestamp. As a result the tree of semi-MSC subgraphs is 
rearranged: r may rise in the tree and may even become 
parent of the MSC subgraph it is a node of. If r does 
become parent of G, the MTP invariance holds: since 
r >n, 

MTP(PG, n) < MTP(PG, r), 

and, because of the invariance before the mutation, for 
all mEG, 

MTP(P,,,, m) I MTP(PG, r) 

If t does not become parent, then nothing has been 
changed for nodes rnc G , except for node r. But then, 
since r< n , the invariance holds for r also. 

Collector events 

Note that because of the MTP invariance, at time ti 
packets sent by G, 

p2 5 MTP (P$, n ) or 

MTP(P2, n) G p2 
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From the induction proof that is given hereafter, it fol- 
lows that collector events do not violate the MTP invari- 
ance (see induction hypothesis). 

Induction hypothesis 

Given a Semi-MSC graph G of depth k with parent 
node n and a set of packets received from nodes outside 
G at time tl, P>, then there is a time t 2 > t 1, that all 
packets sent by nodes of G, 

p2 = MTP (Pz, n ) or 

MTP (P2, n ) c p2 

where MTP (P$, n ) is the packet created at node n by 
the multiple-timestamp packet algorithm after redirecting 
G’s incoming pointers and packets to n. Note that the 
first condition implies 

answer(MTP (P2, n )) 

for G-n (nodes other than n ). 

Induction base 

Trivial, since an MSC graph of depth 1 is its parent 
node. 

Induction proof 

We have to prove the hypothesis for a semi-MSC 
graph of depth k+l. This graph consists of a parent 
node and a number of semi-MSC subgraphs each of depth 
I k. Because of the induction hypothesis these subgraphs 
may be replaced by their parent nodes (incoming and 
outgoing pointers and packets are redirected). Note that 
the resulting graph is strongly connected. Also note that 
the nodes other than the parent node do not contain 
cycles (otherwise the subgraphs they represent wouldn’t 
be maximal strongly connected). 

We first will introduce the notion of self-reproducing 
properties of packets, which, again, are reminiscent of 
living organisms. We then will show how packets with 
such properties are propagated throughout G in three 
phases: a question-propagation, a response-generation 
and a response-propagation phase. 

Suppose a packet p has some property 5 (e.g., 
E,(p ) = first (p ) = t ) and suppose that for all m E G , 

(there is apEP, : 40,)) * ~(MTP(P,, m)) 

(when a node has received a packet with property 5, it 
will create and send packets with property E,: the pro- 
perty has reproduced itself). In addition, if G is strongly 

connected and 

(there is a nEGandpEP,) : s(p), 

and if all m E G call MTP and send packets within finite 
time, it then follows that all packets produced in G will 
have property 5 within finite time. Call 5 strongly self- 
reproducible in G. Note that when a new property is 
introduced that violates the lirst condition for the old 
property, then the old property loses its self- 
reproducingness: its propagation fades out and instead 
the new property is propagated. On the other hand, a 
new property may also imply an old property. 

Property < is weakly self-reproducible in G , if for all 
mEG, 

@l PEP, : 5< P>) * CWTP@‘,, m)), 

and if G is a strongly connected graph with some node 
n such that G-n is acyclic and 

UMTP (P, 9 n >I, 

and if all m E G call MTP and send packets within finite 
time. As soon as all packets residing at a node have the 
property c, then it will create and send packets with pro- 
perty c. The conditions for the propagation of a weakly 
self-reproducible property throughout G are comparable 
to those of an activity network: an activity will start 
when all activities that it depends on are finished. Neces- 
sary and sufficient conditions for all activities to be car- 
ried out are that they all take finite time, that the activity 
network is acyclic, and that the root activity is carried 
out. 

Question-propagation 
We will show that property 

5(P) = SGP 

with s = strip(max(P2), n) = nln2..ni, 
nl>n2>..>nl>n,n parentofG 

is strongly self-reproducible in G. Suppose a node 
m E G has received a packet p with property E,, then also 

S(MTP (Pm, m 1) 

since there is no packet qE P, such that q > s . If such a 
packet would exist, a prefix of it would be present in 
P2, and from that would follow that 

s # strip (- (PI lo), n 1 
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Because G is strongly connected, 5 is strongly self- 
reproducible, and thus within finite time n will receive a 
packet p , with n ln 2..nl c p . 

Response-generation 
Because both P, and P2 contain a packet with property 
59 

MTP(P,,n),MTP(P2,n)=sn,sn’ors 

where question( answer(sn’) and answer(s). 

l MTP(P2, n) = sra: 

MTP (P,, n ) can not be larger than MTP (P2, n ), so 
MTP (P, , n ) = sn and response-generation is finished. 

l MTP(P2, n) = MTP(P,, n) = sn’ or s: 
Response-generation finished. 

l MTP(P2,n)=sn’ors;MTP(P,,,n)=sn: 

The last case is slightly more complicated. We will 
show that with packet sn a new we&y self-reproducing 
property is introduced in G, 

I&) = p = sn or snr’, LEG 

(Note that <*c). A node m with packets P, all having 
the [ property, will reproduce a packet such that 

CW’P (Pm9 m 1) 

Initially C, holds for MTP (P,, n), and since G-n is acy- 
clic (G-n are the nodes that represent semi-MSC sub- 
graphs), the property will propagate throughout G. Note 
that the activity network corresponding to this phase is 
isomorphic to G, except for the parent node, the outgo- 
ing pointers of which correspond to the first activity and 
the incoming pointers of which correspond to the final 
activity (see fig. 8). 

Figure 8. A semi-MSC graph and its MTP activity network 

When all packets PEP, : [@). the next packet n 
will produce is sn’ or s (depending on s being an 
answer packet or not). 

Response-propagation 
This phase is similar to the question-propagation phase. 
The response generated in the previous phase, sn , sn’ or 
s, introduces a new strongly self-reproducible property 8, 

Cl@) = sncp (orp =sn’ orp =s) 

(Note that 0 violates <). If the response is sn (question 
packet), then 0 is strongly self-reproducible for a reason 
similar to 5. If the response is s or sn’ (answer packet), 
then 8 is strongly self-reproducible because all nodes 
m E G only have packets p c snr’ (see response- 
generation), so that within finite time, say at t2, 0 has 
propagated throughout G and therefore 

pz = MTP(P$, n) (= s or sn’) 

or MTP (Pf;‘, n) (=sn) L pz 

QED 

6. Indication of time complexity 
From a single host perspective, it is interesting to 

know what percentage of cpu cycles is used for garbage 
collection. Because of the locality of reference 
phenomenon, the number of remote references will only 
be a fraction of the number of local references in the 
typical distributed system. As a result, the local 
scavenger’s overhead will by far outnumber the MTP 
overhead. We therefore will not discuss the time com- 
plexity of an individual MTP algorithm. 

From a distributed system perspective however, it is 
interesting to know how long it will take before distri- 
buted garbage is collected. We will consider some sim- 
ply structured graphs among which the worst case. 

A dead entrance subgraph G consisting of k nodes, 
nlr .., nk, is removed within Q time, where w is a sto- 
chastic variable with expectation 

l y= mar(yl, .., yk) with “(i COO the mean time between 
successive packet distributions by the host of node ni. 

l p = max@l, ..I pk), with pi < 1 the probability that at 
an arbitrary time the host of node n; is down or other- 
wise inaccessible. 

l f(G) is the n umber of garbage collections resulting in 
some progress of the garbage collection process. 

Suppose that at time f,, host i just has collected gar- 
bage and distributed his packets. Also suppose that host i 
has remote pointers to host j. Then the next time host j 
will receive packets from host i is tgc + w;j, where W;i 
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is a stochastic variable with expectation 

Esij = Yi Cl-Pj) + (Yi +EyijlPj 

At random rime t,, the next time host j will receive gar- 
bage information from host i, is t, + Q, where Q is a 
stochastic variable with expectation 

EQQ, = $- (1 -pj) + ($ +E,,)Pj 

Therefore 

E 
l +Pj 

@ij I ‘A yi - 
l-Pj 

It is clear that EBij < =. It now follows that 

E, 5 m(Enn,i)fW 5 '/ZY %f(G) 

f (G ) depends on G ‘s size and structure. E.g. 
f(G) = 13 for the graph in fig. 6 (see also table 4). In 
between these garbage collections, other garbage collec- 
tions can occur that do not result in such progress (e.g., 
in table 4, between time 1 and 2, all garbage collections 
on hosts 1, 2 and 4). The graphs that we will discuss in 
this section, have a simple structure, and therefore it is 
easy to determine f(G). For more complex graphs it will 
be more difficult. However, since the worst case f (G ) 
is computable, we can compute a rough upper bound for 
the time complexity of more complex graphs as well. 

l Single cycle 
Suppose there are k nodes with timestamps 

n1, .., nk, n1 > . . > ?l&, 

then if the nodes form a single cycle , f (G ) = 2k. A 
packet with prefix n 1 starts from node n1 and passes 
the other nodes, before returning to nl, accounting for 
k steps. Then the Racket nl’ follows the same route, 
while the nodes it passes are removed, accounting for 
another k steps. 

l List structure 
In case of a non-cyclic list structure, f(G) = k. The 
tail of the list sends a packet t’ and is removed, and 
this continues until the head of the list is removed. 

l The worst case 
The worst case is a doubly linked list, 

nl++n3 . . nk . . n4t+n2 

First a packet with prefix nl goes from nl to n2, 
accounting for k-l steps, then a packet with prefix 
n lnz goes from ns to n3 in k -2 steps, etc. Finally 
packet n ln 2.&-i reaches node nk , so that nk unblocks 
and returns nlnz..nk-lnk’ to nk-1. This continues until 

nlnz’ goes from n2 to nl. Now n1 sends the final 
packet n i’ and is removed, then node n3 does the 
same, and finally n2. The total number of steps is 

f(G)=2i(i-I) +k =k2 
i=l 

If all dead nodes would be removed without distribut- 
ing their final packet, then the number of steps required 
in the worst case would be k2 - k to remove the lirst 
node, then the absence-of-roots detection process would 
start all over again for the remaining graph of k-l 
nodes, etc., so the total number of steps required would 
then be: 

,$i2 - i) = tk3 - ik 

A way to prevent this is to check if answer packets of 
length 1 are successfully sent and, if not, to postpone the 
removal of the dead node. 

In fig. 6, if each host has a 50% probability of not 
being accessible, and if the mean time between packet 
distributions is 1 min., then the expected garbage collec- 
tion time is 19.5 min. 

7. Conclusions 
A new algorithm for distributed garbage collection 

was presented. This algorithm collects distributed gar- 
bage incrementally and concurrently with user activity. It 
is the first incremental algorithm that is capable of col- 
lecting cyclic distributed garbage. Computational and 
network communication overhead are acceptable. Hosts 
may be temporarily inaccessible and synchronization 
between hosts is not necessary. The algorithm is based 
on asynchronous distribution of timestamp packets each 
containing a list of last-access times of some relevant 
remotely referenced objects. The correctness and time 
complexity of the algorithm were discussed. 
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