
PANEL: Objects and Domain Engineering 
Sanjiv Gossain, Cambridge Technology Partners (moderator) 

Don Batoty, University of Texas at Austin 
Hassan Gomaa, George Mason University 

Mitch Lubars, Scientific and Engineering Software Inc. 
Christopher Pidgeon, Cambridge Technology Partners 

Ed Seidewitz, NASA Goddard Space Flight Center 

Objects are said by many to be a natural way of 
looking at the world. Object-oriented analysis, with 
its objects, relationships, and scenarios are 
purported to be a good way of modelling a domain. 

Domain engineering is a field that has been 
emerging as a key component of any domain- 
specific reuse strategy. Domain engineering is a 
means of analysing and modelling a problem 
domain with a view to reusing the concepts of that 
domain across multiple software systems. There are 
domain analysis approaches currently available that 
are not based on object-oriented techniques, yet an 
object-oriented approach would seem to some to be 
the most suitable for domain engineering. 

Panellists will be asked to use the following 
questions as a guideline in addressing how object 
technology may be used in domain engineering: 

1. Can domain analysis and modelling be 
achieved without objects? 

2. What aspects of object-oriented technology are 
best suited for domain engineering? 

3. Are there any object analysis methods 
especially suited to domain engineering? 

4. What limitations do objects impose when 
analysing and modelling domains (rules, 
representation of domain semantics, etc.)? 

5. What is missing from object-oriented concepts 
that is required for effective domain 
engineering? 

6. Based upon their practical experiences, what 
are the critical success factors in object- 
oriented domain engineering? 

Extracts from the position papers of the panellists 
are presented here. 

Mitch Lubars 

Object-oriented analysis methods provide several 
useful mechanisms for supporting the analysis and 
expression of domain models. In particular, 

superclasses can be used to express the domain’s 
static commonalities, while subclasses can express 
the domain’s variabilities. Mix-ins can further help 
separate the different orthogonal variabilities for a 
given class of objects. Polymorphism and 
frameworks are especially valuable to highlight the 
behavioral commonalities and variabilities for 
domain objects, but they have to be carefully 
structured to express the interfaces and 
implementations that are common, while 
highlighting the variable methods to be chosen or 
customized. 

One important addition for object-oriented methods 
to support domain analysis is the ability to guide 
developers in choosing different sets of mutually 
consistent classes, mix-ins, and methods. These 
can be described using issue-based or feature- 
oriented approaches, so that sets of object-oriented 
variabilities can be linked to specific features or user 
requirements. That kind of information can then be 
used by developers as a guide for how to select and 
customize variabilities when constructing new 
systems in the application domain. 

Dr. Mitchell D. Lubars is a senior software engineer 
with Scientific and Engineering Software, Inc. His 
current work focuses on supporting automated code 
generation from SES’ Objectbench CASE tool. Dr. 
Lubars recieved the A.B. degree in biology from 
Cornell university, in 1977. He recived the M.S. and 
Ph.D. degrees in computer science from the 
University of Illinois at Urbana Champaign, in 1980 
and 1986 respectively. 

Hassan Gomaa 

At George Mason University, a project is underway 
to support software engineering lifecycles, methods, 
and environments to support software reuse at the 
requirements and design phases of the software 
lifecycle, in addition to the coding phase. A reuse- 
oriented software lifecycle, the Evolutionary Domain 

333 



Lifecycle, has been proposed, which is a highly 
iterative lifecycle that takes an application domain 
perspective allowing the development of families of 
systems. Current emphasis is on the domain 
analysis and specification phase of the EDLC for 
developing an application domain model, which 
captures the similarities and variations of the 
domain. 

The EDLC model incorporates two related sub-life 
cycles, domain modeling and target system 
generation. Domain modeling deals with developing 
the reusable requirements and domain specific 
software architecture for a family of systems, while 
target system generation deals with generating 
target systems from the domain model. 

In a domain model, an application domain is 
represented by means of multiple views: 
aggregation hierarchy, object communication 
diagrams, state transition diagrams, generalization I 
specialization hierarchy, and feature/object 

dependencies. 

This last view relates the end-user’s perspective of 
the domain, namely the features supported by the 
domain, to the object types in the domain model. It 
shows for each feature (domain requirement) the 
object types required to support the feature. 

A proof-of-concept experiment has also been 
carried out to develop a prototype domain modeling 
environment, which consists of an integrated set of 
software tools that support domain modeling and 
target system requirements elicitation. 

The domain modeling environment has been used 
for modeling several different application domains. 
In addition to NASA’s Payload Operations Control 
Center (POCC) and Transportable Payload 
Operations Control Center (POCC) domains, two 
other application domains, a manufacturing domain 
and a banking federation domain have been 
modeled. This demonstrates that the environment 
is indeed domain independent. 

We are currently investigating extending the 
environment to support the design and 

implementation phases of the EDLC. In particular, 
we are investigating interfacing the domain 
modeling environment to the Regis distributed 
configuration environment. 

Hassan Gomaa is a Professor in the Department of 
Information and Software Systems Engineering at 
George Mason University, Fairfax, Virginia. He has 
over 25 years experience in software engineering, 
both in industry and academia, and has published 
over 70 technical papers. He received his 
B.Sc.(Eng.) in Electrical Engineering from University 
College, London and his DIC and Ph.D. in 
Computer Science from Imperial College, London. 

Christopher Pidgeon 

In an engagement with the Michigan Department of 
Transportation to build a suite of transportation 
planning decision support tools, Cambridge 
Technology Partners used a framework to map from 
the referent system to a conceptual system to an 
object system in order to: 1) understand the 
transportation planning problems and 2) plot a path 
to an integrated collection of solutions to some of 
those problems. 

The most challenging aspects of this engagement 
included: 

I. The roles of syntax and semantics in moving from 
the referent system to the intermediate domain 
concept map and ultimately to an implementation. 
We were really hobbled by language: Transportation 
experts used transportation speak (with several 
dialects e.g., roadway, bridge, safety, congestion, 
intermodal, public transit); object modelers used 
object speak. By introducing the intermediate level 
of domain concepts with a focus on the 
commonality of purpose for concepts in 

transportation planning, we were able construct a 
communication environment conducive to effective 
system definition and building. 

2. Maintaining consistency of representations for 
elements of the knowledge triangle-concepts, 
symbols, and referents. Here the difficulty was two 
fold: the volume and diversity of concepts 
(intensional thoughts, ideas, senses) symbolized 
with symbols (words, icons) and referring to 

referents (extensional objects) quite often 

overwhelmed our representation schemes. 

Christopher W. Pidgeon is a Senior Technical 
Consultant with Cambridge Technology Partners, 
an international professional services company 
specializing in the rapid delivery of open, distributed 
computing solutions to strategic business problems. 

334 



Dr. Pidgeon’s research focus is practicable reusable 
software engineering. 

Don Batoty 

Over the last ten years, our research has focussed 
on domain modeling methodologies and 
implementation techniques for creating software 
system generators. To us, a domain model is a 
component-based, parametric definition of a family 
of related systems. Every family member is defined 
by a unique composition of components. The 
similarities and differences among different family 
members are exposed by comparing the component 
compositions that define them. An implementation 
of such a model is a software system generator. 

The modeling methods and implementation 
techniques that we have developed are expressed 
in the GenVoca model. The GenVoca approach to 
software system generation relies on standardized 
and layered decompositions of software systems. 
The building blocks of software systems are 
components, which are layers. Components both 
export and import “standardized” interfaces so that 
they act like software “legos”. That is, target 
software systems are hierarchical compositions of 
plug-compatible components. From an object- 
oriented perspective, components are generally not 
individual classes, but are subsystems - i.e., suites 
of interrelated classes. Thus, a components export 
interface typically consists of multiple classes and a 
component itself encapsulates the implementation 
of these classes. A realm is a library of plug- 
compatible components. 

GenVoca realms and object-oriented frameworks 
are related, although the exact relationship is not yet 
fully understood. An essential aspect of framework 
design to express collaborations among abstract 
classes as “template” operations; it is not obvious 
where this counterpart lies in GenVoca. Our work 
has focussed on developing a clean abstract model 
of component composition; we do not yet know how 
the composability of frameworks relates to our 
model. 

Don Batory is an Associate Professor in Computer 
Sciences at the University of Texas at Austin. He 
was a member of the ACM Software Systems 
Award Committee from 1989-1994. He was an 
Associate Editor of ACM Transactions on Database 
Systems from 1986 to 1992, and an Associate 
Editor of IEEE Database Engineering from 1981 to 

1984. He was the Program Committee Chairman for 
the 3rd International Conference on Software Reuse 
(November, 1994). 

Ed Seidewitz 

For over five years, the Flight Dynamics Division 
(FDD) at NASA’s Goddard Space Flight Center has 
been carrying out a detailed domain analysis effort 
and is now beginning to implement Generalized 
Support Software (GSS) based on this analysis. 

Throughout this process there has been a continual 
tension between keeping the concepts as simple as 
possible and assuring that they are powerful 
enough to allow specification of domain 
functionality without undue complication. The core 
concepts of the model include the basic object- 
oriented principles of classes, objects and 
messages. Additional concepts have been added to 
this core only when not including the new concept 
would make it difficult or impossible to clearly 
specify some specific domain functionality under 
consideration. 

Following our specification concepts, the current 
GSS specifications are defined with more detail and 
less ambiguity than typical FDD software 
specifications. This has had a positive impact on the 
development process, since class specifications are 
generally detailed enough to serve themselves as 
program design language for the implementors. 

The specification concepts need to be updated to 
improve the description of how classes interact to 
support algorithms. For example, we need to 
improve the overview documentation in the 
specifications to explain these interactions, 

The specification of dependencies between classes, 
together with the generalized design for 
dependencies, completely captures a functional 
architecture for GSS. This corresponds to a level of 
definition of system structure that was typically not 
reached until preliminary design in previous FDD 
systems. Thus, the development of an increment of 
the GSS library typically starts with the detailed 
design of classes, rather than system-level 
preliminary design. 

The GSS project has always had developer 
involvement in the domain analysis process. This 
process may be further improved by increasing this 
involvement, perhaps even evolving towards a joint 

335 



analysis/implementation team. In particular, as more 
classes are implemented, the developers have a 
greater stake in making sure that new analysis work 
will not have negative effects on the existing class 
library. This issue is becoming particularly important 
as we begin to field GSS-based applications, while 
at the same time expanding the domain of 
applicability of GSS. 

Ed Seidewitz has worked at Goddard for over ten 
years, both in spacecraft attitude analysis, system 
specification and software engineering. His current 
projects focus on software reuse, generalized 
systems and system engineering. He has been 
involved with Ada and object-oriented methods 
since 1985 and is a recognized expert in the field of 
object-oriented analysis and design. Mr. Seidewitz 
has two BS degrees from the Massachusetts 
Institute of Technology, one in Aeronautics and 
Astronautics and one in Computer Science and 
Engineering. 

336 


