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Abstract
Statistical models of source code can be used to improve
code completion systems, assistive interfaces, and code
compression engines. We are developing a statistical model
where programs are represented as syntax trees, rather than
simply a stream of tokens. Our model, initially for the Java
language, combines corpus data with information about syn-
tax, types and the program context. We tested this model
using open source code corpuses and find that our model
is significantly more accurate than the current state of the
art, providing initial evidence for our claim that combining
structural and statistical information is a fruitful strategy.

Categories and Subject Descriptors D.3.m [Programming
Languages]: Miscellaneous

Keywords statistical models; prediction

1. Introduction
Programming languages are both formal systems with rich
syntactic and semantic structure and human systems, in that
they are used by people in patterned ways to express their
intent. Many tools are designed to help people write code
more efficiently by predicting the source code that a devel-
oper intends. For example, code completion systems for ed-
itors like Eclipse for Java display pop-up menus containing
relevant class members and other snippets.

These code completion systems make use of the seman-
tic structure of the language and API information extracted
from imported libraries, but do not incorporate data about
how developers have written programs in the past. Several
pieces of recent work have shown, however, that incorporat-
ing statistical information is useful in particular settings (e.g.
[1]). Indeed, Hindle et al. [2] have demonstrated that the next
token that a user will enter can be predicted with reason-
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able accuracy using a purely statistical model that considers
only a few previous tokens, neglecting all language, API and
context-specific knowledge.

Our work aims to combine the structured and statistical
approaches to source code prediction. Rather than using a
tokenized representation of source code, we perform statis-
tical prediction on a more natural representation of source
code: the typed syntax tree. We can then condition our pre-
dictions on structural information, specifically:

• the type, denoted τ , of the expression being predicted
(e.g. int or Color)

• the syntactic context, denoted σ, in which the expression
occurs (e.g. whether the expression is an argument of a
function call, the guard of an if statement, etc.)

• the program context, denoted Γ, in which the expression
occurs (e.g. the set of variables paired with their types
that are in scope at the location of the expression.)

For example, if a user enters the Java code Planet
destination = where Planet is an enumeration type
containing Mercury, Venus, Earth, etc. (but not Pluto, of
course), then we have that the type of the expression being
entered at the cursor is Planet, the syntactic context is as-
signment, and given a program context, our prediction space
need only assign non-zero probabilities to:

1. literal members of the Planet enumeration

2. variables and fields of type Planet available from the
program context

3. calls to methods available from the program context that
have return type Planet1.

The particular distribution of probability across expres-
sions within these three categories is influenced in part by
data derived from code corpus analyses.

In addition to the applications to code completion systems
in code editors like Eclipse, more accurate source code pre-
diction techniques could be useful for other programming
tools. For example, programmers with severe physical im-
pairments may benefit from predictive programming inter-
faces that allow them convey source code using devices more

1 We can consider operators like + and [] as methods of the built-in types in
Java.
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Figure 1. A graphical model representing our approach. Green
variables are always observed (we do not assign marginal distribu-
tions to them). The syntactic form, φ, is a latent variable, and the
expression, e, is unknown. The form is a function of the expression.

limited than a keyboard [3]. In addition, source code com-
pression algorithms may benefit from more accurate prob-
ability models, which is an important consideration as ap-
plications are increasingly being sent over the network each
time they are executed.

2. Methodology
To assign a probability to an expression, denoted e, we first
determine how likely it is that the expression is of each of
the three syntactic forms mentioned before, where syntactic
forms are denoted φ. For each form, we can then assign prob-
abilities to particular expressions of that form according to
some form-specific conditional distribution. The conditional
distributions for both the syntactic form and expression are
learned using data gathered from analyses of prior code cor-
puses (smoothed using some suitable method in cases where
enough information is not available).

Put more formally, our goal is to learn a model that allows
us to produce P(e|τ, σ,Γ). We determine this probability
by marginalizing over a latent variable that represents the
syntactic form of the expression, denoted φ:

P (e|τ, σ,Γ) =
∑
φ∈Φ

P (e|φ, τ, σ,Γ)P (φ|τ, σ)

As diagrammed in Figure 1, τ is the type of the expression,
σ ∈ Σ is the syntactic context, Γ is the program context,
and φ ∈ Φ is the syntactic form. We consider syntactic con-
texts Σ = {statement, assignment, arg, other} represent-
ing plain statements, assignments to variables, method argu-
ments and a catch-all for other syntactic contexts (e.g. condi-
tional and loop guards, return statements, etc.). We consider
syntactic forms Φ = {lit, var,meth}, representing literals
(of built-in and enumeration types), variables and method
calls, respectively.

In the equations below, #{e, τ, φ, σ} represents the num-
ber of expressions in the training set constrained by the pro-
vided expression, type, syntactic form and program context
(summing over any omitted categories.)

The conditional distribution for the syntactic forms is
simply categorical, with the probability for each φ ∈ Φ
learned as:

P (φ|τ, σ) =

{
#{φ,τ,σ}
#{τ,σ} #{τ, σ} 6= 0

#{φ,σ}
#{σ} o/w

That is, we use the empirical probability that that the
expression has syntactic form φ given that the expression
has type τ and is in syntactic context σ. If we have no data
for type τ in that syntactic context, we marginalize over τ .

The conditional distribution for an expression e given the
syntactic form, if the actual syntactic form of e is φe, is
broken down according to the syntactic form as follows:

P (e|φ, τ, σ,Γ) =


Plit(e|τ, σ,Γ) if φ = φe = lit
Pvar(e|τ, σ,Γ) if φ = φe = var
Pmeth(e|τ, σ,Γ) if φ = φe = meth
0 if φ 6= φe

The distributions for literals are determined by corpus
data counting their frequencies. For variables, there is gen-
erally no relevant corpus data (because the lifespan of a vari-
able is scoped), so we assign uniform probability to all vari-
ables in scope of the correct type. The distribution for meth-
ods benefits considerably from corpus data, however. To cal-
culate the probability of a method itself, we consider two
cases. It may be a method that we have seen in the training
set, in which case we use the empirical probability of that
method in the provided syntactic context. It may also be a
method that hasn’t been seen in the training set. In this case,
we give a uniform distribution over all such methods callable
via a variable or type in the program context.

2.1 Implementation
We used the Java language to implement our model and
perform experiments to analyze the effectiveness of our
methodology. Our prediction library is named Syzygy and is
available at http://github.com/cyrus-/syzygy.

2.2 Results
We compared the probabilities generated in a cross-validated
scenario to show that our method (SSCP) performed signif-
icantly better than the n-gram model of Hindle et al. across
all six open source projects that we considered.
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