
Refactoring References for Library Migration

Puneet Kapur Brad Cossette Robert J. Walker
Department of Computer Science

University of Calgary
Calgary, AB, Canada

{pkapur, bcossett, walker}@ucalgary.ca

Abstract
Automated refactoring is a key feature of modern IDEs. Ex-
isting refactorings rely on the transformation of source code
declarations, in which references may also be transformed as
a side effect. However, there exist situations in which a dec-
laration is not available for refactoring or would be inappro-
priate to transform, for example, in the presence of dangling
references or where a set of references should be retargeted
to a different declaration.

We investigate the problem of dangling references
through a detailed study of three open source libraries. We
find that the introduction of dangling references during li-
brary migration is a significant real problem, and character-
ize the specific issues that arise. Based on these findings we
provide and test a prototype tool, called Trident, that allows
programmers to refactor references. Our results suggest that
supporting the direct refactoring of references is a significant
improvement over the state-of-the-art.

Categories and Subject Descriptors D.2.7 [Software En-
gineering]: Distribution, Maintenance, and Enhancement;
D.2.6 [Software Engineering]: Programming Environments

General Terms Human Factors, Languages.

Keywords Dangling references, library migration, refac-
toring, flexible search, flexible transformation, Trident.

1. Introduction
Automated refactoring is a key feature of modern integrated
development environments (IDEs). Existing refactorings in-
volve the transformation of source code declarations, such
as class or method declarations, where any references (e.g.,
method calls, the use of a type name within a variable dec-
laration) can optionally be updated to reflect changes to the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA/SPLASH’10, October 17–21, 2010, Reno/Tahoe, Nevada, USA.
Copyright © 2010 ACM 978-1-4503-0203-6/10/10. . . $10.00

underlying declaration. However, there exist practical situa-
tions in which a declaration is not available for refactoring
or would be inappropriate to transform, but instead, only the
references should be changed. The direct refactoring of ref-
erences is not available at present, reducing support to the
level of text editing; thus, greater effort is required of devel-
opers, with the greater likelihood that they introduce errors.

We see four situations in which the refactoring of ref-
erences is of potential benefit. (1) In library migration in
practice, the developer is likely to remove an old version
and insert a new one; if the library’s application program-
ming interface (API) has changed, dangling references will
now be present in the developer’s code. (2) In test-driven de-
velopment, test cases are written before their corresponding
declarations. As development proceeds, revised design ideas
can necessitate the refactoring of the tests even if the dec-
larations have not yet been written. (3) In pragmatic reuse
scenarios, developers opportunistically locate useful func-
tionality from another system that they copy and modify to
operate in their own system. This process of integration often
involves the refactoring of references to utilize declarations
in the developer’s target system. (4) Practical software de-
velopment involves the ability to revise design ideas in the
midst of implementation. This can involve the presence of
dangling references, or different ideas about how to use ex-
ternal APIs requiring references to be refactored.

In all these situations, the transformations (a) must oper-
ate in the presence of broken semantics and possibly broken
syntax, (b) where the details of transformation can vary be-
tween locations, and (c) where the developer is the ultimate
arbiter of what makes sense.

Existing work does not suffice to support the refactor-
ing of references. Standard transformation approaches can
demand excessive precision from the developer in terms of
the search query [26], can be excessively rigid about syn-
tactic details [7], or can fail in the presence of broken se-
mantics [5]. Previous work to support library migration has
focused on: strong notions of type correctness [2, 20], lead-
ing to poor performance or difficulty in specifying trans-
formations; adding adaptor layers [12, 21, 22], with run-
time overhead and limited applicability; or solely on recom-

726

mending alternative calls [9, 27], rather than actually per-
forming transformations. Even in the few cases where tech-
niques attempt to actually migrate between library versions
(e.g., [1, 11]), they demand access to the source code and/or
a repository of example usage code, and are incapable of
providing transformations in all cases—after all, inferring
library migration is reducible to functional equivalence, an
undecidable problem in general.

We focus here specifically on the library migration sce-
nario. We begin by presenting an empirical study on a large
number of versions of three industrially relevant software li-
braries, to illustrate that their APIs do indeed break between
versions and characterize how.

We also present a prototype tool, called Trident, to sup-
port the refactoring of references that is intended to handle
a subset of the API breakages that we have observed. Tri-
dent provides flexible search-and-replace functionality that
uses an exemplar supplied by the developer; it leverages a
blend of lexical, syntactic, and semantic clues according to
the developer’s needs. Trident makes use of partial program
analysis [8] to estimate whether two references refer to the
same entity. It allows the developer to preview the set of lo-
cations that a query would transform, and how these would
be transformed. The developer can either proceed or revise
the search criteria or transformation specification.

We performed case studies with two industrial develop-
ers, who were tasked with a realistic library migration prob-
lem. Both developers attempted the task first with our tool
support and then with only standard IDE support. Qualita-
tive observations about the relative strengths and weaknesses
of the treatments are reported along with the developers’
thoughts and opinions.

The remainder of the paper is structured as follows. Sec-
tion 2 describes an actual industrial scenario of library mi-
gration. Section 3 presents our empirical study into API
breakages in a set of industrial software libraries. Section 4
describes our approach to supporting some of these transi-
tions, as embodied in the Trident tool, which is evaluated
through two in-depth case studies with industrial develop-
ers in Section 5. Section 6 discusses remaining issues and
future work. Section 7 considers how our approach differs
from existing work for this practical problem.

This paper contributes an empirical study into the nature
of API change in a set of industrial systems, and an approach
that allows references to be refactored, independent from
declarations, and even when the references dangle.

2. Motivation
Consider an actual scenario of class library migration that
unfolded at Chartwell Technology, our industrial research
partner. At the time, Chartwell employed approximately
40 software engineers working on over 1 MLOC of Java
code. The code made extensive use of the XML parsing

facilities provided by the JDOM library, version b9.1 As
Chartwell’s product line matured, the XML processing de-
mands increased, prompting a search for a newer XML
class library. The then-new release of JDOM (version b10)
seemed like the most appropriate replacement candidate.
Following the most direct upgrade path, one developer was
assigned to replace JDOM-b9 with JDOM-b10 on his class-
path, to ensure that the revised code compiled and passed
all unit tests and then commit the changes. This class library
migration was not so simple in practice.

A comparison of the library versions reveals that there
are 120 binary incompatibilities [14] between the two
JDOM versions. Some of these changes are unlikely to
have any implications for JDOM users, such as the visi-
bility change of the field org.jdom.input.SAXHandler.
currentElement from protected to private. While
other, seemingly trivial, changes had a considerable im-
pact on the compilation of the Chartwell codebase. For in-
stance, the method Element.getParent() was removed
and replaced with Element.getParentElement(). This
method was invoked throughout the code base and its
absence alone resulted in 140 compilation errors. Simi-
larly the pretty printing of XML documents was previ-
ously accomplished by instantiating XMLOutputter thus:
new XMLOutputter("", true). In the new version this
task was accomplished with a new Format class and all
the previous method invocations needed to be replaced with
new XMLOutputter(Format.getPrettyFormat()). This
change resulted in 86 compilation errors. The full set of
changes and resulting errors in the Chartwell codebase are
available elsewhere [16].

In total there arose 467 compilation errors during this li-
brary migration, resulting from just 7 of the 120 binary in-
compatibilities between the JDOM versions. Thus, the po-
tential impact of the library upgrade would have been far
worse if Chartwell had made more extensive use of the
JDOM API. To complete the JDOM library migration ulti-
mately took almost 2 full days of effort and involved manual
modifications of 274 Java files.

The difficulty of this solution stands in stark contrast to
the apparent simplicity of the underlying API change. Given
this discrepancy, it is worth asking: Why was the task at-
tempted manually when there are a host of code modifica-
tion tools inside of Eclipse? Consider the alternatives that
the developer could have pursued.

The first tool that comes to mind for this task is grep.
A search for the regular expression “\.getParent()” and
replacement with “\.getParentElement()” seems like
the most obvious choice for the first API change. Unfor-
tunately this initial impulse is wrong as there are innu-
merable invocations of methods named getParent() in
the Chartwell code base that correspond to method decla-

1 Although a beta-version, JDOM was the cutting edge technology of the
day; alternative libraries were not considered viable by Chartwell.

727

rations on different types unrelated to JDOM. The preva-
lence of duplicate method names can be seen in a lex-
ical search of the Eclipse 3.5.1 libraries—1,233 classes
with 3,024 getParent() references to a range of different
method declarations.

For the moment, let us assume that duplication of method
names is a rare event and the only references in the code
base to getParent() correspond to the pertinent ones in
JDOM. Even so, grep would still not be up to the task. A
closer examination of the API change reveals that originally
6 JDOM classes declared getParent() methods. Of those,
5 now share a common parent, the new Content class, from
which they inherit getParentElement(). The 6th class is
Attribute and it remains outside the new supertype hier-
archy. As such getParent() invocations on variables of
type Attribute should not be refactored. Making the neces-
sary syntactic distinctions between such cases is outside the
ability of lexical tools such as grep.

Conveniently Eclipse provides syntactic search sup-
port through Java Search (we distinguish Java Search
from Eclipse File Search, which is purely lexical)
which might prove useful. Initial attempts at specify-
ing Attribute.getParent() in our Java Search query
appear to work. None of the getParent() references
unrelated to JDOM appear in the search results. How-
ever all the getParent() references to JDOM are re-
turned whether they are invoked on Attribute vari-
ables or on any of the 5 other classes. Refusing to
become discouraged we try applying the same strat-
egy to the next API change. Occurrences of new
XMLOutputter("") need to be replaced with new
XMLOutputter(Format.getRawFormat()) while those
of new XMLOutputter("", true) need to be replaced
with XMLOutputter(Format.getPrettyFormat()). Un-
fortunately Java Search is still not up to the task as it is un-
able to distinguish between overloaded versions of the same
dangling method reference.

An optimist might argue that despite its shortcom-
ings, Java Search has done enough by returning a list
of method references and associated filenames that we
can perform a replace operation on. We are stymied
yet again as Java Search offers no replace option. Re-
gardless, what we need is not replace functionality
but refactoring functionality. Eclipse refactorings pro-
vide numerous error checking and convenience features
that potentially simplify the user experience. For in-
stance when refactoring new XMLOutputter("") to new
XMLOuputter(Format.getRawFormat()) the appropri-
ate import needs to be added to the affected classes. Sim-
ilarly when changing method names, refactoring tools en-
sure the proposed name does not conflict with another name
in the same scope. While such points may seem trivial and
straightforward, we will see the great pain that they can
cause in practice.

3. API Change in the Wild
Various authors have mentioned the existence of API
changes in practice. In particular, Dig and Johnson’s study
on API evolution [10] is prominent. Unfortunately, their
study has three shortcomings from our perspective: (1) the
number of migrations that they considered consist of a sin-
gle version transition for each of 5 systems; (2) they con-
sidered only public entities and not all entities that a de-
veloper could depend on, and furthermore, only those en-
tities with publicly available documentation and intended
for reuse (i.e., internal packages in Eclipse would be ig-
nored); and (3) having decided previously that library migra-
tion paths can be described via automated refactorings in the
majority of cases, they do not look for changes that would
contradict this notion.

Instead, we present an in-depth investigation of API
changes in practice, without any presupposition about the
nature of such changes. We sampled the growing body of
open-source software available on the Internet, to select
three systems that are heavily used in industry and gener-
ally regarded as of reasonable quality; we chose HTML-
Unit, JDOM, and log4j. (As an example, HTMLUnit has
been downloaded 69,343 times for the versions that we have
investigated.) For each of these systems, we sought out as
many versions as we could, in order to examine the API
changes between successive versions.

To detect and analyze API changes, we performed a
three-step process: (1) we used the Eclipse API Tooling to
determine the binary incompatibilities between successive
versions; (2) we then used JDiff in an attempt to automati-
cally classify the API changes; and finally (3) we manually
inspected and revised each of the reported changes (includ-
ing looking through the associated documentation) to over-
come shortcomings of these tools. We concerned ourselves
only with changes that could potentially break an existing
client, discarding all other events. Changes considered per-
tinent include visibility reduction of entities (types, meth-
ods, constructors, or fields), deletion of entities, movement
of entities (including formal parameters), and the insertion
of entities that would break existing references (e.g., new
formal parameters, new declared exception). The detailed re-
sults are tallied in the appendix.

Table 1 summarizes the results over all transitions be-
tween successive versions; detailed results are available else-
where [16]. We found that APIs in these systems change un-
predictably and sometimes severely, and that API change is
far from uncommon. In addition to the data, we also qual-
itatively found that the @deprecated tag is an unreliable
guide: deprecated entities of course do not always get elim-
inated, but entities can be deleted or otherwise transformed
without ever having been labelled as deprecated and with-
out any explicit indication as to how a developer ought to
migrate their library usage to a newer version.

728

http://wiki.eclipse.org/PDE/API_Tools/User_Guide
http://javadiff.sourceforge.net/

System Version All Types Methods Constructors Fields

transitions µ σ µ σ µ σ µ σ µ σ

HTMLUnit 31 26.19 54.30 4.61 4.40 20.06 52.96 1.29 2.56 0.23 0.67
JDOM 8 27.88 42.80 1.25 1.28 18.50 28.75 2.75 6.98 5.38 7.10
log4j 15 13.87 39.84 1.53 3.54 7.40 23.10 0.53 1.25 4.40 12.48

Table 1. API breakages in the studied systems. Mean and standard deviation are presented for the inter-version binary
incompatibilities both with respect to all changes and broken down by entity kind.

As the average number of changes for each transition be-
tween versions is between 13 and 28, the burden on the de-
veloper to determine how to remap each dangling reference
is potentially high—especially since a single API breakage
could result in multiple dangling references. We note that
the majority of change events (~62%) involve the deletion
of entities, and approximately half of the change events are
specifically method deletions. (We do not count as method
deletions any likely signature changes that would be eas-
ily located by the developer.) Deletions are potentially the
greatest burden to the developer, as no immediate clues ex-
ist about what the deleted entity should be replaced with. We
found that most of these changes were not accompanied with
documentation about the recommended migration path.

If the library providers do not even point out how to cope
with version transitions, they are unlikely to create heavy-
weight specifications that could be used to correctly trans-
form client code, as required by a variety of API migration
research [2, 6, 20, 24]. A developer is left with little choice
but to manually transition their code, a notably painful pro-
cess [3]. More pragmatic support would be a boon.

4. Refactoring References: Prototype Tooling
As a first step in determining whether tool support for refac-
toring references would be of practical benefit, we present
our prototype tool, Trident. Trident is implemented as a
plugin for the Eclipse IDE, which aims to provide flexible
search-and-replace functionality for refactoring references.
Trident does not currently aim to address every detail of the
process of refactoring references: by investing in partial sup-
port, we intended to collect enough empirical evidence to
inform whether stronger tooling is worth developing.

We wished to mimic the capabilities of existing Eclipse
tools (such as Java Search, and Eclipse’s refactoring sup-
port), but allowing for intelligent replacements in contexts
where existing support could not operate: incomplete code
bases with dangling references.

4.1 Goals
To enable Trident to provide refactoring support for refer-
ences, we aimed to address two key issues. First, we wanted
to provide refactoring support equivalent in capability to ex-
isting refactoring tools, and not simply extend lexical/Java
Search to include a replace feature. After spending some

time observing Eclipse users invoke the “Rename” and the
“Introduce Local Variable” refactorings that Eclipse pro-
vides, we made several observations about the nature of
refactoring which we sought to emulate:

Exemplar Based. To activate most refactorings the devel-
oper must provide an example of the code to be refac-
tored. For instance, renaming a method requires that the
cursor is currently placed on a method name.

Context Sensitive. The types of standard refactorings avail-
able depend on the broader context in which the example
resides. Selecting a variable declaration inside a method
body makes available the “extract method” refactoring
while selecting a similar statement in the class body does
not.

Completion Assistance. Once you have selected the type
of refactoring to apply, a specialized UI provides com-
pletion assistance. Explicit assistance in the “change
method signature” refactoring comes in the form of type-
completion widgets beside the method arguments that al-
low you to quickly select from other types currently visi-
ble in the project. Implicit assistance comes in the form of
checking for other methods in the same scope that might
share your proposed method name/signature and cause
naming conflicts.

Escape Clause. A refactoring can be aborted at various
stages and for various reasons. Most refactorings provide
an inline preview of the proposed change so the user has
immediate visual feedback on whether or not he should
proceed. Following which, a preview is provided that lists
all affected files and shows a side-by-side comparison
(with syntax highlighting). Again at this stage the devel-
oper can cancel the refactoring altogether or selectively
override the refactoring and exclude some files from the
change. Even once the code has been modified it is pos-
sible to undo all the changes on a project wide basis.

4.2 Application and Features
Trident is applied in a 5-stage process. (1) The devel-
oper highlights code to refactor and activates Trident
(selection). (2) A wizard is displayed allowing for spe-
cific details about the search criteria to be configured
(search configuration). (3) A checkbox list is presented
with each location described that matched the criteria;

729

by default, the entire set of results is selected, but this
can be restricted to any individual locations (restriction).
(4) Another wizard is displayed allowing for specific details
about the refactoring criteria to be specified (refactoring
configuration). (5) A comparison editor allows for “before”
and “after” shots of the changes to be previewed. At any
step, the process can be aborted, or the developer can
return to the previous step. We describe each stage of
the process, below, via a running example: the statement
Category.getInstance(ResourceBundleTest.class),
in which Category and ResourceBundleTest are types.

Selection. The Selection stage begins with the developer
highlighting a section of code containing a reference in the
editor; he activates Trident using a toolbar button.

Trident then obtains the node (as defined by the Eclipse
Java Development Tools) from the abstract syntax tree
(AST) corresponding to the current selection; to deter-
mine likely resolution information in the presence of dan-
gling references, the partial program analysis (PPA) tool
of Dagenais and Hendren [8] is applied. Currently only 6
types of AST node selections are supported: SimpleName,
SimpleType, QualifiedName, QualifiedType, MethodInvo-
cation, and ClassInstanceCreation.

Search Configuration. The developer specifies how the
exemplar should be used to search for other dangling ref-
erences. The developer is asked to identify which portions
of the exemplar should be included in the search and how
they should be interpreted. Developers are provided with (a
maximum of) three search options to guide the search.

Figure 1 illustrates this with our running example. The
method invocation is broke into its three constituent com-
ponents: method expression (Category), method name
(getInstance), and a variable length argument list
(ResourceBundleTest.class). Beside each component is
a drop down box with search options. For the method expres-
sion three search options are available: “verbatim”, mean-
ing search for method expressions that are lexically iden-
tical to Category; “type”, meaning search for method ex-
pressions that evaluate to the same type, which in this case
is org.apache.log4j.Category; and “ignore”, meaning
remove that portion of the exemplar from search considera-
tion. Method names have only two search options: “verba-
tim” and “ignore”. As previously, choosing verbatim in our
example means a search will be conducted for other method
invocations where the name portion is getInstance.

Arguments have the same three search options available
with one small difference. If there are≥ 2 arguments, choos-
ing “ignore” for any one of them still requires the search
condition that is applied to the others to hold and the num-
ber of arguments must still equal n. Choosing to ignore all
the arguments means any type and any number of arguments
is considered valid in the ensuing search.

Figure 1. Trident search configuration.

Figure 2. Trident search results.

Figure 3. Trident refactoring configuration.

Figure 4. Trident reference refactoring preview.

730

The search criteria are translated into lexical search cri-
teria via regular expressions as well as additional semantic
checks when appropriate.

Restriction. Locations that match the search criteria are
presented in a checkbox list. The developer can review
the individual matches, select/deselect these individually
or as a group, or back up to revise their search crite-
ria. In Figure 2, we see that multiple instances of calls
to Category.getInstance(...) have been found, where
the details of the argument vary between a variety of class lit-
erals and invocations of getName() on class literals (which
returns a String). The developer has selected two of the
locations as being of interest.

Refactoring Configuration. The developer can then spec-
ify how the components should be altered, as illustrated in
Figure 3. This step is relatively simplistic in our current pro-
totype. The wizard is initially populated with details from
the exemplar. If a given component is unaltered by the devel-
oper, the corresponding component in all locations is left un-
transformed. Otherwise, the corresponding component in all
locations is transformed as specified: (1) the method name
can be replaced—if replaced via the “Browse for method”
button, the specific method to be invoked will be identified
and hence import statements can and will be modified auto-
matically as well; (2) the method expression can be replaced;
(3) the existing method arguments can be replaced; (4) any
existing argument can be deleted; (5) new arguments can
be inserted; and (6) arguments can be moved, which does
not transform the contents of corresponding arguments, only
their positions in the list.

To be clear, this set of possible transformations is pur-
posefully limited to simplify the process of using it. Through
the Restriction stage and iterative invocations of Trident, we
feel that the completion of a large task is more practicable
than with complex specifications.

Preview. As a final stage, the developer can preview the
change that will result at each selected location, in a com-
parison editor that is standard for automated refactorings in
Eclipse (as in Figure 4). If the previewed transformation is
unacceptable at any point, the developer can unselect that lo-
cation, or he can back up to an earlier stage of the process to
revise his criteria. Finally, the transformations are applied in
a single, undoable step, so the developer can globally undo
the transformation if desired.

5. Case Studies
To determine whether even partial tool support for refactor-
ing references is likely to be beneficial in practice, we con-
ducted two case studies with industrial participants, in which
they were asked to migrate a software system from depen-
dence on an out-of-date library version to a more recent ver-
sion. Each participant was asked to undertake the code mi-
gration first using the Trident tool, and then attempt the same

migration again without the benefit of our tool support. Our
research questions were: (RQ1) “How painful is it to refactor
dangling references in source code using existing tool sup-
port?” and (RQ2) “Does Trident help developers reduce the
difficulty of refactoring in these cases?”

Section 5.1 describes the methodology we used to con-
duct our case studies. Section 5.2 describes our qualitative
observations of the participants undertaking their refactor-
ing tasks using Trident to assist them, and subsequently per-
forming the same refactoring manually. Section 5.3 com-
pares the approaches quantitatively and qualitatively, dis-
cussing the implications of the study.

5.1 Case Study Methodology
We recruited two industrial software developers to partici-
pate in our case study, and asked them to refactor references
in a software system which was currently in an uncompi-
lable state due to changes within a depended-upon library.
The goal of the refactorings was to restore the system to a
compilable state.

5.1.1 Participants
Participant 1 described himself as having 9 years of ex-
perience in developing Java software, and having used the
Eclipse IDE for the past five years. Participant 2 described
himself as having 7 years of experience developing Java soft-
ware, and having used the Eclipse IDE for two years.

5.1.2 Systems
We chose to have the developers migrate the JaxMe project
(version 1.63), an open source implementation of the Java
Architecture for XML Binding (JAXB) specification, which
defines how an XML schema can be transformed into a set
of Java classes and interfaces for programmatic manipula-
tion. The JaxMe v1.63 contains 213 classes and 18928 LOC.
JaxMe was a strong candidate for our study as it relied heav-
ily on a library which had evolved significantly, with func-
tionality deprecated and removed: the Apache log4j library.

Log4j provides application logging functionality to de-
velopers. In place of using System.out or System.err
method calls to write logging and error messages to the con-
sole, log4j provides a runtime configurable logging frame-
work which can selectively disable specified levels of log-
ging during execution, and can provide output in multiple
formats. As log4j has increased in both popularity and matu-
rity, its API has undergone significant changes. For example,
in previous versions of the library, developers would use the
Category class to access the “category” of functionality that
they wished to log. However, in the transition from v1.2.8
to v1.3, the functionality provided by the Category class
was largely supplanted by the Logger class, because using
a “logger” for logging made more sense than using a “cat-
egory” (according to the manual). Similarly, the Priority
class was originally used by developers to define the impor-
tance of a logging message being sent to the Category ob-

731

http://ws.apache.org/jaxme
http://java.sun.com/developer/technicalArticles/WebServices/jaxb
http://java.sun.com/developer/technicalArticles/WebServices/jaxb
http://logging.apache.org/log4j
http://logging.apache.org/log4j/1.2/manual.html

jects used for logging. In the new version, the type was re-
placed with a new Level class which allowed developers to
set the error level of logging messages sent.

5.1.3 Task
For the case study, each developer was asked to migrate
the JaxMe project from v1.2.8 to v1.3 of the log4j library.
Only a subset of the real transition was allowed to cause
compilation problems: the change of Category instances to
Logger; and the change of Priority instances to Level.

There are several other differences between log4j v1.2.8
and v1.3, but we elected to restrict our study to the above
subset for three reasons: (1) the time required of partic-
ipants to perform the case study had to be restricted for
practicality; (2) these classes, and their associated methods
and/or fields, constitute the majority of the differences be-
tween the two versions; and (3) the classes that have been
removed and their intended replacements are clearly indi-
cated in the library’s documentation, through the use of the
@deprecated and @see tags, thereby eliminating any am-
biguity about what modifications are needed.

We simulated the partial transition to v1.3 by providing
stubs for missing entities that were not in the limited subset.

5.1.4 Setup
Participants were provided with the Eclipse IDE v3.5, con-
figured with the Trident tool as a plugin. At the start of the
case study, each participant was provided with a short tuto-
rial introducing them to the purpose and usage of the Trident
tool. The tutorial showed a dozen unique sample scenarios
in which the Trident tool was used to find and refactor code
containing dangling references, to illustrate to the participant
how the tool can be used.

At the completion of their training, the JaxMe v1.63
source code was loaded in their project workspace, with
log4j v1.3 (adjusted as described above) in the JaxMe
project’s classpath. Participants were then asked to modify
the source code to eliminate the dangling references left by
the log4j library transition, reducing the compilation error
count to 0. To alleviate the developers’ need to familiarize
themselves with the log4j documentation, participants were
provided with a concise list of the source entities that had
been removed between versions, and the names of the en-
tities that should be used to replace them replacements, ex-
tracted and condensed from the log4j documentation.

Participants undertook this task twice. On their first at-
tempt (the tool treatment), they used the Trident tool, and
on their second attempt (the manual treatment) they were
to attempt the change “manually” using any functionality
within Eclipse they desired, but without the assistance of Tri-
dent. In both treatments, we asked the study participants to
“think aloud” as each went through the task to help us under-
stand their thinking process, action rationales, and reactions
to the results. While each treatment was conducted on the
same system and problem, the treatments were conducted

24–72 hours apart: our goal in doing this was to partially re-
duce the learning effect caused by having to repeat the same
tasks, since we expected that this would prevent develop-
ers from remembering every detail of the task, thus poten-
tially obscuring our attempt to measure differences between
Trident and existing techniques. We did expect though that
this would not eliminate the learning effect, and thus give
a small advantage to developer performance in the manual
treatment.

For the tool treatments, participants were asked to only
use Trident for any automated/semi-automated refactorings
to the code: they were allowed to make manual modifica-
tions to the source code as they desired (i.e., via the source
code editor). They were also allowed to ask the study inves-
tigator about any details of Trident’s usage, but not details
of how the code could or should be modified to successfully
complete the task.

For the manual treatments, each participant was allowed
to use only those tools provided within the Eclipse IDE
(e.g., refactorings, lexical search/replace tools) and manual
modification to alter the JaxMe source. Participants were
again free to ask for assistance in using any of the tools
provided by the Eclipse IDE.

5.2 Observations
We focus here on a few high-level observations of the partic-
ipants’ actions and comments. A more detailed and complete
set of observations can be located elsewhere [16].

5.2.1 Participant 1
Tool treatment. The participant’s approach can be charac-
terized as heavily iterative, cycling between selecting dif-
ferent exemplars as input to Trident, refining his search cri-
teria, and investigating the search results. For a particular
transformation, he discovered that providing Trident with
different variations on the same input (e.g., searching on the
ERROR field name vs. searching on the fully qualified type
and field name org.apache.log4j.Priority.ERROR) al-
lowed him to refine and discriminate the search results of
the tool to reflect his original intention. In most cases, the
participant would try several different exemplars as the in-
put for Trident, before finding the example which captured
precisely those locations he wished to transform. Later in
the task, the participant chose exemplars in a deliberately
exploratory fashion; he would select an example, activate
Trident, then alter how Trident restricted its search on that
example (e.g., ignoring the type or presence of a parameter
in a method invocation “to use Trident to find the different
kinds of arguments being passed in, before I decide on what
changes to make.”).

The participant used the preview screens to ensure that
his intended modifications were carried out correctly, but
also to quickly locate unusual cases where he wanted to
see if Trident performed as he expected. For example, the
participant had to perform a transformation on a static

732

http://www.eclipse.org

method invocation (i.e., from Category.getRoot() to
Logger.getRootLogger()), but noticed that in the JaxMe
source code, static methods were more often accessed on
an instance (e.g., cat.getRoot()) than in a static manner.
The participant chose as his exemplar cat.getRoot() be-
cause it described the more frequently occurring situation,
but used the preview screens to see that Trident (1) cap-
tured the cases in which the method was accessed statically
through the class type, and (2) correctly transformed those
cases as well.

Towards the end of the task, the participant preferred
to use Trident to enact large sets of changes, while using
manual modification to fix “one-off” changes. In one case,
he aimed to transform a method invocation which accepted
a parameter whose value was almost always passed in as
a static field reference on a type, but in a few cases was a
reference to a local object. Rather than restrict Trident to
deal with those cases separately, he reasoned instead that
the side-effects of the transformation for those special cases
were easily dealt with manually afterwards.

Manual treatment. After realizing that Eclipse’s Java
Search tool does not support search and replace operations,
the participant resorted to using the File Search and Replace
tool, which also allowed him to use regular expressions for
the transformations.

The participant found he needed to iterate through sev-
eral versions of a regular expression before he could get
it to match examples he knew about in the source code—
despite Eclipse providing inline regular expression assis-
tance. These examples also proved to be problematic; in tai-
loring his patterns to these examples (which exemplified the
majority of cases), he would often capture cases that were
(1) sufficiently lexically similar that imprecision in the pat-
tern caused an unintended match (e.g., forgetting to escape
the dot (’.’) operator because the mistake in the pattern still
worked on his example), or (2) syntactically similar yet se-
mantically different, such as patterns written to capture static
field accesses on types that also captured static method invo-
cations on the same. These consequences prompted him to
comment, “The big problem with grep and regular expres-
sions is that you capture things that you don’t expect”.

A frequent point of frustration for him was that the com-
pilation error count in the project would barely decrease af-
ter enacting a particular transformation; the participant often
found that a single transformation was not enough to resolve
a single problem. Instead, he needed to apply a sequence of
patterns before the transformation was complete.

For example, after a transformation was enacted, the
compiler often could not recognize the new types or meth-
ods involved as their containing class had not been im-
ported. In most cases, he was able to fix this automati-
cally using Eclipse’s Organize Imports tool. In one partic-
ular case though, this didn’t work: two classes with the
same name, but different enclosing packages, resided on the

class path (org.apache.log4j.Logger and java.util.
Logger), and the Organize Imports tool gave the error “Am-
biguous references, user interaction is required.” It was not
able to decide which Logger class was being referenced by
the newly transformed source code. In this particular case,
the transformation had affected 44 files, requiring the man-
ual addition of 44 import statements. To fix this, the partic-
ipant chose to write a regular expression to insert the ap-
propriate import statement after the package declaration in
a Java class; because there was no way to restrict the inser-
tion of this pattern to only those 44 files which needed it, he
applied the pattern to every class in the JaxMe system, and
then used Eclipse’s Organize Imports to remove the unnec-
essary import statements from those classes in which they
did not belong; he evaluated this solution as “an ugly hack.”
Even then, he also unintentionally transformed a string lit-
eral in the source code which happened to match his regular
expression. He only caught this mistake because the trans-
formation at that point caused a compilation error.

Regarding his experiences using regular expressions for
this task, the participant noted that he “never got the [regular
expressions] right the first time, despite knowing the change
that had to be made,” and he “encountered significant frus-
tration from all the unintended side effects”.

5.2.2 Participant 2
Tool treatment. The participant initially was confused
about how to select exemplars, but this was resolved quickly
by the experimenter providing a tutorial on the matter. He
also failed to realize initially that multiple classes with the
name Level existed on the classpath; this is an issue that
arose from Eclipse and not specifically from Trident.

This participant can be characterized as more cautious
and less willing, initially, to experiment with Trident in un-
expected situations. When searches returned a broader set
of hits than he had anticipated, he was tempted to restrict
the locations to only those that he had anticipated and deal
with the others manually. Two features of Trident led him
to overcome this hesitancy: (1) global “undo” caused such
unexpected changes to be low risk to try out; and (2) the
introduction of comments by Trident that explained what it
had changed and why helped him to understand the rationale
for the broader set of results. Earlier presentation of rationale
(i.e., during Restriction) would likely have helped him.

The participant asked if it was possible to restrict the
search to only certain kinds of entities (i.e., type declarations
within variable declaration statements, as opposed to within
catch clauses, method declarations, etc.). Trident does not
currently provide such a restriction capability, and he was
able to complete all but 5 remaining errors with Trident.
Thus, it is not clear whether this capability is needed.

Manual treatment. The participant attempted to reason
about some of the API changes as though they consti-
tuted refactorings (e.g., moving fields between types). He at-

733

tempted to utilize the Eclipse automated refactorings, to be
confronted with the error message, “Destination type does
not exist”, since these operate on declarations and not dan-
gling references.

His second attempt involved Eclipse’s Java Search tool-
ing, but this did not allow him to search-and-replace. Thor-
ough browsing of the menus led him to a lexical replacement
option under Eclipse’s File Search tool.

For the API change from Category.getIns
tance(...) to Logger.getLogger(...), this tooling
caused the participant 2 key problems: (1) the large number
of hits led him to exhaustively review each before he was
willing to change each; and (2) the import statements in
each file had to be manually adjusted before the references
stopped dangling. “I am beginning to realize what a pain
this really is. Initially I had thought Eclipse search and
replace would do this for me.”

For the API change from Category.getRoot() to
Logger.getRootLogger(), a lexical search-and-replace
was again used; this was a viable option despite the fact
that the getRoot() method is sometimes invoked on static
fields, and sometimes invoked directly on the class. In all
the cases involving static fields, the name of the field is con-
sistently “cat”, making lexical search-and-replace relatively
straightforward. He encountered a key usability problem in
the process, however: a copy-and-paste error in the replace-
ment text field caused an extra, empty pair of parentheses
to be attached to the end of the new method invocation. As
the Eclipse File Search tooling does not provide a global
undo capability, the participant attempted a second round of
search-and-replace to fix his previous mistake.

For the API change from static Category cat =
... to static Logger cat = ..., his previous refactor-
ings had altered the target statements to public static
Category cat = Logger.getLogger(...). He speci-
fied the regular expression “Category\s+cat\s*=\s*
Logger.getLogger” to search for matches, and “Logger
cat = Logger.getRootLogger()” as the pattern to re-
place it with. The replacement ought to have been “Logger
cat = Logger.getLogger()”. A series of erroneous
keystrokes and button presses while attempting further reg-
ular expression-based search-and-replaces compounded the
problems. “This is a nightmare. Is it okay if I quit this task?”
After additional attempts, he eventually fell back to man-
ually correcting these and all remaining errors, noting “the
task seemed easy but the [manual change process] was really
messy and I am not confident in the solution”.

5.3 Results and Analysis
The quantitative results are given in Table 2. For both partic-
ipants, Trident clearly outperformed the manual treatment,
despite the study being biased in favour of the latter. Overall
time for performance was reduced by 23% in using Trident;
note that this time includes the significant delays incurred
waiting for (the completely unoptimized) Trident tooling to

complete its searches. Manual file modifications were re-
duced by 82–95% through the use of Trident. Interestingly,
only about half of the attempted invocations of Trident were
carried through to completion. This may indicate that the de-
velopers did not understand well enough the consequences
of their selections before reviewing the preview results, or it
may indicate difficulties with the tool interface; the qualita-
tive observations discount the latter possibility.

We analyze our observations in terms of our research
questions, below.

How painful is it to refactor dangling references in source
code using existing tool support? Both participants strug-
gled at times to refactor source code with dangling ref-
erences, but their difficulties varied dramatically between
them. Participant 1 had a solid grasp of regular expressions,
using them to great effect, perhaps providing the best possi-
ble example of state-of-the-practice tool support. He seemed
to require very few operations to complete the task, and in
the end elected to manually fix a few compilation errors di-
rectly. However, he still was not able to write patterns that
were completely error free; in most operations, participant 1
had one or more unanticipated side effects occur that needed
to be addressed manually. It was also necessary for him to do
what he described as “an ugly hack” in which import state-
ments were inserted globally across the system to address a
class resolution problem affecting only a portion of the sys-
tem. This participant’s breadth of experience with Eclipse
(as both a user and plugin developer), combined with his
depth of knowledge about regular expressions made him
an excellent candidate to test our approach. His difficulty
in completing the assigned task despite these advantages
speaks to the limitations of Eclipse and regular expression-
based support in addressing this problem.

By contrast, Participant 2 had significant difficulty in the
refactoring task, to the point where he contemplated aban-
doning the migration of the JaxMe system between log4j
versions. His difficulties reflect many of the problems in-
herent with such tooling. He was not able to use the Eclipse
refactoring tools with which he was comfortable, because
they were not designed with refactoring dangling references
in mind. He wanted to use Eclipse’s Java Search functional-
ity to find and replace Java types and fields, but the search
inexplicably has no replace option. He had difficulty finding
the file-based search-and-replace tool he wanted, and when
using it, ran into numerous problems caused by typos or
copy-and-paste bugs that were further complicated by be-
ing unable to undo his mistakes and start over. In the end,
Participant 2 spent a considerable portion of time manually
enacting changes to the code.

Participant 2 also noted that his experience could have
been worse; JaxMe appeared to consistently use a naming
convention when declaring Category variables in the code,
which allowed him to leverage that pattern (specifically,
Category cat) to make the task of find correct pattern

734

Participant Time (min.) File modifications Trident invocations

manual Trident manual Trident started completed

1 74 57 40 7 28 14
2 130 100 104 5 21 10

Table 2. Quantitative results from the case studies.

matches easier. Had this convention not been in use (e.g.,
each variable declaration used a different name), he felt his
task would have grown in difficulty.

Both participants had common problems which we feel
are worth noting: both expressed frustration when refactor-
ings attempted with standard Eclipse tooling had no effect
on reducing the compilation error count, or caused increases
in the error count. In many cases, refactorings required mul-
tiple steps before an error reduction would occur, causing
them to wonder if their actions were having any effect.

Does Trident help developers reduce the difficulty of refac-
toring in these cases? Both participants strongly stated
that the task was far easier with the assistance of Trident.

Participant 1 found that Trident’s preview window, com-
bined with its undo functionality, allowed him to attempt
refactorings in an exploratory manner. He would often use
the preview window to look for specific cases in which he
wanted to ensure that his search criteria worked, and gain
early feedback as to what problems could exist. In cases
where he was not sure if he had captured all the dangling
references of interest, or had captured too much, he would
often proceed with the refactoring, since he was confident
that Trident’s undo functionality would allow him to revert
easily back if he was wrong.

Participant 2 was far more deliberate about enacting
changes, and as such heavily relied on Trident’s preview
window to understand how his searches were working, and
to ensure that his expectations as to the tool’s refactoring
would match reality. In cases where he was confused or un-
sure about how a particular refactoring might affect code, the
comments shown in the code previews provided sufficient
feedback to encourage him that he was on the right track.

Both participants seemed to make steady progress with
the Trident tool. Neither participant saw an increase in the
number of compilation errors after performing a particular
refactoring, and both made steady, consistent progress in
reducing the number of compilation errors in the JaxMe
system with every Trident invocation.

6. Discussion
6.1 Threats to Validity
Having each participant repeat the same migration task ob-
viously calls into question the validity of the results from the
second treatment, since learning effects would accrue. How-
ever, we wished to put our approach up against the toughest
comparison: industrial-strength tooling when the participant

was already familiar with the specific task. Both qualitatively
and quantitatively, Trident outperformed the standard tool-
ing, despite biasing the study strongly in favour of the stan-
dard tooling.

It is possible that participants’ exposure to the Trident
tool shaped their approach in the manual treatment such that
the nature of the refactorings they attempted were not appro-
priate for their context; however, our observations show that
the participants clearly understood what they were trying to
achieve, and the problems they encountered stemmed largely
from the inadequacies inherent in existing tool support.

Our case study demonstrates selection bias in two ways:
first, in the nature of the systems examined, and second in
the skill sets of the participants. The evolution of the log4j
system between versions appears to be, in many respects,
trivial. In most cases, a single class in the old version of the
API needs to be replaced by a functionally equivalent class
in the new version, and all this entails is a type change in the
code: existing method invocations and field access on these
types are syntactically identical across both versions. In fact,
documentation describing how code using version 1.2 of the
log4j library should transition to version 1.3 indicates that:

For 99.99% of users, [this transition] translates to the
following string find-and-replace operations:

1. Replace the string “Category.getInstance” with
the string “Logger.getLogger”.

2. Replace the string “Category.getRoot” with the
string “Logger.getRootLogger”.

3. Replace the string “Category” with the string
“Logger”.

4. Replace the string “Priority” with the string
“Level”.

However, our case study participants demonstrated in
their manual refactorings that this advice is simplistic. The
JaxMe system does not always access static methods through
their associated class, but may instead access them through
an object instantiation of that class, which would not be
caught by such search and replaces. Further, we note that a
string replace on words such as Category and Priority indis-
criminately across a system can also have serious side effects
should those words accidentally be used in source code doc-
umentation, variable, parameter, or method names, or even
in a string literal as Participant 1 discovered. Consequently,
we argue that while the evolution of log4j in this case may

735

http://articles.qos.ch/preparingFor13.html

seem trivial, its usage within the JaxMe system makes mi-
gration between library versions a non trivial matter for de-
velopers to resolve. In larger systems, using more compli-
cated libraries than those simply providing logging function-
ality, we would expect this problem to be even worse, and the
need for effective tool support greater.

We do note that there seemed to be a disparity in how
each participant used the tools available in the Eclipse IDE,
stemming from their differing skill-levels with respect to
regular expressions. Participant 2 benefited the most from
the Trident tool support as opposed to manual approaches in
accomplishing their task. This could suggest that our choice
of participants may unfairly paint Trident in a more flattering
light. However, despite Participant 1’s skill at the manual
treatment, he still ran into a number of serious issues which
required “hacks” to address. Regardless of the skill-level of
a developer, many aspects of refactoring references are not
addressable by current tool support.

In considering how our results generalize, we are care-
ful to note that we have conducted only two case studies
with two participants, and both of these case studies were
undertaken on the same system. The nature of how APIs
evolve may vary wildly, and log4j should not be considered
as being archetypical of such evolution. Similarly, the man-
ner in which JaxMe is affected by changes in one of its li-
braries’ evolution is likely different from many other soft-
ware systems; JaxMe particularly has certain common pat-
terns in how the log4j library was used which made refac-
toring dangling references easier in some cases, and harder
in others, than it might have otherwise been. Many of the
specific observations we made during the case study would
likely change had any of these specifics changed.

However, while the kinds and nature of dangling refer-
ences caused by library evolution may vary dramatically
across specific systems, our case study demonstrates that
they do occur, and that existing tool support does little to
help developers to address the problems inherent in trying
to refactor references. Trident has shown that it can help in
some of these cases, and has the potential to be improved
upon to handle cases that it currently cannot. As we explore
how libraries evolve, and the kinds of tool support needed to
support library migration in these cases, Trident’s potential
usefulness should grow.

6.2 Tool Limitations
API changes may exhibit a 1:1 correspondence between re-
placee and replacer source entities (e.g., A.x() becomes
A.y()) or API changes can be n:1, 1:n (e.g., a facade class
replaces many individual classes or vice versa) or even n:n
correspondence. From the outset we have restricted the de-
velopment of Trident to address just 1:1 API changes. We
limit ourselves to this scenario because Trident is intended
as a prototype tool to investigate the potential of our ap-
proach. Accounting for more complex refactoring scenarios
is an area for future work.

6.3 Usability
Both participants had difficulty at times in selecting an ex-
emplar from the source code that was appropriate for config-
uring Trident. For example, participants would often select
the single word forming an identifier, which suggested to
Trident that the participant was intending to invoke a search
on a simple name, when the participant was in fact interested
in operating on the type associated with that name, but had
not selected enough of the identifier’s context. A straightfor-
ward solution to this usability issue is to prompt participants
when the simple name selected is within a larger context that
might be of greater interest. It should be noted that providing
users with assistance in selecting the right code with which
initiate a refactoring is also an issue within Eclipse [19].

By default Trident scans the entire code base during the
search query sub-stage which introduces a perceptible time
delay in the use of the tool; Trident is not optimized in
the least, at present. Providing developers with the option
of limiting the number of files—by name or by package—
included in the search could help alleviate this problem.
Investigating the usefulness of the approach took priority
over improving its performance.

6.4 Future Work
The second participant made the interesting suggestion that
Trident should be integrated with the Eclipse ‘Quick fix’ fea-
ture: When a method cannot be resolved, Eclipse already
offers an option to create the method and Participant 2 ad-
vocated for a new option such that “if a method was missing
you could repoint it somewhere else”. He noted that inte-
grating Trident with Quick Fix would enhance tool usability
since the developer would be “presented with a solution right
alongside the problem”.

Enlarging our case study to include more class libraries
and more target systems would provide greater support for
the external validity of this work, as would an increase in the
number of participants. As a next step we intend to perform
a formal experiment into the effectiveness of the approach.

7. Related Work
Previous work that aims to address the problems of li-
brary migration can be classified as helping with discovering
refactorings, automatic generation of adaptor code, or assist-
ing with source code transformation.

Discovering Transformations. Some approaches provide
tools to discover what kinds of transformations have been
made in the library between versions, which a developer can
then use to consider how to update their source code [17, 25].
Such approaches have three large drawbacks: (1) they can-
not correctly handle all situations, thus requiring developer
intervention; (2) they do not actually transform the devel-
oper’s source code; and (3) they cannot operate in the ab-
sence of the library versions’ source code.

736

Automatic Generation of Adaptors. Other researchers
have looked into providing backwards compatibility be-
tween successive library versions by generating adaptor lay-
ers to mimic the interface and behaviour of previous ver-
sions [12, 21, 22]. Such tools are aimed at library developers,
who have access to the repositories containing the history of
their library’s changes, but cannot modify clients who rely
on functionality they provide. These techniques are aimed
at legacy systems, however, where adapting the source code
using the library is impractical or undesirable. Furthermore,
(1) some kinds of library changes cannot be hidden behind
an adaptive layer but need to be addressed in the client code;
and (2) the performance overhead from the adaptors is unac-
ceptable in some situations.

Assisting with Source Code Transformation. Source code
transformation techniques can be classified as lexically-
based, syntactically-based, and semantically-based.
Lexically-based approaches consist of standard search-and-
replace features present in IDEs and in traditional search
tools such as the grep family of Unix tools (e.g., [26]). Such
tools can (a) fail to help with the transformation of located
references and/or (b) demand precision from the developer
in specifying minor lexical details, resulting in either false
positives or false negatives. As we have seen in our case
studies, lexical tools fall short of our approach.

Syntactically-based approaches add knowledge of syn-
tactic structures into the mix, thus enabling discrimination
of references from declarations. For example, TXL [7] is a
syntactic transformation language that one could conceiv-
ably use to locate references and refactor them; however, we
have seen in our case studies the utility of also leveraging
semantics to locate only references of certain types.

Traditional approaches to semantically-aware program
transformation (e.g., [13]) demand the presence of formal
specifications of the source code, which tend to be absent
in industrial settings. Semantic grep [5] suffers from being
burdensome on the developer just as with grep.

Chow and Notkin [6] require that a library maintainer an-
notate changed functions with rules used to generate trans-
formation tools. Tip et al. [24], Balaban et al. [2], and Nita
and Notkin [20] require that the developer using the library
write a specification of the transformation to apply in mi-
grating from one library to another. There are 3 problems
with such approaches: (1) they are not extensible to gen-
eral many-to-many transformations, yet are intended to be
automated; (2) they tend to focus on correctness and preci-
sion rather than getting the worst of the job done for the de-
veloper; and (3) writing out transformation specifications is
not how developers think about performing library migra-
tions [4] As Murphy-Hill says [18], “programmers some-
times want to break code [temporarily] ... and ... program-
mers already know how to fix compilation errors, so having
them fix compilation errors should be easier than fixing un-
familiar refactoring tool errors.”

CatchUp! [15] provides a means to record automated
refactorings and replaying these so that library migration be-
comes automatic; this idea has been incorporated as refactor-
ing scripts in industrial IDEs. Unfortunately, it requires that
the library changes be performed with automated refactor-
ings, which is not always possible.

Dig et al. [11] take the CatchUp! notion of recording and
replaying refactorings one step further by first inferring the
refactorings between two library versions, rather than de-
manding that the library developer record them. The key
drawbacks to the technique is that not all transformations
are expressible as combinations of the standard automated
refactorings, and it applies heuristics to estimate refactor-
ings in many cases, which can be incorrect. Thus, developer
intervention is still necessary.

Tansey and Tilevich [23] focus on the more limited prob-
lem of refactoring annotations. Their machine learning tech-
nique requires the provision of examples, which could be a
more costly technique overall than manual intervention, and
it still does not provide complete coverage.

Andersen and Lawall [1] describe an approach that mines
a patch repository for common transformations that respond
to interface changes. Their approach is geared towards op-
erating systems and device drivers; a repository of patches
is unlikely to exist in the case of libraries which are often
simply released as successive versions due to their smaller
size. Also, they give an example in which a function call has
had an argument eliminated, and for which their technique
is incapable of determining a complete transformation from
the original call to the new one. This is exactly the kind of
case where manual intervention is most needed, and which
we aim to address.

Diff-CatchUp [27] and SemDiff [9] both recommend re-
placements for dangling references due to library migration.
Both approaches mine a source code repository (such as
the library’s own implementation) to determine how calls in
other systems have been migrated. Aside from the fact that
these approaches will operate only when a reliable reposi-
tory exists, these approaches only make recommendations,
failing to aid in the actual transformation process itself. In
our case study, the problem was not what the dangling ref-
erences should be replaced with, but how to replace them:
such recommenders are complementary to our work.

8. Conclusion
We have examined the problem of refactoring references,
particularly with respect to the library migration problem,
and demonstrated that it is not well solved with state-of-the
practice approaches. We examined many versions of a few
industrially-relevant software systems and found that API
changes can be frequent, without warning, and severe.

We have created a lightweight approach for exemplar-
based search-and-replace combining lexical, syntactic, and

737

semantic criteria for selection and refactoring as a developer
engaged in a library migration task sees fit.

Our case studies involved two industrial developers who
undertook a restricted library migration task both with and
without our approach, as embodied in the Trident tool. De-
spite significant biases towards the status quo, Trident was
seen as being of significant benefit in terms of time to com-
plete the task and in aiding the developer’s comprehension.

We will continue our work to expand the range of scenar-
ios in which our approach applies, to improve the usability
of our tool support, and to evaluate it with increasing for-
mality. The results presented herein are an indication of the
value of continued investment in this line of research.

Acknowledgments
We wish to thank Rylan Cottrell and the anonymous review-
ers for useful feedback on this manuscript. This work has
been supported by graduate scholarships from the Alberta
Informatics Circle of Research Excellence, and by postgrad-
uate scholarships and a Discovery Grant from the Natural
Sciences and Engineering Research Council of Canada.

References
[1] J. Andersen and J. L. Lawall. Generic patch inference. Au-

tomat. Softw. Eng., 17(2):119–148, 2010.

[2] I. Balaban, F. Tip, and R. Fuhrer. Refactoring support for
class library migration. In Proc. ACM SIGPLAN Conf. Obj.-
Oriented Progr. Syst. Lang. Appl., pages 265–279, 2005.

[3] M. Boshernitsan and S. L. Graham. iXj: Interactive source-
to-source transformations for Java. In Companion ACM SIG-
PLAN Conf. Obj.-Oriented Progr. Syst. Lang. Appl., pages
212–213, 2004.

[4] M. Boshernitsan, S. L. Graham, and M. A. Hearst. Aligning
development tools with the way programmers think about
code changes. In Proc. ACM SIGCHI Conf. Human Factors
Comput. Syst., pages 567–576, 2007.

[5] R. I. Bull, A. Trevors, A. J. Malton, and M. W. Godfrey.
Semantic grep: Regular expressions + relational abstraction.
In Proc. Working Conf. Reverse Eng., pages 267–276, 2002.

[6] K. Chow and D. Notkin. Semi-automatic update of applica-
tions in response to library changes. In Proc. IEEE Int. Conf.
Softw. Maintenance, pages 359–368, 1994.

[7] J. R. Cordy. The TXL source transformation language. Sci-
ence of Computer Programming, 61(3):190–210, 2006.

[8] B. Dagenais and L. Hendren. Enabling static analysis for
partial Java programs. In Proc. ACM SIGPLAN Conf. Obj.-
Oriented Progr. Syst. Lang. Appl., pages 313–328, 2008.

[9] B. Dagenais and M. P. Robillard. Recommending adaptive
changes for framework evolution. In Proc. Int. Conf. Softw.
Eng., pages 481–490, 2008.

[10] D. Dig and R. E. Johnson. How do APIs evolve? A story of
refactoring. J. Softw. Maint. Res. Pract., 18(2):83–107, 2006.

[11] D. Dig, C. Comertoglu, D. Marinov, and R. E. Johnson. Au-
tomated detection of refactorings in evolving components. In
Proc. Europ. Conf. Obj.-Oriented Progr., volume 4067 of Lec-
ture Notes in Computer Science, pages 404–428, 2006.

[12] D. Dig, S. Negara, V. Mohindra, and R. Johnson. ReBA:
Refactoring-aware binary adaptation of evolving libraries. In
Proc. Int. Conf. Softw. Eng., pages 441–450, 2008.

[13] M. S. Feather. Reuse in the context of a transformation-based
methodology. In T. J. Biggerstaff and A. J. Perlis, editors,
Software Reusability, volume 1: Concepts and Models, chap-
ter 14, pages 337–359. Addison-Wesley, 1989.

[14] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java Language
Specification, chapter 13: Binary Compatibility. Addison-
Wesley, 3rd edition, 2005.

[15] J. Henkel and A. Diwan. CatchUp!: Capturing and replaying
refactorings to support API evolution. In Proc. Int. Conf.
Softw. Eng., pages 274–283, 2005.

[16] P. Kapur, B. Cossette, and R. J. Walker. Refactoring ref-
erences for library migration—Appendix. Technical Report
2010-960-09, Department of Computer Science, University of
Calgary, 2010.

[17] M. Kim, D. Notkin, and D. Grossman. Automatic inference
of structural changes for matching across program versions.
In Proc. Int. Conf. Softw. Eng., pages 333–343, 2007.

[18] E. Murphy-Hill. A model of refactoring tool use. In Proc.
Wkshp. Refactoring Tools, 2009.

[19] E. Murphy-Hill and A. P. Black. Breaking the barriers to
successful refactoring: Observations and tools for Extract
Method. In Proc. Int. Conf. Softw. Eng., pages 421–430, 2008.

[20] M. Nita and D. Notkin. Using twinning to adapt programs
to alternative APIs. In Proc. Int. Conf. Softw. Eng., 2010. In
press.

[21] I. Şavga and M. Rudolf. Refactoring-based support for binary
compatibility in evolving frameworks. In Proc. Int. Conf.
Generative Progr. Component Eng., pages 175–184, 2007.

[22] I. Savga, M. Rudolf, S. Goetz, and U. Aßmann. Practical
refactoring-based framework upgrade. In Proc. Int. Conf.
Generative Progr. Component Eng., pages 171–180, 2008.

[23] W. Tansey and E. Tilevich. Annotation refactoring: Inferring
upgrade transformations for legacy applications. In Proc.
ACM SIGPLAN Conf. Obj.-Oriented Progr. Syst. Lang. Appl.,
pages 295–312, 2008.

[24] F. Tip, A. Kiezun, and D. Bäumer. Refactoring for general-
ization using type constraints. In Proc. ACM SIGPLAN Conf.
Obj.-Oriented Progr. Syst. Lang. Appl., pages 13–26, 2003.

[25] P. Weissgerber and S. Diehl. Identifying refactorings from
source-code changes. In Proc. IEEE/ACM Int. Conf. Automat.
Softw. Eng., pages 231–240, 2006.

[26] S. Wu and U. Manber. Agrep—A fast approximate pattern-
matching tool. In Proc. USENIX Winter Technical Conf.,
pages 153–162, 1992.

[27] Z. Xing and E. Stroulia. API-evolution support with Diff-
CatchUp. IEEE Trans. Softw. Eng., 33(12):818–836, 2007.

738

	Introduction
	Motivation
	API Change in the Wild
	Refactoring References: Prototype Tooling
	Goals
	Application and Features

	Case Studies
	Case Study Methodology
	Participants
	Systems
	Task
	Setup

	Observations
	Participant 1
	Participant 2

	Results and Analysis

	Discussion
	Threats to Validity
	Tool Limitations
	Usability
	Future Work

	Related Work
	Conclusion

