JIVE: Java Interactive Visualization Environment

Paul V. Gestwicki
pvg@cse.buffalo.edu

Bharat Jayaraman
bharat@cse.buffalo.edu

University at Buffalo
Department of Computer Science and Engineering
201 Bell Hall, Box 60200
Buffalo, NY 14260-2000

ABSTRACT

JIVE represents a novel approach to runtime visualization
and analysis of Java programs. It facilitates program un-
derstanding and interactive debugging, featuring: multiple,
customizable views of object structure; representation of ex-
ecution history via sequence diagrams; interactive queries on
runtime behavior; forward and reverse interactive execution.
JIVE uses standard JVM and compilers.

Categories and Subject Descriptors: 1.3.6 [Computer
Graphics]: Methodology and Techniques; D.2.m [Software
Engineering]: Miscellaneous

General Terms: Documentation, Languages, Human Fac-
tors

Keywords: Program Visualization, Interactive Reverse Ex-
ecution, Object and Sequence Diagrams, Object-Oriented
Programming, Java

1. INTRODUCTION

We present a novel approach to runtime visualization and
analysis of object-oriented programs through a prototype
system called JIVE: Java Interactive Visualization Environ-
ment. Our approach combines a visual operational seman-
tics for Java with an interactive execution model, providing
an environment that facilitates teaching and interactive de-
bugging. Our methodology incorporates the following fea-
tures, many of which are shown in Figure 1:

Depicts Objects as Environments. JIVE uses a novel nota-
tion for displaying runtime object structures, clarifying the
important fact that objects are environments of program
execution. This notation visually depicts the relationship
between methods and their object and static contexts.

Provides Multiple Views of Object States. JIVE supports
viewing object states in different granularities, giving the
user the freedom to focus on aspects of interest. Object
structures can become very complicated [2], so the capability
to view them at varying levels of detail is important.

Captures History of Execution and Method Interaction.
JIVE shows the history of program execution with dynamic,
interactive sequence diagrams, like those of the Unified Mod-
eling Language . Generating these diagrams at runtime
helps close the loop between program design and program.

Copyright is held by the author/owner.
OOPSLA' 04, Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
ACM 1-58113-833-4/04/0010.

226

Supports Forward and Backward Execution. JIVE makes
it possible to step forward or backward through program
execution. This interactive stepping is especially important
when using JIVE for debugging, since errors are necessarily
detected after they have occurred [1].

Supports Queries on the Runtime State. Understanding
the behavior of variables over time is essential to under-
standing a program’s execution. A user must be able to
inquire of the system: when variables have changed; when
variables have held certain values; when objects are created;
and when methods are called. The results of these queries
should be integrated into the visualization environment.

Produces Clear and Legible Drawings. JIVE automatically
arranges diagram components so as to clarify the object
structure and method-calling sequence. This is done using
a combination of traditional, graph-theoretic criteria as well
as properties specific to the program being visualized.

Uses FExisting Java Virtual Machine. We use existing
JVM technology in the JIVE architecture. No custom com-
pilers or virtual machines are necessary.

2. APPROACH

JIVE provides visualizations of object structures and ex-
ecution histories. The notation is generally applicable to
object-oriented programs but has been customized for Java.
Our methodology highlights the fact that objects are en-
vironments of program execution, with method activations
nested within their proper object contexts. We provide in-
tuitive visualizations of such Java features as objects, static
contexts, inner classes, threads, and exceptions.

Execution history is visualized through time sequence di-
agrams. The view of execution history is coupled with views
of object states, making it possible for a user to understand
the current state in relation to the program’s history. JIVE
sequence diagrams are interactive: the user can select a state
in the sequence diagram, and the corresponding object di-
agram is shown. Programs with Swing or AWT interfaces
are fully supported in JIVE; the GUIs coexist with the vi-
sualization of the program’s execution.

Support for forward and reverse execution is provided by
incremental state saving and restoration mechanics. JIVE
supports line-by-line stepping through execution, as well as
running to breakpoints placed in the source code. Interac-
tion execution is normally online (that is, the visualization
runs in tandem with the program being visualized), but ex-
ecution records can also be saved for future, offline visual-

File Program View Options Help

File Program View Options Help

File Program View Options Help

[sloluiv]» (o [a]x]a] [

wlalu[»]n] @ B

| Defaul view

(Default View ﬁ

‘ Froducer]

<[] %] |« alniniw x]a]al |5
java.lang.Object: 1| :
[TreeGUEL1 i
java.lang.Object action:4]
java.lang. Thread
ProducerConsumer| =
ree: 1fnsert::

ava.lang.ghject:6

Zz

H
<lhits |

TTT T

] | | e

it

nina

BS

ru‘n:z

<clinft-

Tree:2
i,

java.lang.Object: 10

ree:d |

eady.

.M.,,, R Pmaemme“eﬂ

I'I'hrnﬂ-l

Figure 1: JIVE Screenshots. The leftmost screenshot shows a tree structure with the root node in full detail.
The middle image shows multithreaded interaction in a producer/consumer application. The rightmost image
shows the method’s execution through different contexts, with all inactive objects minimized. The left and
right images show how different levels of detail can be combined within views of the object diagram.

ization. Program logs are saved as XML data, which makes
the data readily available for processing by other utilities.

JIVE incorporates a novel mechanism for performing in-
teractive queries on the behavior of variables at runtime.
The interaction model is built upon a database of execution
history. Queries are processed on this database, and the
results are displayed on the object and sequence diagrams.
For example, if a user asks when a variable falls into a given
range, the answer is shown by highlighting ranges of time in
the sequence diagram. The user can then select any event
in the sequence diagram, triggering JIVE to “jump” to the
corresponding execution state.

3. STATUSAND FUTURE WORK

Our preliminary investigations of JIVE’s effectiveness have
been very positive. We have used the notation and the tool
in a few undergraduate and graduate courses in program-
ming languages. Object diagrams have proven useful for
debugging, especially in cases where the user has a mental
map of the desired structure, and JIVE clarifies the pro-
gram’s actual behavior. The object diagrams produced by
JIVE serve as a visual operational semantics for Java. JIVE-
generated sequence diagrams have proven invaluable in ex-
plaining the behavior of various design patterns and program
constructs, and they are further clarified by the capability to
view the details of the object and method calling structure
at varying levels of detail. This has been especially true for
programs with graphical interfaces: the colors clarify how
the event-processing thread handles user input and drawing
while other threads perform their own computations.

Sequence diagrams are traditionally used only in system
design, when there is an inherent level of abstraction. At
runtime, the sequence diagrams quickly become very com-
plicated. We are investigating means by which the program
history information can be modularized and multiple views

227

can be provided, akin to the compact, minimized, and de-
tailed views of contour diagrams. In addition to the aes-
thetic problem of providing a comprehensible diagram, there
is a theoretical problem of how to most efficiently structure
a dynamically-growing sequence diagram.

We use a combination of graph-theoretic and program-
specific techniques to produce legible, meaningful diagrams.
Analysis of the source code (class diagram) can give valuable
information about the shape and dynamic behavior of the
object diagrams. Converting diagrams into directed multi-
graphs and applying known graph drawing algorithms yields
good drawings of hierarchical structures such as GUI frame-
works. Our approach also the handles the nested object
structures that occur when inner classes are used.

The use of a database model for execution history has po-
tential applications outside of visualization. The behavior of
variables can be recorded over multiple executions, making
it possible to potentially detect abnormal behavior.

Our current implementation efforts on JIVE are focused
on the following areas: integration of source-code analysis
for improved graph drawing; efficient models for interactive
execution and querying; and visual interfaces for queries.

4. REFERENCES

[1] H. Agrawal, R. A. Demillo, and E. H. Spafford.
Debugging with dynamic slicing and backtracking.
Softw. Pract. Ezxper., 23(6):589-616, 1993.

W. De Pauw, R. Helm, D. Kimelman, and J. Vlissides.
Visualizing the behavior of object-oriented systems. In
Proceedings of the eighth annual OOPSLA conference,
pages 326-337. ACM Press, 1993.

S. Mukherjea and J. T. Stasko. Toward visual
debugging: integrating algorithm animation capabilities
within a source-level debugger. ACM Trans.
Comput.-Hum. Interact., 1(3):215-244, 1994.

2]

