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Abstract
This paper presents first steps towards a feature model, which
can be used to compare actor-oriented, agent-oriented, and object-
oriented programming languages. The feature model is derived
from the existing literature on general concepts of programming,
and validated against Erlang, Jason, and Java. The model acts
as a tool to assist practitioners in selecting the most appropriate
programming language for a given task, and is expected to form
the basis of further high-level comparative studies in this area.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]

General Terms Languages

Keywords Actor model, Agent-oriented programming, Object-
oriented programming, Feature modelling

1. Introduction
Programming languages are traditionally viewed as belonging
to particular paradigms, however the notion of a programming
paradigm is imprecise [43, p.xiii]. In particular, with the advent
of multi- and dual-paradigm languages, such as Mozart/Oz1, Ja-
son2, and Scala3, it is clear that many programming paradigms do
not meet the classic definition of a scientific paradigm [26, p.148]:
they are not “incommensurable”. This paper attempts to bridge
the gap between the three mostly-separate bodies of literature, by
focusing on the concepts underlying the actor, agent, and object
programming styles - and their realizations as features in practical
programming languages.

This paper has two central aims. Firstly, by mapping existing
programming languages to a common feature model, it is hoped

1 http://www.mozart-oz.org
2 http://jason.sf.net
3 http://www.scala-lang.org
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that ideas for new language features and new combinations of
features will be generated. Secondly, the resulting feature model
can help software engineers to select the most appropriate language
for a given problem.

With this second aim in mind, the languages in this paper were
selected as popular examples of their respective paradigms. Erlang4

[5] is a functional language with a rich industrial heritage [4],
based on the actor model of concurrency [22, 2]. Jason [7] is
an agent-oriented language [37] which implements and extends
AgentSpeak(L) [34]. Java5 is probably the world’s most popular6

object-oriented programming language.
The remainder of this paper is structured as follows. Section 2

gives an overview of related work in feature modelling and in
programming language concepts. In Section 3, a feature model
of actor-, agent-, and object-oriented programming languages is
developed from the literature and validated against the languages
listed above. A high-level overview of this feature model is shown
in Figure 1. Section 4 concludes, discusses the limitations of the
feature model, and suggests several directions for further work.

2. Related Work
We are not aware of any existing feature models or feature-based
surveys of programming languages. Consequently this section first
discusses the feature modelling technique, and some examples of
its use in related areas. Then a brief overview of the literature on
the underlying concepts of programming languages is presented.

2.1 Feature Modelling
Feature modelling supports the informal comparison of existing
systems, by characterising systems and their features as instances
of domain concepts7 [10, ch.4]. Feature modelling is a creative
activity [10, p.85] which is often also iterative and community-

4 http://www.erlang.org
5 http://www.oracle.com/technetwork/java
6 Programming language popularity is hard to measure, however as of
August 2011, Java was the top object oriented programming language
listed at http://langpop.com and http://www.tiobe.com/index.
php/content/paperinfo/tpci.
7 The terms ‘concept’, ‘characteristic’, and ‘feature’ appear frequently in
this paper; we use them as follows. A concept is loosely defined as any
idea or principle, often (but not necessarily) based on theory. A feature is a
realization of a concept within the context of a family of related systems (in
this case, programming languages), and a feature instance is a realization
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Figure 1: Overview of a feature model of actor, agent, and object programming languages.

driven. For example, Czarnecki and Helsen [12] provide a survey
of model transformation languages, which extends and improves a
feature model proposed in an earlier paper [11].

Feature modelling incorporates many ideas from earlier classifi-
cations and taxonomies, with an added emphasis on optimising the
model so as to maximize composability, reducing dependencies be-
tween features and thus minimizing feature interactions [25]. Mar-
tin et al. [28] survey distributed computing systems using a taxo-
nomic approach that is very similar to feature modelling. The em-
phasis of their survey is “breadth rather than depth”, and the focus
is on fundamental system features and their possible combinations.
A taxonomic approach is also employed by Meier and Cahill [29]
to survey the features of distributed event systems.

A feature model shares many of the key characteristics of a
framework article. The central objective of a framework study is to
integrate selected work within a pre-defined boundary, to produce
a single cohesive model [35]. Unlike a review, which aims to be
comprehensive, the focus of a framework is typically on higher-
level concepts and the relationships between them.

2.2 Programming Language Concepts
Detailed discussions of the general concepts of programming lan-
guages are found in several well-known texts [1, 17, 43, 36, 41].
A classic overview of some fundamentals is provided by Strachey
[38], while a more recent perspective may be found in Van Roy
[42]. In specific subject areas, Tratt [40] surveys type system con-
cepts, and Gabbay et al. [20] present the theoretical foundations of
logic programming.

Dennis et al. [14, 15] adopt a theoretical approach to analyse
the concepts underlying agent-oriented programming. Their frame-
work, based on operational semantics, successfully models the core
functionality of the well-known 3APL [13], AgentSpeak [34], and
MetateM [18] languages, and leads to the identification and abstract
specification of some ‘missing’ modularity features.

Hudak [23] introduces the key features of functional program-
ming languages, and the lambda calculus. While Erlang is not a
purely functional language, it implements several of these concepts.
A more general theoretical treatment of declarative languages by
Hanus [21] describes attempts to unify functional programming
with logic languages (which share some important similarities with
Jason) and the constraint programming paradigm. Armstrong [3]
employs an empirical method to discover the fundamental concepts
(called ‘quarks’) of object-oriented programming, which are then
surveyed.

3. Feature Model
Due to the different terminology used in the actor, agent, and
object literature, the domain concepts on which this feature model
is based are drawn where possible from the wider literature on

of a feature in a specific system (in this case, a particular language). A
characteristic is an observable property of a system or feature instance.

computer programming. It must be emphasised that the feature
model presented here is neither final nor definitive; it can and
should be modified and extended to accommodate new languages
and developments.

A programming language may be modelled as one or more fea-
ture sets Si, where Si consists of feature instances I0 . . . In. Each
feature instance Ii realizes, with a concrete syntax and semantics,
one of the abstract features described in this section.8 A complex
programming language which consists of several interrelated sub-
languages, may be better modelled as a set of feature sets S0 . . . Sn.

The feature model takes the form of a tree, with nine first-
level nodes which are presented here as separate sub-trees. Fea-
tures and feature categories are either mandatory (denoted by
solid bubbles) or optional (denoted by hollow bubbles). The
colours used in the feature diagrams that follow carry no se-
mantics; their only purpose is to improve readability. Mappings
from the three selected languages to the feature model are de-
scribed in the accompanying tables.9 A monospace font is used
to provide examples of feature instances where space allows;
the examples were tested against Erlang R13B03, Jason 1.3.4,
and Java 1.6.0.26. Italics indicate language-specific terminology
used in http://www.erlang.org/doc, Bordini et al. [7], and
http://download.oracle.com/javase/tutorial.

3.1 Type System
Type systems serve two related purposes in programming lan-
guages: to classify values, and to determine their applicable op-
erations. In the first view, a type is “a constraint which defines the
set of valid values which conform to it” [40]. In the second, types
are abstract “specifications of functionality” [41, p.723], which de-
fine “legal usage contexts for the values they describe” [41, p.620].
An attempt to perform an illegal operation on a value is known as
a type error, which may be detected either at compile time or run-
time. In a typeless language, “it must be the case that every value
can be used in every context” [41, p.622].

Checking Type information may be checked for errors at compile
time (‘static’ typing), at runtime (‘dynamic’ typing), or both
[41, p.623].

Inference The information required for compile-time type checks
can either be supplied explicitly by the programmer, or inferred
by the compiler or interpreter using type reconstruction tech-
niques [41, ch.13].

8 A single language may offer multiple realizations of the same abstract
feature, usually for reasons outside the scope of this paper - for example
to support backwards compatibility or to provide different performance
characteristics.
9 Where a language offers multiple instances of the same high-level abstract
feature, and these instances exhibit significant feature differences at a lower
level, these alternatives are presented using additional columns.
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Figure 3.1: Type system features.

Erlang Jason Java

Checking Runtime a Runtime Compile time b

Inference N/A N/A 7
Subtyping

7 7
class A extends B {}

Safety Casting with runtime checks
Base Types

Booleans 7 7 boolean

Numbers Integer, float number byte, short, int, long, float, double
Characters ASCII code integer Single-character string "s" char

Enumerations 7 7 enum Compass {N,S,E,W}
Subranges 7 7 7

Higher-order Types Anonymous function: F=fun()-> Plans are strings: P="+b <- 7 c

Collections
Tuples T={a,b} 7 7

Records -record(r,a,b)
d 7 class R{final int a,b;}

Arrays 7 7 int[] a={4,2} also List classes
Dictionaries See Table 3.3 e See Table 3.3 f

class D{int a,b;} also Map classes
Lists L=[a,b] L=[a,b] 7 but defined in Collection interface
Streams Ports for external I/O only 7 InputStream, OutputStream

Table 3.1: Type systems in Erlang, Jason, and Java.

a Erlang code may also be checked at compile time for type errors using Dialyzer (see http://www.erlang.org/doc/man/dialyzer.html), a tool based
on type inference techniques.
b Some features of Java, such as reflection, require type checks to be delayed until runtime [41, p.624].
c The Java reflection API provides a Method type for handling subroutines, however its use has many disadvantages and is officially discouraged.
d Erlang records are compiled as tuples; consequently, field names are replaced by integer indices at runtime.
e Only a single dictionary is available to each Erlang process.
f Dictionaries can be built using structures in Jason, albeit with little support from the type system.

Subtyping Subtyping allows two types to be compatible, without
being the same [41, ch.12].

Safety Under an unsafe type system, the programmer may
force (or ‘cast’) values of one type to be considered as con-
formant with an incompatible type. Type-safe languages
either disallow casting, or perform runtime checks to ensure
that any casts do not subvert the type system [40].

Base Types Base types represent atomic (indivisible) values, and
serve as collection members.

Booleans represent true or false.

Numbers of specified precision, signed and unsigned [36,
p.294].

Characters can be encoded in ASCII, multilingual Unicode,
or another encoding [36, p.295].

Enumerations are ordered sets of named elements [36, p.297].

Subranges “compose a contiguous subset of the values of
some discrete base type” [36, p.298]. The compiler may
generate code to dynamically check that subrange values
lie within their specified ranges; alternatively, this checking
may be performed by the interpreter.

Higher-order Types A language may define higher-order types to
represent functions or subroutines, allowing them to be “passed
as parameters, returned by functions, or stored in variables”
[36, p.290]. If higher-order types are true first-class language
constructs, new values for those types can be computed at
runtime [36, p.508] (see Section 3.8).

Collections Collections are composites formed from one or more
base types. In keeping with the above definition of type as us-
age context, they can be divided according to how individual
elements are accessed, and whether in-place modification of el-
ements is permitted [43, p.438]. The mutable array and dictio-
nary collection types are only applicable to languages with mu-
table state (see Section 3.3).

149

http://www.erlang.org/doc/man/dialyzer.html


Tuples are immutable, indexed by integers.

Records are also immutable, indexed by any literal.

Arrays are mutable, and integer-indexed.

Dictionaries are also mutable, indexed by any literal.

Lists are unindexed, of finite length.

Streams are unindexed and unbounded; commonly used for
input/output (see Section 3.9) and concurrency (see Sec-
tion 3.6.

Table 3.1 gives an overview of type system features in the selected
languages.

3.2 Immutable State
A crucial feature of many programming languages is “the possibil-
ity of associating values with symbols and later retrieving them”
[1, p.8]. This feature category is concerned with symbol-value as-
sociations which, once made, cannot be changed.

Constants A constant is defined here as a binding, between a
symbol or name and a value, which lasts for the lifetime of the
enclosing element.

Single Assignment A single assignment variable - sometimes
known as a ‘declarative variable’ - is initially an unassigned
symbol, but once bound “stays bound throughout the computa-
tion and is indistinguishable from its value” [43, p.42].

Table 3.2 outlines the immutable state features of Erlang, Jason,
and Java.

3.3 Mutable State
Van Roy and Haridi [43, p.408] define the named state of a com-
putational entity as “a sequence of values in time that contains the
intermediate results of a desired computation”. While not all pro-
gramming languages provide explicit state representation, any en-
tity that is aware of its past must store that knowledge either inter-
nally, or externally in the environment [43, p.410].

Declaration A declaration introduces a name and indicates its
scope [36, ch.3]. The declaration may also include type infor-
mation (see Section 3.1).

Assignment Assignment associates a state cell with a value. Some
languages allow assignment between two state cells, in which
case assignment may be either by value (the value of the second
state cell is copied to the first) or by reference (the first cell is
modified to refer to the second) [36, p.225].

Valuedness A state cell is multivalued if more than one value may
be associated with a single name and index. Otherwise it is
single valued.

Retrieval The mechanism by which the value of a state cell is
retrieved, given a name.

Modification A language may provide special constructs to reas-
sign the value of a state cell.

Deletion The mechanism by which a state cell, and its contents,
are erased.10

Table 3.3 describes the mutable state features of the selected lan-
guages.

10 Recovery of the resources underlying the deleted state cell, for example
by garbage collection, is considered an operating system issue and therefore
out of scope for this paper.

3.4 Declarative Expressions
Finkel and Kamin [17] define declarative programming as a separa-
tion of logic and control. The programmer creates the logic compo-
nent, consisting of declarative expressions, which “specifies what
the result of the algorithm is to be” [17, p.238]. The control com-
ponent is partly or wholly provided by the compiler or interpreter.

Functions A function is a procedure which computes a mathemat-
ical function: two evaluations with the same arguments will al-
ways produce the same result [1, p.230]. This property is known
as ‘referential transparency’ [23, p.362]. A function is distinct
from a subroutine (see Section 3.5), in that side-effects are not
permitted.

Evaluation The result of a function can sometimes depend on
how its arguments are evaluated. A function may be evalu-
ated in applicative order (evaluate the arguments, then ap-
ply the function) or normal order (fully expand the func-
tion until only primitive operators remain, then reduce) [1,
p.16].11 Under normal order evaluation, a function may re-
turn a value even if evaluation of some of its arguments
would produce errors or not terminate [1, p.400]. However,
implemented naively, normal order evaluation is inefficient
and causes unnecessary repeated computations. A third op-
tion, lazy evaluation, avoids these recomputations by ensur-
ing that all arguments are evaluated no more than once [23,
p.383]. The result of a computation under normal order or
lazy evaluation may also depend on the order of function
arguments [23, p.390].

Conditionals Conditional expressions allow discontinuous
functions to be defined, and are central to an ‘equational
reasoning’ programming style [23, p.388]. The predicate-
consequent pairs of a conditional may be evaluated in a
given order, or the language may insist that the predicates
in a conditional are disjoint.

Tail Recursion An expression is known as a ‘tail call’ if no
computational work is done between the termination of the
expression and the termination of its enclosing function [41,
p.1044]. A tail recursive language guarantees that recursive
tail calls will consume no additional memory resources, thus
allowing iteration to be efficiently expressed. Tail recursion
is supported in some languages with additional syntactic
sugar [1, p.35].

Inference Rules Inference rules allow new knowledge to be de-
rived from existing facts12. Inference rules are typically (though
not necessarily) expressed as Horn clauses, consisting of an an-
tecedent (potentially containing many terms) and a single-term
consequent. Both antecedent and consequent terms may contain
variables, thus allowing general relations to be expressed.

Resolution Resolution is the runtime process by which new
knowledge is derived from inference rules: antecedent terms
are matched (‘unified’) with facts and the consequents of

11 Analogously, a function or individual argument may be described as strict
or nonstrict. The value of a strict function is only defined if the values of all
its arguments are defined [36, p.523]; if a particular argument is evaluated
before the function body is entered, the function is strict in that argument [1,
p.400]. While evaluation order is a property of the programming language,
some languages place strictness under the programmer’s control, so the
former terminology is preferred here.
12 A ‘fact’ (in Prolog terminology) is a Horn clause with no antecedent
terms and no unbound variables. However, in many newer languages, facts
are instances of mutable state (see Section 3.3). Efficient resolution in
the presence of mutable state requires ‘truth maintenance’ mechanisms to
ensure that previously-derived knowledge is only updated when necessary.
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Erlang Jason Java
Constants -define(C,2) Only in plans. C=2 final int c=2

a

Single Assignment Only in functions. A=2 Only in plans. A=2 Only in constructors. final int a; a=2

Table 3.2: Immutable state in Erlang, Jason, and Java.

a The Java final keyword does not protect members of collections and mutable compound types from modification.

Erlang Jason Java Java Map Library Classes
Declaration 7 7 int a 7 a

Assignment By value. put(a,2) By value. +a(2) By reference or value.b a=2 By reference or value. m.put("a",2)
Valuedness Single Multi. +a(2); +a(3) Single Single
Retrieval get(a) ?a(X)

c
x=a x=m.get("a")

Modification put(a,3) -a(2); +a(3) or -+a(3) d
a=3 m.put("a",3)

Deletion erase(a) -a(3) or -a( ) 7 m.remove("a")

Table 3.3: Mutable state in Erlang, Jason, and Java.

a State cells within a Java Map are not declared individually, however the map itself must first be initialised: Map<String,Integer> m = new
HashMap<String,Integer>().
b Java assignment is by value for primitive types (int, double, etc.) and by reference for instances of Object.
c The Jason interpreter attempts to match test goals against the agent’s beliefs in reverse chronological order. The include preprocessor directive (see Sec-
tion 3.7) unfortunately interacts with this feature [27]. If no match is found, a test goal addition event is generated (see Section 3.5).
d The Jason -+ operator first removes all beliefs that match the given functor, then the new belief is added.

Declarative
Expressions

Functions
Inference

Rules
Constraints

Evaluation Conditionals Tail Recursion Resolution

Figure 3.4: Declarative expression features.

Imperative
Control

IterationSelectionSubroutines

Invocation Parameters Return

Figure 3.5: Imperative control features.

other inference rules, backtracking on failure, until no un-
matched antecedent terms and unbound variables remain.
Since multiple solutions may exist to any given knowledge
base query, the order in which candidate facts and infer-
ence rules are selected determines the order in which so-
lutions are found [17, p.235]. The resolution process is po-
tentially recursive, and therefore must be executed in a de-
fined order over antecedent terms, to prevent accidental non-
terminating queries [36, p.554]. Resolution is usually car-
ried out left to right, and either depth first or breadth first.

Constraints A constraint is a mathematical or logical relation be-
tween two or more variables, or a restriction on the domain of a
variable, that must be satisfied.

3.5 Imperative Control
Imperative control allows the programmer to explicitly specify the
execution or evaluation order of statements or expressions in time.
Programmer-specified statement sequences are central to impera-
tive languages [36, p.220], and are also required to support struc-
tured input/output (see Section 3.9) in declarative languages [33].
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Erlang Jason Java
Functions add(A,B) -> A+B.

7

7

Evaluation Applicative order
Conditionals max(A,B) when A>B -> A; max(A,B) -> B.

a

Tail Recursion Automatic when last expression is a function
Inference Rules

7
Horn clause rules. positive(X) :- .number(X) & X>0.

Resolution Top-down, left to right, depth first b

Constraints 7 7

Table 3.4: Declarative expressions in Erlang, Jason, and Java.

a In addition to the guard sequences illustrated here, Erlang also provides familiar if and case expressions.
b Jason rules are resolved with the agent’s beliefs in reverse chronological order (see Section 3.3).

Erlang Jason Java
Subroutines

7

Plan Method
Invocation By triggering event and context. +!te : ?c <- By name and matching parameter types
Parameters Positional, by value. +!b(A,B) Positional, by reference or value.a void s(int a,int b)

Return 7 Explicit, with termination. return 2

Selection if(X>Y) {+max(X)} else {+max(Y)} if(x>y) {max=x;} else {max=y;} b

Iteration while, for while, do while, for

Table 3.5: Imperative control in Erlang, Jason, and Java.

a Java method parameters are passed by value for primitive types (int, double, etc.) and by reference for instances of Object.
b Java also offers a switch statement, which selects between code fragments based on the value of a single variable, and supports fall through.

Subroutines A subroutine encapsulates a sequence of imperative
control constructs, so they may be treated as a single unit
[36, p.219]. A subroutine is distinct from a function (see Sec-
tion 3.4): a subroutine may change the state of the program
(see Section 3.3) or its environment (see Section 3.9) via side-
effects.

Invocation The mechanism by which a subroutine is selected
for invocation.

Parameters A subroutine may accept input data by declaring
formal parameters, which are associated with arguments
during invocation. Formal parameters and arguments may
be associated by name, or by position [36, p.405]. Param-
eters may be passed by value (the argument is copied to
the corresponding formal parameter) or by reference (the
formal parameter is a new name for the corresponding ar-
gument) [36, p.395]; reference parameters may be used for
output if the argument is mutable.

Return Return values allow a subroutine to send a result to its
invocation context. The return mechanism may be implicit
(the subroutine result is simply the value of its body), or the
language may offer a formal ‘result’ parameter or an explicit
return statement. Use of the return statement, or assignment
of the result parameter, may also immediately terminate the
subroutine [36, p.408].

Selection Allow choices between two or more code fragments,
depending on runtime conditions [36, p.219].

Iteration Allow a code fragment to be executed either a certain
number of times, or until a given runtime condition changes
[36, p.219].

3.6 Explicit Concurrency
Two activities are concurrent if they are independent and can thus
be interleaved in any order, or executed in parallel [36, p.219].13

While declarative language constructs (see Section 3.4) and im-
mutable state (see Section 3.2) can often be safely shared among
concurrent activities, many languages also define explicit concur-
rency features. Interaction between concurrent activities can be
supported in several different communication styles [42].

Unit A concurrency unit encapsulates a single explicitly-concurrent
activity, programmed in either a declarative or imperative style,
together with any necessary mutable state (see Section 3.3).

Message Passing In this communication style, concurrent ac-
tivities communicate by exchanging messages, either syn-
chronously (the activity waits until the message is received),
asynchronously (the activity does not wait), or using a com-
bination of modes [42]. A message can be defined as a data
transfer, or as a request for some action to be carried out by the
receiving activity [3].

Addressing A message may be addressed directly to a receiv-
ing activity; to a specific port on the receiving activity; or to
an independent channel, which may have multiple receiving
activities [36, CD p.263].

Sending A message-passing programming language can sup-
port any of three main message sending styles:

Asynchronous The sender waits only until the outgoing
message has been copied to a safe location [36, CD
p.268].

13 The neutral term ‘activity’ is used here to mean any executable program
fragment. The more usual terms ‘process’ and ‘thread’ are typically defined
in terms of operating system concepts, such as memory management and
scheduling, which are outside the scope of this paper.
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Figure 3.6: Explicit concurrency features.

Erlang Jason Java
Unit Process Agent Thread
Message Passing

7 a

Addressing Direct, by pid or registered name Direct: .send or channel: .broadcast
Sending

Asynchronous Pid ! {c,2} .send(Agents,Performative,c(2))
b

Synchronous 7 7
Remote Invocation 7 .send(Agents,askOne,c(X),Reply)

c

Receiving
Asynchronous 7 ?c(X)[source(s)]

d

Synchronous receive {c,X} -> do(X) end .wait("+c(X)[source(s)]"); !do(X)

Implicit Receive 7 Subject to social acceptance [7, p.71]
Shared Memory

Locks

7 7

Synchronized blocks
Serialization Synchronized methods
Transactions 7 e

Declarative Concurrency PipedInputStream

Distribution Named nodes SACI or JADE [16] RMI f

Table 3.6: Explicit concurrency in Erlang, Jason, and Java.

a In the object-oriented programming literature, some authors equate method invocation with message passing. We argue that Java method invocation
(see Section 3.5) does not constitute a request for action (the receiving object cannot refuse) and in many cases does not involve a transfer of data (objects are
passed by reference). Karmani et al. [24] list several third-party libraries which add some message-passing facilities to the Java language.
b Every Jason message must include a performative, which describes how the message content is to be interpreted. The available performatives are listed in
Bordini et al. [7, p.118].
c The Jason .send and .broadcast internal actions, when used with the askOne, askAll, and askHow performatives, accept a variable parameter which is
unified with the (first) message received in reply.
d Explicit message receipt in Jason is only possible with certain performatives, and relies on the annotations feature, which allows the agent to determine the
source (self, percept, or another agent) of each of its beliefs.
e While Java has no general transactional programming features, the atomic variable classes provide some common operations (such as integer addition) with
transactional characteristics.
f Java Remote Method Invocation (RMI) allows separate virtual machine instances to communicate by message passing with remote invocation. The high
performance cost of virtual machine instances means RMI is not recommended for local concurrent activities.

Synchronous The sender waits until its message has been
received [36, CD p.268].

Remote Invocation The sender waits until it has received a
reply [36, CD p.268].14

14 Though all three modes of message sending can be implemented in terms
of the others, as distinct language features their syntax and performance
characteristics can be separately optimised [36, CD p.271].

Receiving A message-passing activity can receive a message
in any of three principal ways:

Asynchronous Also known as ‘polling’, asynchronous re-
ceive allows an activity to test if a message (possibly of
a particular type) is available [36, CD p.272].

Synchronous The receiver waits until a message (possibly
of a particular type) is received.
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Implicit Subject to resource limitations, each received mes-
sage implicitly triggers the creation of a new activity
[36, CD p.272], which may parse the message param-
eters and carry out the requested actions.

Shared Memory In this communication style, concurrent activi-
ties communicate by operating on shared data structures.

Locks A lock or mutex is a low-level synchronization primitive
that, once acquired by an activity, admits no further opera-
tions until it is released by the same activity [1, p.311].

Serialization Serialization allows a programmer to define “dis-
tinguished sets of procedures such that only one execution
of a procedure in each serialized set is permitted to happen
at a time” [1, p.304].

Transactions A transactional language offers computations
with guaranteed atomicity (the intermediate steps are never
visible to other activities) and isolation (once initiated, the
result of the computation is unaffected by other activities)
[32].

Declarative Concurrency Two concurrent activities may use
streams [1, ch.3.5] (see Section 3.1), or shared single-
assignment ‘dataflow’ variables (see Section 3.2), to com-
municate in a producer-consumer style [43, ch.4].

Distribution This feature allows concurrent activities to be dis-
tributed over two or more physically separate nodes.

3.7 Modularity
Modularity features allow a system to be divided into “coherent
parts that can be separately developed and maintained” [1, p.217],
and then optionally reused, both internally and externally, for eco-
nomic gain [19]. Baldwin and Clark [6] propose a general theory
of modularity, based on six operators which concisely describe the
possible evolutionary paths for a modular structure.15 For software
systems, two of these - splitting and substitution - appear to require
explicit support at the programming language level.16

Unit A module is a unit to which a responsibility is assigned; it
consists of both data structures and the procedures which access
and modify them [31].

Description Separating module descriptions from their implemen-
tations allows modules to specify the services they require,
without explicitly naming the modules that provide those ser-
vices.

Encapsulation The general purpose of a module is to “hide some
design decision from the rest of the system” [31]. Some lan-
guages provide encapsulation features to enforce this hiding of
information.

15 An alternative theoretical treatment of modularity is given by Bracha and
Lindstrom [8]. In this approach, the modularity features of real program-
ming languages can be formally described as combinations of six low-level
module manipulation operators: merge, restrict, project, select, override,
and rename. A comparison of the modularity features of Erlang, Jason, and
Java in terms of these operators is left for future work.
16 The other four modular operators are augmenting (adding a new module
to an existing system), excluding (removing a module from an existing sys-
tem), inversion (making hidden functionality explicitly available as a mod-
ule), and porting (moving a module to another system) [6, ch.5]. In practi-
cal software development, augmenting and excluding are easily supported
either by simple condition flags, or by substituting null implementations
[39, p.734]. Inversion can usually be implemented by splitting; and though
porting has historically been important in language design, it is typically
handled in modern languages at the virtual machine level.

Splitting Features in this category support the splitting of a mono-
lithic software design, or an existing software module, into sep-
arate modules.

Extension Extension features allow a programmer to create a
new module by adding functionality to an existing module
[36, p.468]. The namespaces of both modules are combined
in the new module; a language offering this feature must
define rules to resolve any name collisions.

Composition Composition allows a programmer to encapsu-
late one or more existing modules within a new module [43,
p.411]. Each module retains a separate namespace; the new
module mediates access to and between the modules it en-
closes.

Substitution Re-implementing a module is a common activity in
software engineering. The alternative module may add func-
tionality, remove existing functionality, repair errors, or imple-
ment the same functionality with different non-functional char-
acteristics. Module substitution is a crucial step in the evolution
of complex products [6, ch.5] and the development of software
product families [39, p.736]. Compile-time substitution can be
achieved using techniques which do not require language sup-
port, such as binary replacement [39, p.727]; this feature cate-
gory therefore focuses on runtime module substitution features.

Replacement Runtime replacement consists of loading a new
substitute module into a running system, and removing the
replaced module, without restarting.

Selection Runtime module selection allows a program to
choose between co-existing implementations of a module,
depending on runtime conditions.

3.8 Metaprogramming
Metaprograms analyse, modify, and generate programs [44]. Since
compiler construction and static analysis are outside the scope of
this paper, this feature category is concerned specifically with re-
flective metaprogramming at runtime: programs that analyse, mod-
ify, and extend themselves. Metaprogramming features are cate-
gorised here according to the kinds of program artifact on which
they operate.

Source Metaprograms manipulate plain text representations of
their own source code.

Abstract Syntax Metaprograms read and modify their own partially-
compiled source code, which is represented using the data
structuring facilities of the programming language.

Binary Metaprograms operate on their own compiled binaries.

3.9 Input/Output
This feature category is concerned with input from, and output to,
human users and ‘environments’.17 An environment mediates ac-
cess to resources [45] (both hardware and software) and provides
the “conditions” under which actors, agents, or objects exist [30].18

17 With the exception of the agent programming community, the subject of
input/output receives relatively little attention in the programming language
concepts literature. Considering the practical need for modern languages to
integrate smoothly with large databases, Internet services, and a wide range
of peripheral devices, we find this surprising. Consequently, input/output is
included here as a fully-fledged feature category.
18 Many agent programming researchers would define an environment more
strongly, to include the requirement that the environment should mediate
“interaction among agents” [45]. However, this definition does not gener-
alise easily to other programming paradigms, as it seems to preclude direct
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Erlang Jason Java
Unit Module Agent Class, package
Description Custom behaviours 7 Interfaces
Encapsulation Private unless exported 7 a Access modifiers: public, private
Splitting

Extension -include("other.hrl") {include("other.asl")} Single inheritance
Composition 7 7 Classes only, using private fields

Substitution
Replacement On fully qualified function call b

.kill agent and .create agent With custom ClassLoader
c

Selection Modules are first-class constructs With SACI or JADE directories d By polymorphism

Table 3.7: Modularity in Erlang, Jason, and Java.

a By default, the implicit receive feature (see Section 3.6) of the Jason interpreter allows an agent to read and modify the belief, goal, and plan base of any
other. This behaviour can be changed by customising the interpreter’s socAcc method [7, p.146].
b An Erlang function call of the form module:function() causes module to be replaced. Current and old versions of a module can be active simultaneously;
an attempt to load a third version causes the old code to be purged, and any processes still running it to be terminated.
c Java custom class loaders allow classes, but not objects, to be directly replaced at runtime. To achieve runtime replacement of an object, the application must
explicitly re-instantiate that object and discard the old instance for garbage collection.
d The SACI and JADE platforms provide yellow pages directories, in the form of directory facilitator agents, which can be used to select at runtime between
multiple application agents offering the same services. However the Jason language itself offers no direct support for service description.

Erlang Jason Java
Source Write-only erl scan, erl parse modules Plan library manipulation: .add plan(P) 7 a

Abstract Syntax Write-only compile module 7 Read-only reflection API
Binary 7 7 7 b

Table 3.8: Metaprogramming in Erlang, Jason, and Java.

a Java source code can be compiled at runtime with the javax.tools.JavaCompiler library, however inspection and modification of currently-executing
source code is not explicitly supported.
b Java class files (but not objects) can be read and modified at runtime using external libraries such as ASM or the Apache Byte Code Engineering Library.
Limited runtime modification of classes and objects is also provided by the instrumentation API.

Erlang Jason Java
Interactive Shell read-eval-print loop 7 Swing GUI library a

Message Passing
Commands In C and C++; port drivers b Java environment actions In C, C++, and Assembly; JNI c

Asynchronous With driver async C function 7 7

Synchronous Using port command go(left) go("left")
d

Active Sensing With driver output C function 7 e
String msg = prompt("?")

Events As messages to the port owner Individualised percepts JNI callbacks to Java
Asynchronous 7 ?at(X,Y)[source(percept)] With JNI field access
Synchronous Using receive .wait("+at(X,Y)[source(percept)]") 7
Handlers 7 +at(X,Y)[source(percept)] <- do(X) With JNI method calling

Shared Data
Streams file and io modules 7 FileInputStream, FileReader
Databases odbc module 7 JDBC

Table 3.9: Input/output in Erlang, Jason, and Java.

a Many additional interaction features for Java, such as the SWT graphical user interface (GUI) library, are provided by third-parties.
b Erlang also provides several other message passing input/output mechanisms, including C nodes, a Java nodes library called jinterface, TCP/IP and UDP
sockets, and the newly-developed Natively Implemented Functions (NIFs).
c JNI is the Java Native Interface.
d Before use, a Java native method must be explicitly loaded with System.loadLibrary and declared using the native keyword.
e While a Jason environment action cannot return a data item to its caller, it may directly change the percepts of any agent [7, p.106].
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The environment may consist of many concurrent activities, but un-
like the concurrent activities discussed in Section 3.6, the environ-
ment is often defined in a different (usually lower-level) program-
ming language.

Interactive A language may offer dedicated facilities for interac-
tion with human users, in addition to those provided by the en-
vironment.

Message Passing In this mode of input/output, an activity com-
municates with its environment by sending commands and re-
sponding to events. As in Section 3.6, a message can be de-
fined as a data transfer, or as a request for some action to be
carried out [3]. In practice, message passing mechanisms for
input/output are often different from those used in peer com-
munication, because the environment is potentially unbounded
and its structure may be unknown.

Commands Commands allow the programmer to request the
environment to perform an action, which may either be
predefined or specified in an intermediate command (or
‘shell’) language.

Asynchronous The command and its parameters (if any)
are copied to a buffer, and the invoking activity resumes
immediately.

Synchronous The invoking activity is suspended until the
action begins.

communication by shared memory between objects. We argue that this in-
teraction mediation should be considered an optional property.

Active Sensing The invoking activity is suspended until the
action is complete. In this mode, the action may re-
turn a data item describing the result, or a simple suc-
cess/failure indicator.

Events The environment may notify the activity of changes
using events. The programmer may be required to explicitly
subscribe to events of interest; alternatively, all environment
events are made available to every activity. Events may be
cached by the environment and retrieved individually by
the activity, or matched against a list of event handlers and
discarded. An activity can respond to an environment event
in one of three ways:

Asynchronous The activity tests to see if a specific envi-
ronment event is available.

Synchronous The activity waits until a specific environ-
ment event occurs.

Handlers The event implicitly triggers the execution of an
event handling procedure, which may depend on the
event type and content. The event handler may execute
as an independent activity.

Shared Data In analogy with communication between concurrent
activities by shared memory, communication with the environ-
ment may be achieved by the access and modification of shared
data structures.

Streams Streams (see Section 3.1) can be used for input from,
and output to, potentially unbounded data sources and sinks,
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such as files, network connections, and character terminals.
In this input/output mode, only one ‘end’ of the stream is
visible to the application programmer, for either input or
output. A language may define stream types for binary data,
text, or structured records.

Databases A database is a shared collection of logically related
data, with a self-describing structure. Access to a database is
usually controlled by a database management system, which
ensures the security and integrity of the data in the presence
of concurrent access [9].

4. Conclusions
This paper proposes and validates a feature model of actor, agent,
and object programming languages. The feature model allows com-
parison across a wide range of previously disparate programming
language styles, and is designed to be extensible. The three lan-
guage mappings used to validate the model should also be helpful
to practitioners in deciding whether to use Erlang, Jason, or Java
for a particular development project.

4.1 Limitations of the Feature Model
Some important programming language concepts were not explic-
itly included in the current feature model. These concepts, which
are not easily represented as atomic features, were excluded in or-
der to maximize composability, as noted in Section 2.

Scope Van Roy and Haridi [43, p.507] define scope as the “part
of the program text in which [a] member is visible”. Scope
is usually expressed in terms of specific language constructs,
which makes comparison of scope rules between languages
difficult.

Exceptions A runtime failure or exception is defined as an unex-
pected condition that cannot be handled locally [36, p.418]. The
rules for exception definition, propagation, and recovery are
necessarily dependent on the current context; like scope, failure
is a cross-cutting concern that does not easily fit to a feature-
based model.

Security Defined as “protection from both malicious computations
and innocent (but buggy) computations”, security is a global
system property [43, p.208]. While certain languages have well-
known security flaws (see, for example, Scott [36, p.353]),
modern security mechanisms are typically implemented by the
compiler, interpreter, virtual machine, or operating system.

Finally, the feature model does not include any value judgements
on the presence or absence of language features. We argue that
the value of a given feature is inherently application-dependent.
A full-featured language will allow a wider range of programs
to be concisely expressed, but at the cost of a more expensive
implementation and a more challenging learning curve.

4.2 Future Work
The main research value of the presented feature model lies in the
future work which it enables. Some of this work is outlined as
follows.

• Mapping other actor, agent, and object programming languages
to the feature model would allow it to be refined and validated
further.
• The model could be extended to accommodate other language

styles, such as procedural or pure-functional, and validated
against example languages, such as C or Haskell.
• Analytical work is needed to explore the dependencies be-

tween features, and thus arrive at a more complete understand-

ing of the actor, agent, and object programming languages de-
sign space. If two features F1 and F2 are truly independent
(and therefore composable), it must be feasible to construct lan-
guages which have both F1 and F2, F1 only, F2 only, and nei-
ther F1 nor F2. Unidirectional and bidirectional dependencies
between features are also possible.
• The model could be used as a basis for structured comparisons,

including empirical comparisons, between programming lan-
guages in any of the actor, agent, and object styles. This work
would require the development of objective criteria, to deter-
mine whether each feature is present or absent.

In the longer term, given a sufficient understanding of the applica-
tion domains in which actor, agent, and object programming lan-
guages are commonly used, the values of the features in the model
could be determined as functions of the domain characteristics.
Approximations of these functions could perhaps be obtained by
analysing feature usage in existing applications, by experimenting
with toy problems, or by analysis. This knowledge of which fea-
tures are desirable would then help a designer or practitioner to
create or select a programming language which is appropriate to a
particular application domain.
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