
Incremental Distribution of Timestamp Packets: n Obviously the main re@-ement for a garbage collec-
A New Approach To tion algorithm is that it should collect all objects that

Distributed Garbage Collection
are dead, and only those objects that are dead. Cyclic
garbage is difficult to detect and many algorithms fail

Marcel Sc helvis
in this respect.

ParcPlace Systems $
1550 Plymouth Street

Mountain View, CA 94043
(415)691-6750

schelvis@ParcPlace.COM

Abstract
A new algorithm for distributed garbage collection is

presented. This algorithm collects distributed garbage
incrementally and concurrently with user activity. It is
the first incremental algorithm that is capable of collect-
ing cyclic distributed garbage. Computational and net-
work communication overhead are acceptable. Hosts may
be temporarily inaccessible and synchronization between
hosts is not necessary. The algorithm is based on asyn-
chronous distribution of timestamp packets each contain-
ing a list of last-access times of some relevant remotely
referenced objects. Finally, the correctness and time
complexity of the algorithm are discussed.

Key words and phrases
Incremental distributed garbage collection, cyclic gar-

bage, multiple-timestamp packets.

(I Garbage collection should be concurrent with user
activity (called the mutator as opposed to the collec-
tor).

0 The fragmentation of the heap must be handled.
0 The computational overhead of garbage collection

must be acceptable.
In distributed object-oriented systems like Distribu-

tedsmalltalk [Schelvis881, objects are distributed over a
number of hosts on a network. Each host keeps his
objects in one or more local spaces. Collection of gar-
bage that spans more than one host (distributed garbage)
introduces some additional problems:
0 Gaining access to objects on remote hosts is some-

times impossible, because a remote host may be down
(or just inaccessible) and even if possible, such access
is relatively expensive because of network communica-
tion overhead.

0 A number of processors must cooperate and may have
to be synchronized.

0 Distributed cyclic garbage should be collected also.
Until now no algorithm is known that is capable of
doing so in an incremental fashion.

1. The problem: distributed garbage
In Smalltalk [Goldberg83], Lisp [Allen79], and simi-

lar systems, storage is dynamically allocated from a
heap. In such systems, chunks of data, which we will
call objects, are the nodes (or vertices) of a directed
graph. Pointers between objects are the edges of this
graph. Some objects are predefined roots. They are
directly accessible from outside the graph. Objects live,
if they have a root. This is the case if they are accessible
via a path of inter-object pointers starting from a root.
The problem of garbage collection is that of reclaiming
space occupied by dead objects, which is data that has
become inaccessible and therefore useless. Some require-
ments complicate the design of garbage collectors (see
also section 3):

t Part of this work was done while the author was at Oce’-
Nederland B.V.. the Netherlands.
Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1989 ACM 089791-333-7/89/0010/0037 $1.50

2. A new solution: asynchronous distribution of
timestamp packets

We developed, implemented and tested a new algo-
rithm for distributed garbage collection with the follow-
ing properties:
0 Dead objects are incrementally collected within finite

time, including cyclic distributed garbage. Living
objects are not collected.

0 Collector and mutator activities are concurrent.
U Garbage collection is a set of independent local activi-

ties. Any host may start such an activity at any time
without any synchronization with other hosts being
necessary.

0 Hosts may be down. During the down-period of some
host, only the collection of distributed garbage part of
which is on this host, is blocked (temporarily). Thus,
a host can always collect its local garbage.

Cl Communication between hosts for garbage collection
purposes is minimal and computational overhead is
acceptable.

October l-6, 1989 OOPSLA ‘89 Proceedings 37

The algorithm is based on the following idea: all
information needed to decide if an object lives or not is
present in the system, although distributed across
different hosts. A merge of some pieces of the informa-
tion may render a complete enough picture of the
relevant part of the distributed object graph for some
object. This merge may be accomplished step by step
(i.e., incrementally), by a process of repeated asynchro-
nous distribution of information. All hosts receive infor-
mation from some related hosts, combine this informa-
tion with local information, and send the results to
another set of related hosts. The flow of information will
correspond with the pattern of remote references. Each
unit of information is a timestamp packet containing a
list of last access times of a few relevant remotely refer-
enced objects. Our algorithm is explained in section 4.

The relevance of our algorithm is not restricted to the
distribution-aspect of distributed object-oriented systems.
For example, it facilitates the design of persistent
object-oriented systems or even (distributed) object-
oriented database systems: units of persistency or data-
base objects can be small to medium sized object spaces
(that may migrate, be replicated, etc.). Garbage collection
of such a space can be done without the need to immedi-
ately access other spaces on disk or on remote hosts.

3. Previous work on garbage collection
A number of garbage collection techniques exist that

can be classified as follows:

0

cl

cl

l

Object-based methods which concentrate on the death
of individual objects, such as reference counting.
Object-based methods keep track of the incoming
pointers of each object, for example, by dynamically
updating a count of them. When this reference count
becomes zero, the object is dead and its space is
reclaimed. A distributed object-based method is
weighted reference counting [Bevau87].

Graph-based methods which concentrate on the live-
ness of object graphs, such as mark & copy, where the
graph of living objects is traversed starting from the
roots and traversed objects are moved to a free part of
the heap. The old part may then be reused. Note that
no dead objects are accessed.

Hybrid methods (a mixture of object- and graph-based
methods) such as generation scavenging ICJnga.r&Q]
and some incremental distributed garbage collection
algorithms [Ali84]. Also the algorithm presented in
this paper is such an incremental distributed scheme.

Cyclic garbage
An important difference between object- and graph-
based methods is the availability of information with
respect to the state of liveness of objects. The

information available to object-based methods reflects
only those nodes of the graph that have direct refer-
ences to the node in question. This information is a
list of such nodes like remembered tables used for
generation scavenging or it is a simple reference
count. Object-based methods fail to collect cyclic gar-
bage, since every node on a cycle is referenced and
hence cannot be distinguished from a living node.
Therefore, object-based systems periodically must
invoke some graph-based method which does not fail
in this respect. This is even me for cyclic reference
counting methods in combinator machines
[Mago [Treleaven82]. Graph-based methods for
non-distributed systems have no problem with cyclic
garbage. Distributed graph-based methods like
network-wide mark & sweep need the synchronized
cooperation of alI hosts. However, this is difficult to
realize in a typical distributed system, where usually at
least some hosts are not able or willing to cooperate.

Heap compaction
Because of heap fragmentation the living objects must
be compacted periodically. Heap compaction is
inherent to graph-based methods. Object-based
methods must compact separately.

Concurrent garbage collection
Concurrency of collector and mutator activity, which
allows users to continue their activities during garbage
collection, is inherent to object-based methods (apart
from compaction and collection of cyclic garbage).
For graph-based methods, concurrency is possible by
traversing the object graph stepwise and breadth-first
[Dijkstra78] [Baker78].

Computational overhead
when relatively many objects are created that die soon,
object-based methods are expensive because each
object is handled individually although sometimes the
death of some short-lived objects can be foreseen and
the overhead avoided. On the other hand, when many
objects keep on living for a long time, graph-based
methods are expensive, since all these long-lived
objects are moved around the heap many times.
Unfortunately, most systems have both characteristics
at the same time.

Lieberman and Hewitt proposed a hybrid method to
solve the computational dilemma. This method is based
on the lifetimes of objects Lieberman and is ususally
called generation scavenging KJngar84/88]. Objects of
about the same age are kept in a separate space (genera-
tion), which is marked & copied independently from
other generations. The older the generation, the less fre-
quently it is garbage collected. Intra-space garbage col-
lection is breadth-first mark & copy starting from objects
that are referenced from other spaces. In order to detect
these objects, inter-space references are kept track of

OOPSLA ‘89 Proceedings October l-6, 1989 38

dynamically. As a result of garbage-collection frequency
tuning, generation scavenging has a low computational
overhead. Generation scavenging inherits the cyclic gar-
bage problem from its object-based component: cyclic
garbage that spans more than one space is not collected.
By aging, distributed cyclic garbage is supposed to end
up in the oldest generation of objects, and thus become
local cyclic garbage, which can then be collected.

A distributed hybrid scheme is proposed by [Ali84].
Local spaces are like Lieberman’s generations. Hosts
cooperate, but in a very loose way. No synchronization is
needed. Distributed cyclic garbage cannot be collected,
because of the object-based component in the algorithm.
Our new algorithm is also a hybrid method, but we suc-
ceeded in overcoming the distributed cyclic garbage
problem. In the remainder of this section [Al&l]‘s
method will be discussed. Our algorithm will be dis-
cussed in the following section.

Incremental asynchronous collection of acyclic dishi-
buted garbage is straightforward. Hosts perform garbage
collections on their local object space whenever they
want, and gather remote references at the same time.
Afterwards these remote references are sent to the
appropriate remote hosts, each of which updates a table
of remotely referenced local objects. We will call this
table the host’s entrance. A remote reference is a tuple
(host identifier, index in entrance). Each entry in the
entrance table contains a pointer to a local object, and a
set of identifiers of hosts that reference this object.
Entrance tables are root objects, so the objects they refer-
ence are not collected: remotely referenced objects are
said to live by prevention. When the set of remote host
id’s for some entry is empty, the entry is removed,
including the pointer to the formerly remotely referenced
object. If the object has no other root it will be collected
during the next garbage collection on its host.

A solution for the distributed cyclic garbage problem,
which is analogous to the aging solution in generation
scavenging, is to keep track of the last-access time of
remotely referenced objects and to move subgraphs that
are not accessed for a long time to some host from
which they are referenced. In our algorithm we use these
timestamps, but we don’t need to move objects around
before they am collected.

4. The timestamp packet distribution algorithm
A first, simple packet distribution algorithm resem-

bles the scheme used for distributed deadlock detection
in the R* system mohan861. This single-node packet
algorithm (see fig. 2) will be discussed in more detail
later in this section. It detects absence of roots in the
entrance graph G in a similar way as deadlock is
detected in the wait-for graph of distributed transactions.

Fig. 1 (left) shows an object graph distributed over 4
hosts. Objects painted on the edge of a host are roots of
the object graph. Gray or black objects are remotely
referenced. Fig. 1 (right) shows the corresponding
entrance graph. Entrance nodes are shown as objects,
namely the objects for which they act as entrance.

Figure I. An object graph and its entrance graph

An edge in G represents the set of local paths from
some entrance node to an object with a remote reference
to another entrance node. Node n is an entrance root
(painted black in fig. 1) if a path exists in some local
object graph, from a local root to an object with a
remote reference to II. During the incremental breadth-
lirst object-graph traversal for local garbage collection,
G’s edges are gathered. First the local roots are
traversed and then the entrance table. Remote references
detected during the first phase determine entrance roots.
The packet to be sent later, called a root-packet, con-
tains the node id. Remote references detected during the
second phase determine entrance edges. The packet to
be sent later is based on the entrance entry which is
currently the root of the traversal. During this second
traversal, objects with remote references are not copied
to their new space yet, but are remembered in a table
instead, so that all paths from the local entrance table to
these objects will be detected. The table of remembered
objects is copied last. Our scavenge algorithm is incre-
mental and therefore allows for concurrent garbage col-
lection. Further discussion of the scavenge algorithm is
outside the scope of this paper.

Packets are asynchronously and repeatedly sent to
each remotely referenced host; that is, after some (one or
more) local garbage collections. If there is an entrance
edge n +m , then the set of packets n’s host sends to
m’s host will contain a packet n (associated with sender
n and address m). P, is the set of packets received for
entrance node II. Although hosts actually send and
receive sets of packets, it is more convenient to think in
terms of entrance nodes receiving, storing and sending
their own packets, therefore send p in sendf rom (n)
means that for each entrance pointer n + m , n sends a
packet p to m. When an entrance pointer n 3 m is
removed as a result of either mutator or collector

October 1-6, 1989 OOPSLA ‘89 Proceedings 39

activity, then next time m receives packets from n’s
host, there will not be a packet sent by n anymore. In
our algorithms this is expressed by m receiving the
empty packet E.

Collector :

sendf rom (n)
if every PEP, : p= n orp= E
then

“absence of roots is detected”
send E;
remove n

else
if every PEP, In
then

send n
else

if everypEP, =m andm>n
then

send m
else

send nothing
fi

fi
fi

receive (m , p , n)
if p =E
then

remove pn from P,
eke

replace pa in P, by p
fi

Mutator :
when a remote reference m A n is created,
a packet m is added to P,

Figure 2. A single no& packet distribution algorithm

If all packets on a node n are “n ” then this implies
that all packets received by n in the past departed from
n. Therefore n (and all nodes from which it is accessi-
ble) are dead and can be removed. Because of the root
packet, an entrance root and all nodes accessible from it
will not be removed.

In table 1, “(i)j ” for node n at time t indicates that
the last packet received by node n from node i at time t
is j. ‘5 k ” indicates that as long as the set of packets
at node n is not changed, then after each garbage collec-
tion on the host of node n a packet k will be sent to all
nodes that n references. In fig. 3 (left) and table 1, at
time 0, node 1 has packets 2 from node 2 and 3 from
node 3. Since these packets are different, node 1 is
blocked. Node 4 initially has received 1 from node 1, but

since its own id is higher, it sends packets 4. Nodes 2
and 3 receive 4, their own id is lower, so they also send
4. When node 1 has received the packets 4 from both
nodes 2 and 3, all its packets have the same source
(apparently node 4). which is higher than the id of node
1, so node 1 is unblocked and will send packet 4. When
this packet is received by node 4, all packets on node 4
(only one in this case) also started fiom node 4, and
therefore node 4 is garbage, as are all nodes from which
node 4 is accessible (nodes 1, 2 and 3).

Figure 3. A dead and a living distributed cyclic graph

Table 1 shows 6 snapshots of the packet distribution
process, at times when significant progress has been
made. In fig. 3 (right) and table 2, 1 (gray) is a mot of
the object graph, and hence 2 is a root of the entrance
graph 2+4-+3+2. As long as the graph does not
change, the packets on node 2 will be different (1 from
node 1, 4 from node 3). Thus node 2 will be blocked,
node 4 will not receive packet 4, and no garbage collec-
tion will occur.

Iso& 1 2 3 4

time

0 cm
(3)3 (4)4 (4)4 w

1 blocked (4P-4 (4)4& (1)1*4

2 04
(344

3 (W*&

moved

4 (4)E*& (4)&qE

mnovd removed

5 mf5
(3)&a&

ICOlOVd

Table 1. Packet distribution process of a dead graph

A non-cooperating host (for whatever reason, e.g., it
is down, or there is no garbage collection needed) will
also block packets, but only temporarily. In fig. 3 (left),

40 OOPSLA ‘89 Proceedings October 1-6, 1989

for example, the host of node 1 might be down for some
period, before sending packet 4 to node 4. But eventu-
ally packets with the highest identifier will return home
via all incoming pointers. At this time the host of this
object has complete enough information: its object has
no roots and can be collected.

nodes 2 3 4

lime

0 m

(3)3 (4)4 cw
1 (2)2 a 4

2 (4)4*4

3 w
(3)4 blocked

Table 2. Packet distribution process of a living graph

Packets are added by the mutator only, namely, when
it atomically transfers references from one host to
another. In our DistributcdSmalltalk system [Schelvis88]
all mutator activity for garbage collection purposes is
incorporated in an atomic process-migration mechanism.
Collectors update or remove packets. Therefore the only
consequence of not receiving information from other col-
lectors is that some dead nodes are not removed until
new information is received.

The packet exchange is the only interaction necessary
between hosts. The frequency of it can be dynamically
modified: low when there is little distributed garbage,
otherwise higher. A natural policy is to send some pack-
ets along with each mutator access of a remote host.
Thus, collector packet exchange may partly be incor-
porated in the process-migration mechanism, thus minim-
izing network communication overhead.

Since there am no rules prescribing some time order
or any other dependency between the garbage-collection
activities of different hosts, no synchronization is neces-
Sary.

The single node packet algorithm is suitable to do
incremental distributed garbage collection in graphs that
may contain cycles, but no subcycles in these cycles.
Nodes on a subcycle are always blocked (see fig. 4 and
table 3; the blocking node is painted gray). The only
way to know if the subcycle does not contain roots (in
which case the node could be unblocked) would be to
unblock and let a packet pass and traverse the subcycle!
In order to solve the dilemma, we will introduce multiple
node packets. In case of a potential subcycle a new
packet is created that starts from the same node where
the old type is blocked. When all received packets are of

the old or the new type, the node is unblocked for the
old type of packets. The contents of the new packet is
the old packet extended with the current node id.

Figure 4. A cyclic graph containing a subcycle

Another problem with the node packet algorithm is
that the roots of living structures may not move at will
horn one host to another. Absence of roots can be
incorrectly detected when the roots in such a graph
would play a pathological “hide and seek”: just before
packets would be blocked at a node, the root moves to
another host.

nodes 1 2 3 4

time

0 m (313 (W w
(4)4

1 (3)3*3

2 (2)3e.3

3 (113
(4)4 blocked

Table 3. A failing packet distribution process

The solution is to use timestamps instead of object
identifiers as the unit of graph information. Each
entrance entry is associated with a unique timestamp.
Every time the entry is accessed, this timestamp is
updated. In a living graph, as long as it is not accessed,
packets will be blocked. As soon as there is access (with
the possibility of moving roots) the timestamp of the
accessed node is updated. The death of a distributed
graph will be detected by the node with the highest
timestamp at the time of death. In order not to be
detected, a moving root is bound to access this node.
But then, the timestamp of this node is updated, so the
absence-of-roots detection process has to start all over
again and no premature garbage collection occurs.

The multiple-timestamp packet distribution algorithm
(MTP) is shown in fig. 5. Nodes are identified by means

October 1-6, 1989 OOPSLA ‘89 Proceedings 41

of their timestamp, so node n is the node with timestamp
n. Each packet is a list of one or more timestamps. A
timestamp is a (locultime.hostid) tuple (the hostid makes
timestamps unique). Each host has one local root that is
associated with timestamp 0 (zero). Root packets there-
fore consist of (O.hostid). The last timestamp of a packet
may carry an accent. For example fe' means rhere is no
path from a root via e to f, whereas fe means there may
be a path from some root via e to f. The former is
caUed an answer packet, the latter a question packet.
Some examples of timestamp packet operations used in
the MTP algorithm:

l timesrump ordering: (12.3) > (6.10) > (6.9)’ > (6.9)

l first (feb) = f , last Cfeb) = b , length (feb) = 3

l len’cal packet ordering:
fed > fecb > fee, fee’ >fec

l prefixing: E, f, fe, fee E fee

l strip (fecb , c) = f ec

l timestamp adding :
fec+b = fecb, fec+c = fee, fe+e’ = fe’

l if fee’ EP, then fee, fecb, f ecba’, etc. are called
obsolete.

For convenience, all nodes n have the empty packet
E E P,. Note that

MTP((e), n) = n’.

Also note that for a node n at time t with packets
received P, and pt = MTP (P,, , n), the following invari-
ants hold:

pr = tltz..t& =, tl > t2 > . . > t&

This invariant holds, because MTP strips timestamps
smaller than n before adding n or n’.

This invariants holds because pn consists of mux(P,)
with timestamps smaller than n stripped and possibly n
or n’ added. Note that sometimes n is updated in order
to maintain this invariant.

This invariant states that packets sent by a node are
equal or larger than the packets it sent in the past. This
invariant holds because the second invariant implies that
packets in PI cannot be replaced by smaller packets and
because the invariant is explicitly maintained when pack-
ets are removed.

Collector :

sendf rom (n)
p +MTP(P,,n);
send p ;
“if no roots, remove node”
if answer(p) and length(p) = 1

then remove n
fi

MTPP,,, n)
p t strip(max(P, 1, n 1;
if for all non-obsolete q E P, : q =p+t’ or q E p

“t some timestamp”
then

if answer(p)
then

rem(p >
else

rehxn(p +n’)
fi

else
if answer(p)
then

n c localtime t max(localtime. last(p)+At);
rehun(strip(p, n) + n)

else
return@ +n)

fi
fi

receive (m , p , n)
“p,, E P, is the packet, that was previously
received from n ; pm is the last packet created by m ”
ifp=E
then

remove pn from P, ;
if pm > MTP(P,, m)
then

m t localtime t msx(localtime, fkst(p)+At)
fi

else
replace p,, in P, by p

fi

Mutator :
When a remote reference m +n is created,
a packet m is added to P, ;
When an entrance entry is created,
it is assigned a unique timestamp;
When an entrance entry is accessed
its timestamp is updated;

Figure 5. The multiple-timestamp packet algorithm

Table 4 shows the garbage collection process of the
multiple-timestamp algorithm for the distributed graph of
fig. 6.

42 OOPSLA ‘89 Proceedings October l-6, 1989

Figure 6. Distributed cyclic garbage containing subcycles

5. Indication of correctness 4

An entrance graph G is like a living organism, the
lifetime of which is a sequence of mutations performed
by the mutator and the collector. The mutator adds
nodes and packets. The collector removes nodes and
updates and removes packets. For convenience we think
of the mutation sequence as one mutator event (the birth
of the first node) followed by zero or more collector
events, followed by one mutator event, etc. A series of
collector events is thought of as being a process, that
starts after a mutator event mi and terminates at the next
mutator event m;+i or, in case of a dead graph, when the
graph is removed.

5

6

During a garbage collection process an entrance
graph can be represented by a hypergraph, the nodes of
which represent maximal strongly connected (MSC)
entrance subgraphs (a directed graph is strongly con-
nected if there is a path from each node to each other
node. A subgraph of a graph is maximal strongly con-
nected if no more nodes can be added maintaining the
strong connectivity). Note that this hypergraph is acyclic ,
since a cycle would imply that the graphs on this cycle
are strongly connected, and therefore these graphs would
not be maximal strongly connected.

7

s

9

10

11

12

13

We will give an indication of the correctness of the
MTP algorithm as follows:

Table 4. A multiple-timestamp packet distribution process

We present an invariance that holds for all packets
generated in an MSC subgraph (MTP invariance).

We show that mutator events do not violate the MTP
invariance.

We show that collector events do not violate the MTP
invariance and also, by complete induction, that during
a garbage collection process an MSC subgraph G has
the same MTP behavior as a one node graph [n },
where n = max (G); n is called G’s parent. The
pointers to G are redirected to n, the packets associ-
ated with these pointers assigned to n, and finally, the
pointers out of G are assigned to n .

The entrance graph’s MTP behavior now is compar-
able to that of the acyclic entrance hypergraph, there-
fore the correctness of the MTP algorithm would

follow from its correct manipulation of an acyclic
entrance graph.

nodes

time

1

2

3

1 2 3 4

m
(3)3 e 4

w
(4)4 * 4:3

w
(3)4:3 * 4:3:1

(1)4:3:1

(4)4 3 4:3:2

(2)4:3:2

(3)4:3 =a 4:3:2:1’

(1)4:3:2:1’

(4)4 * 43~2

(2)4:3:2

(3)4:3 =+ 4~3~2

(1)4:3:2’

(4)4 =a 4:3’

(2)4:3:2

(3)4:3’ =a 4:3’

(1)4:3’

(4)4 a 43’

(2)4:3’

(3)4:3’ * 4’

moved

(1)4:3’ (1)4:3’

(4)4%4 (4)4’ =a 4’

XdlMXTd XdllOVed

(2)4
(3)4’ a 4’

mnovd

We first prove the correctness of MTP for acyclic
entrance graphs. A node n of an acyclic entrance graph
is either

l a dead leaf: if n is dead then in finite time P, = (E)
and IZ is removed (after sending packet n’).

l not a dead leaf: (n has incoming pointers or is
entrance root; in both cases the number of packets (E
is not counted) I P, I > 0. If

then
s = strip(max(P,), n) = E,

MTP(P,, n) = n

(since the graph is acyclic, n can not receive packets
containing n , such as nm’, which is necessary to

October 1-6, 1989 OOPSLA ‘89 Proceedings 43

satisfy the requirement to produce packet n’ instead of
n (see also fig. 5)). If s+ c, then

MTP(P,, n) = sn (IP, l>l) or

MTP(P,, n) = sn’ (IP, I=l)

In neither of the three cases will n be removed.

QED Given a semi-MSC graph with parent n, then for all
Before we discuss the remaining part of the proof, we mEG,

will analyse the structure of an MSC graph. Each MSC
subgraph consists of a parent node, which is the node
with the currently highest timestamp, and a number of
semi-MSC subgraphs. semi-MSC means that these sub-
graphs are strongly connected only via the parent node.
Each Semi-MSC subgraph itself consists of one parent
node and a number of Semi-MSC subgraphs, and so on
recursively.

MTP(P,,,, m) I MTP(PG, n) or

MTP(PG, n) E MTP(P,, m)

(every packet generated in G is smaller than (or equal
to) the packet that n would create if it would receive
G’s packets, or the latter packet is a prefix of the
former). Initially, that is, before any mutator or collector
events, the invariance holds, since for all nodes 5

4

B
2.2 3

.;:.:. 1.3
Figure 7. Entrance graph and its hypergraph

In fig. 7 an entrance graph is shown along with the
corresponding hypergraph. MSC graphs are represented by
their respective parent nodes, for example, node 1.3
represents MSC graph (1.3, 1.2, 1.1). Entrance node 4 is
accessible from outside the graph, and is therefore a root.
Nodes 4 and 5 live, the other nodes are dead and will be
removed. In MSC graph (1.3, 1.2, l.l), 1.3 is parent and
(1.2, 1.1) is the (only) semi-MSC subgraph. In (1.2, 1 .l),
1.2 is parent and (1.1) is the (only) Semi-MSC subgraph.
The hypergraph of the graph in fig. 6 consists of node 4
only, which represents parent 4 and the semi-MSC sub-
graph (1, 2, 3). Node 3 is the parent of this subgraph,
etc.

The parent-child relationships within a semi-Msc
graph can be represented by a tree. When a tree
corresponding with a Semi-MSC graph has depth k, the
graph itself is said to be k deep. The graph in fig. 7 has
depth 3, the one in fig. 6 has depth 4.

A semi-MSC graph does not contain roots if the
parent is not a root and if none of its child Semi-MSC
subgraphs contains a root. The absence-of-roots detec-
tion algorithm is based on this recursive definition. The

parent n asks his children (the semi-MSC subgraphs) if
they have roots by means of a packet n. A child in its
turn contains a parent node (say m) and a number of
Semi-MSC subgraphs. This parent node will ask the ques-
tion nm to its children, and so on recursively. If eventu-
ally all children of m respond nml’ (no roots), then m
responds nm’ to its parent n.

The MTP invariance

rnczG : ml n and max(P,) 5 max(PG).

Mutator events

A node r E G which is accessed by the mutator is an
entrance root per definition, because the mutator is the
root of the local object graph from which the entrance
node is apparently accessible. The mutator updates r’s
timestamp. As a result the tree of semi-MSC subgraphs is
rearranged: r may rise in the tree and may even become
parent of the MSC subgraph it is a node of. If r does
become parent of G, the MTP invariance holds: since
r >n,

MTP(PG, n) < MTP(PG, r),

and, because of the invariance before the mutation, for
all mEG,

MTP(P,,,, m) I MTP(PG, r)

If t does not become parent, then nothing has been
changed for nodes rnc G , except for node r. But then,
since r< n , the invariance holds for r also.

Collector events

Note that because of the MTP invariance, at time ti
packets sent by G,

p2 5 MTP (P$, n) or

MTP(P2, n) G p2

44 OOPSLA ‘69 Proceedings October 1-6, 1969

From the induction proof that is given hereafter, it fol-
lows that collector events do not violate the MTP invari-
ance (see induction hypothesis).

Induction hypothesis

Given a Semi-MSC graph G of depth k with parent
node n and a set of packets received from nodes outside
G at time tl, P>, then there is a time t 2 > t 1, that all
packets sent by nodes of G,

p2 = MTP (Pz, n) or

MTP (P2, n) c p2

where MTP (P$, n) is the packet created at node n by
the multiple-timestamp packet algorithm after redirecting
G’s incoming pointers and packets to n. Note that the
first condition implies

answer(MTP (P2, n))

for G-n (nodes other than n).

Induction base

Trivial, since an MSC graph of depth 1 is its parent
node.

Induction proof

We have to prove the hypothesis for a semi-MSC
graph of depth k+l. This graph consists of a parent
node and a number of semi-MSC subgraphs each of depth
I k. Because of the induction hypothesis these subgraphs
may be replaced by their parent nodes (incoming and
outgoing pointers and packets are redirected). Note that
the resulting graph is strongly connected. Also note that
the nodes other than the parent node do not contain
cycles (otherwise the subgraphs they represent wouldn’t
be maximal strongly connected).

We first will introduce the notion of self-reproducing
properties of packets, which, again, are reminiscent of
living organisms. We then will show how packets with
such properties are propagated throughout G in three
phases: a question-propagation, a response-generation
and a response-propagation phase.

Suppose a packet p has some property 5 (e.g.,
E,(p) = first (p) = t) and suppose that for all m E G ,

(there is apEP, : 40,)) * ~(MTP(P,, m))

(when a node has received a packet with property 5, it
will create and send packets with property E,: the pro-
perty has reproduced itself). In addition, if G is strongly

connected and

(there is a nEGandpEP,) : s(p),

and if all m E G call MTP and send packets within finite
time, it then follows that all packets produced in G will
have property 5 within finite time. Call 5 strongly self-
reproducible in G. Note that when a new property is
introduced that violates the lirst condition for the old
property, then the old property loses its self-
reproducingness: its propagation fades out and instead
the new property is propagated. On the other hand, a
new property may also imply an old property.

Property < is weakly self-reproducible in G , if for all
mEG,

@l PEP, : 5< P>) * CWTP@‘,, m)),

and if G is a strongly connected graph with some node
n such that G-n is acyclic and

UMTP (P, 9 n >I,

and if all m E G call MTP and send packets within finite
time. As soon as all packets residing at a node have the
property c, then it will create and send packets with pro-
perty c. The conditions for the propagation of a weakly
self-reproducible property throughout G are comparable
to those of an activity network: an activity will start
when all activities that it depends on are finished. Neces-
sary and sufficient conditions for all activities to be car-
ried out are that they all take finite time, that the activity
network is acyclic, and that the root activity is carried
out.

Question-propagation
We will show that property

5(P) = SGP

with s = strip(max(P2), n) = nln2..ni,
nl>n2>..>nl>n,n parentofG

is strongly self-reproducible in G. Suppose a node
m E G has received a packet p with property E,, then also

S(MTP (Pm, m 1)

since there is no packet qE P, such that q > s . If such a
packet would exist, a prefix of it would be present in
P2, and from that would follow that

s # strip (- (PI lo), n 1

October 1-6, 1989 OOPSLA ‘89 Proceedings 45

Because G is strongly connected, 5 is strongly self-
reproducible, and thus within finite time n will receive a
packet p , with n ln 2..nl c p .

Response-generation
Because both P, and P2 contain a packet with property
59

MTP(P,,n),MTP(P2,n)=sn,sn’ors

where question(answer(sn’) and answer(s).

l MTP(P2, n) = sra:

MTP (P,, n) can not be larger than MTP (P2, n), so
MTP (P, , n) = sn and response-generation is finished.

l MTP(P2, n) = MTP(P,, n) = sn’ or s:
Response-generation finished.

l MTP(P2,n)=sn’ors;MTP(P,,,n)=sn:

The last case is slightly more complicated. We will
show that with packet sn a new we&y self-reproducing
property is introduced in G,

I&) = p = sn or snr’, LEG

(Note that <*c). A node m with packets P, all having
the [property, will reproduce a packet such that

CW’P (Pm9 m 1)

Initially C, holds for MTP (P,, n), and since G-n is acy-
clic (G-n are the nodes that represent semi-MSC sub-
graphs), the property will propagate throughout G. Note
that the activity network corresponding to this phase is
isomorphic to G, except for the parent node, the outgo-
ing pointers of which correspond to the first activity and
the incoming pointers of which correspond to the final
activity (see fig. 8).

Figure 8. A semi-MSC graph and its MTP activity network

When all packets PEP, : [@). the next packet n
will produce is sn’ or s (depending on s being an
answer packet or not).

Response-propagation
This phase is similar to the question-propagation phase.
The response generated in the previous phase, sn , sn’ or
s, introduces a new strongly self-reproducible property 8,

Cl@) = sncp (orp =sn’ orp =s)

(Note that 0 violates <). If the response is sn (question
packet), then 0 is strongly self-reproducible for a reason
similar to 5. If the response is s or sn’ (answer packet),
then 8 is strongly self-reproducible because all nodes
m E G only have packets p c snr’ (see response-
generation), so that within finite time, say at t2, 0 has
propagated throughout G and therefore

pz = MTP(P$, n) (= s or sn’)

or MTP (Pf;‘, n) (=sn) L pz

QED

6. Indication of time complexity
From a single host perspective, it is interesting to

know what percentage of cpu cycles is used for garbage
collection. Because of the locality of reference
phenomenon, the number of remote references will only
be a fraction of the number of local references in the
typical distributed system. As a result, the local
scavenger’s overhead will by far outnumber the MTP
overhead. We therefore will not discuss the time com-
plexity of an individual MTP algorithm.

From a distributed system perspective however, it is
interesting to know how long it will take before distri-
buted garbage is collected. We will consider some sim-
ply structured graphs among which the worst case.

A dead entrance subgraph G consisting of k nodes,
nlr .., nk, is removed within Q time, where w is a sto-
chastic variable with expectation

l y= mar(yl, .., yk) with “(i COO the mean time between
successive packet distributions by the host of node ni.

l p = max@l, ..I pk), with pi < 1 the probability that at
an arbitrary time the host of node n; is down or other-
wise inaccessible.

l f(G) is the n umber of garbage collections resulting in
some progress of the garbage collection process.

Suppose that at time f,, host i just has collected gar-
bage and distributed his packets. Also suppose that host i
has remote pointers to host j. Then the next time host j
will receive packets from host i is tgc + w;j, where W;i

46 OOPSLA ‘89 Proceedings October l-6, 1989

is a stochastic variable with expectation

Esij = Yi Cl-Pj) + (Yi +EyijlPj

At random rime t,, the next time host j will receive gar-
bage information from host i, is t, + Q, where Q is a
stochastic variable with expectation

EQQ, = $- (1 -pj) + ($ +E,,)Pj

Therefore

E
l +Pj

@ij I ‘A yi -
l-Pj

It is clear that EBij < =. It now follows that

E, 5 m(Enn,i)fW 5 '/ZY %f(G)

f (G) depends on G ‘s size and structure. E.g.
f(G) = 13 for the graph in fig. 6 (see also table 4). In
between these garbage collections, other garbage collec-
tions can occur that do not result in such progress (e.g.,
in table 4, between time 1 and 2, all garbage collections
on hosts 1, 2 and 4). The graphs that we will discuss in
this section, have a simple structure, and therefore it is
easy to determine f(G). For more complex graphs it will
be more difficult. However, since the worst case f (G)
is computable, we can compute a rough upper bound for
the time complexity of more complex graphs as well.

l Single cycle
Suppose there are k nodes with timestamps

n1, .., nk, n1 > . . > ?l&,

then if the nodes form a single cycle , f (G) = 2k. A
packet with prefix n 1 starts from node n1 and passes
the other nodes, before returning to nl, accounting for
k steps. Then the Racket nl’ follows the same route,
while the nodes it passes are removed, accounting for
another k steps.

l List structure
In case of a non-cyclic list structure, f(G) = k. The
tail of the list sends a packet t’ and is removed, and
this continues until the head of the list is removed.

l The worst case
The worst case is a doubly linked list,

nl++n3 . . nk . . n4t+n2

First a packet with prefix nl goes from nl to n2,
accounting for k-l steps, then a packet with prefix
n lnz goes from ns to n3 in k -2 steps, etc. Finally
packet n ln 2.&-i reaches node nk , so that nk unblocks
and returns nlnz..nk-lnk’ to nk-1. This continues until

nlnz’ goes from n2 to nl. Now n1 sends the final
packet n i’ and is removed, then node n3 does the
same, and finally n2. The total number of steps is

f(G)=2i(i-I) +k =k2
i=l

If all dead nodes would be removed without distribut-
ing their final packet, then the number of steps required
in the worst case would be k2 - k to remove the lirst
node, then the absence-of-roots detection process would
start all over again for the remaining graph of k-l
nodes, etc., so the total number of steps required would
then be:

,$i2 - i) = tk3 - ik

A way to prevent this is to check if answer packets of
length 1 are successfully sent and, if not, to postpone the
removal of the dead node.

In fig. 6, if each host has a 50% probability of not
being accessible, and if the mean time between packet
distributions is 1 min., then the expected garbage collec-
tion time is 19.5 min.

7. Conclusions
A new algorithm for distributed garbage collection

was presented. This algorithm collects distributed gar-
bage incrementally and concurrently with user activity. It
is the first incremental algorithm that is capable of col-
lecting cyclic distributed garbage. Computational and
network communication overhead are acceptable. Hosts
may be temporarily inaccessible and synchronization
between hosts is not necessary. The algorithm is based
on asynchronous distribution of timestamp packets each
containing a list of last-access times of some relevant
remotely referenced objects. The correctness and time
complexity of the algorithm were discussed.

8. References
[Ali

Mohamed Ali K. A-H, Object-oriented Storage
Management and Garbage Collection in Distributed
Processing Systems, The Royal Institute of Technol-
ogy, Dept. of Telecommunication Systems - Computer
Systems, Sweden, Report TRITA-CS-8406, December
1984

[Allen791
J. Allen, Anatomy of Lisp, McGraw-Hill, New York,
1979.

October 1-6, 1989 OOPSLA ‘89 Proceedings 47

[Baker781 lTreleaven821
H.G. Baker, List Processing in Real Time on a Serial
Computer, Commun. ACM 21, 4 (April 1978) pp.
280-294

[Bevan87]
D.I. Bevan, Distributed Garbage Collection Using
Reference Counts, Parallel Architectures and
Languages Europe Conference Proceedings Vol. II, pp.
176-187, Lecture Notes in Computer Science, Springer
Verlag (1987)

[Brownbridge

P.C. Treleaven, D.R. Brownbridge, and R.P Hopkins,
Data Driven and Demand Driven Computer Architec-
ture, ACM Computing Surveys, Vol. 14(l) pp. 93-143
(February 1982)

KJqwW
D. Ungar, Generation Scavenging: A Non-disruptive
High Performance Storage Reclamation Algorithm,
ACM Sofnvare Engineering Notes, April 1984, pp
157-167

DJnw883
D.R. Brownbridge, Cyclic Reference Counting for
Combinator Machines, Functional Programming
Languages and Computer Architecture, Lecture Notes
in Computer Science, nr. 101, pp, 273-288, Springer
Verlag (1985)

EDecouchant861

D. Ungar and F. Jackson, Tenuring Policies for
Generation-Based Storage Reclamation, OOPSLA ‘88
Proceedings, pp. 1-17, San Diego

D. Decouchant, Design of a Distributed Object
Manager for the Smalltalk- System, OOPSLA ‘86
Proceedings, pp. 444452

[Dijkstra78]
E.W. Dijkstra, On-the-fly garbage collection: An exer-
cise in cooperation. Comm. ACM 21 (11) (1978) pp.
966-975.

[Goldberg831
A. Goldberg and D. Robson, Smalltalk-80: The
Language and its Implementation, Addison Wesley,
1983.

[Knuth68]
Knuth, D.E., The Art of Computer Programming 1,
Fundamental Algorithms, Addison-Wesley, Reading,

[Lieberman
Lieberman H. and Hewitt C., A Real-Time Garbage
Collector Based on the Lifetimes of Objects, Commun-
ications of the ACM, Vol. 26, No. 2, June 1983, pp
419-429

[Mago79]
G.A. Mago, A Cellular Computer Architecture to Exe-
cute Reduction Languages, Int. J. Computer and
Information Science, Vol. 8(5) pp. 349-385 (1979)

[Mohan86]
Mohan C., Lindsay B., Obermarck R., Transaction
Management in the R* Distributed Database Manage-
ment System, ACM Transactions on Database Systems,
vol. 11, nr. 4, pp. 378396, Dec. 1986

[Schelvis88]
Schelvis M. and Bledoeg E., The Implementation of a
Distributed Smalltalk, ECOOP’88 proceedings, Lecture
Notes in Computer Science, N. 322, Springer-Verlag,
pp. 212-232

48 OOPSLA ‘89 Proceedings October 1-6, 1989

