
Alternate Annotation Checkers Using Fractional Permissions

Chao Sun
University of Wisconsin Milwaukee

csun@uwm.edu

Abstract
Although existing annotation checker based on fractional permis-
sions is powerful, it causes great space and runtime overhead. To
address this issue, we propose to use a multi-layered approach for
checking annotations. In addition to the heavyweight permission
checker, we use two lightweight checkers: a conservative checker
for those obviously correct cases, and a liberal checker for those ob-
viously wrong cases. The type system for the conservative checker
is more high-level, albeit less precise. To prove its soundness, we
piggy-pack its proof to that of fractional permission, which is al-
ready proven sound. We also plan to implement both checkers on
Fluid, an analysis framework for Java programs, and use various
benchmarks to compare the performance of both approach.

Categories and Subject Descriptors D.1.5 [Software]: PRO-
GRAMMING TECHNIQUES—Object-oriented programming

General Terms languages

Keywords permissions,twelf,fluid

1. Purpose
One common safety issue in imperative programming languages
is aliasing, which happens when a data location in memory is
accessed through different symbolic names in program. With the
presence of aliasing, it is difficult to reason about program behavior,
because write on a memory cell through one variable may affect
the read by some another variable. The write action could happen
at a totally unrelated point in the program, which makes program’s
behavior extremely hard to reason about.

Aliasing can have serious affect on information hiding and en-
capsulation, which are essential elements in object-oriented pro-
gramming. For instance, a private member of an object may have
aliases outside the scope that refers to it, thus violating the purpose.
Modern softwares are often required to offer implementation trans-
parency, which means the ability to change internal implementa-
tion without affecting the rest of the system.

To resolve this issue, many researchers have suggested using
annotations. Unlike program types, which are “hardcoded” in the
language, and concern more about low-level semantics, annotations
are more about the high-level program behaviors. They usually
will not change the run-time behavior, and therefore can serve
two purposes: implementors can attach their design intent to the

Copyright is held by the author/owner(s).
SPLASH’11 Companion, October 22–27, 2011, Portland, Oregon, USA.
ACM 978-1-4503-0940-0/11/10.

program, for better understanding, and maintainers can use them
to extract more semantic information about the program, for better
analysis of its behavior. In general, annotations enable a component
supplier to offer contract in which certain demands are described,
and clients are supposed to follow these requirements, to guarantee
result of execution meets the expectation.

Another reason of using annotation is its flexibility. Rather than
design a new language and add all the desired features, people can
deploy annotations as an optional type system. Existing languages
can be improved in this way without their essential elements al-
tered, as well as the compiler and run-time system.

Several annotations have been brought into literature to address
the aliasing problem. Among them, most widely discussed are
uniqueness and ownership types.

The notion of uniqueness comes from linear types [18], and
[15] is one of the earliest work which brought linearity into object-
oriented languages. To prevent aliasing on unique variable, destruc-
tive read is used. That is, once a unique variable is read, it is imme-
diately set to null. In this way, information is transferred via mov-
ing, instead of copying, therefore guarantees every unique pointer
is the only copy to the object it refer to. Although destructive read
preserves the uniqueness, it also causes many inconveniences in
practical usage - not only that the null pointer has unpleasant
side-effects, but language semantics also needs to be changed to
accommodate the uniqueness.

Alias burying [3] resolves the above issue by delaying the nul-
lification as long as no alias is read. When one alias is read, all
other aliases are set to undefined, and cannot be used anymore.
The advantage is that a separate static program analysis can be used
to replace the need of modifying the compiler. Since aliasing is a
global effect, to enable intra-procedure analysis, a borrowed an-
notation is introduced in this approach to grant temporary access to
a unique variable.

Another branch is ownership types [8]. This approach, instead
of forbidding alias, attempts to confine [2] aliases in a certain scope.
Alias confinement is especially important when coping with large-
scale software system, since it allows one to reason about one mod-
ule at a time, independent of the others. In the ownership approach
every object is inside the scope of another one (called the owner
object), and all the objects on heap form a tree structure. In fact,
the idea of restricting the scope of alias is similar to adoption [9],
in which the adopter of a linear value can be seen as its owner.
This idea is further made explicit in an object-oriented language
setting [4], where ownership is established by nesting a linear value
into a special data group [14].

One important consequence of the above is, for an object, it
guarantees every access path from root to it has its owner as one
of the node [7]. Therefore, the approach is also called “owners-as-
dominators”.

In contrast, another approach is “owners-as-modifiers”. The
difference is the latter allows an object be referenced by any other
object, as long as the latter doesn’t modify it.

75



Ownership Domain [1] is a further attempt on finding a bal-
ance between safety and expressiveness. Unlike previous owner-
ship techniques, which impose a fixed structure on objects, Owner-
ship Domain separates aliasing policy from ownership mechanism.
In specific, a class can declare multiple domains to represent dif-
ferent encapsulation levels, and links can be established between
domains to grant one access to the other.

Unlike previous works, which tend to introduce new annota-
tions, give them with meanings, and propose a set of rules for
checking them, fractional permission [5] provides a foundation for
various annotations to ground. Based on separation logic, it pro-
vides a logic to reason about the semantic meaning of most an-
notations. Under this infrastructure, various annotations, such as
unique, nonnull, data group, ownership and effects, can be ex-
pressed.

However, while fractional permission provides a powerful tool
for checking annotations, the downside is its complexity. Currently,
the implementation [17] has both high runtime overhead and space
overhead, and it may take a considerable amount of time to analyze
a reasonable large program. This hinders its use in practice. There-
fore, it is sensible for us to ask: can we implement a lightweight
version of the fractional permission, which can check most of the
annotated programs, while being much more efficient?

2. Goals
The goal of our research is not to invent some new annotations
and provide meanings to them, but to make the existing annotation
checking more efficient.

Currently, the implementation of fractional permission is on
Fluid [12], which is an framework for program analysis. Due to
the heavyweight nature of permission analysis, the implementation
is rather complicated. For instance, to model base permission, the
implementation needs lattices for both location and fraction, and
has two separate maps for them. To model Java evaluation at a
low-level, the transfer function needs to simulate stack operations,
and therefore a stack lattice in which elements are of some other
base lattices is used. One side-effect for this is that all the primitive
types in Java, such as int, need to have a lattice representation
too. Besides, along the control flow, the analysis also needs to
collect various facts, like the equality (inequality) between object
locations, as well as nesting situations.

Because of the large amount of information that needs to be
tracked, and the operations on them (especially the join operation
upon control flow merge), the analysis has high runtime and space
overhead. This makes it impractical to use on reasonable large-size
program.

To make annotation checking run faster, instead of applying the
heavyweight checker on the input program directly, a better strat-
egy is to use a more “conservative” checker first. The conserva-
tive checker should run much faster, albeit less precise. Instead of
encoding fractional permission directly, it uses much higher-level
types. The fractional permission type system, instead, serves as a
foundation for the new type system to be built on. This approach
gives us two benefits: first, we can have better understanding of se-
mantics of annotations, using fractional permission, and therefore
derive better type system to check them; second, we can build the
soundness proof of the type system directly on that of fractional
permission.

Besides the conservative checker, we also intend to use a “lib-
eral” checker, which identifies those obviously wrong cases. Inside
an annotated program, some methods may contain errors that are
easy to detect. After failing the conservative checker, these meth-
ods are passed to permission checker, which makes the overhead
even worse. Instead, by applying the liberal checker on these meth-
ods, we can reject these methods very quickly, without utilizing the

conservative

permission

liberal

Figure 1. Multi-layered annotation checkers

class Node {
@InRegion("Instance")
@Unique Node next;

}

class List {
@Unique Node head;

@RegionEffect("writes head")
void prepend(@Unique Node n) {

n.next = head;
head = n;

}
}

Figure 2. Sample annotated code in Fluid

heavyweight checker. Some obviously wrong cases include storing
a borrowed-annotated method parameter into a unique field, or
not returning the effects passed in to the method.

A type system can not be trusted without soundness property.
For the conservative checker, we intend to use machine-checked
proof, based on fractional permission system [6]. The proof is writ-
ten using Twelf [16], which is a implementation of LF logical
framework [13] that is especially useful for proving properties of
programming languages and logics. Specifically, for the conserva-
tive type system, we piggy-pack its proof on the permission system.
That is, for each term in the language, we show that if it can be
checked under the conservative system, then it can also be checked
under the permission system, and since the latter is already proved
sound, this shows the former is sound too. With this approach, we
avoid the need to prove progress and preservation, and the seman-
tics of the language is also separated from the type system.

3. Technical Approach
Our approach will be in two directions. First, we will formalize
the type system and use machine-checked proof for its correctness.
Second, based on the type system we will implement a prototype
annotation checker, and compare the performance with the single
type system approach.

The related annotations that are currently supported in Fluid in-
clude unique, shared, borrowed, and effects. Although we
do not support ownership parameters currently in either formaliza-
tion and implementation, we believe it should be a straightforward
extension to the above.

76



Formalization Compared to the permission type system, the
conservative type system is designed to be mostly flow-insensitive.
Although this will make several kinds of type errors difficult or
impossible to detect, it guarantees the overhead of the checker to
be low. However, for effect analysis, we need to track the source of
local variables and record effects on them. This requires Binding
Context Analysis (BCA) [11], which is flow-sensitive. However,
BCA is independent of the main type checking process, and is
much faster than the permission analysis. We also intend to use
various optimizations to speed up this process.

A major part of our research is the machine-checked proof for
the soundness of type system. Not only will this give us strong
confidence on the correctness of the system, but also it will force
us to address all the possible cases which one may not notice in a
natural language proof.

As a pilot study, the author has first proved a simple non-null
type system [10] based on fractional permissions. The system itself
is a very simple extension of a standard type system, with the
following additions:

• in a class, every field is either annotated as nonnull or
maybenull. Also, every field is implicitly shared.

• the effects for methods is implicitly writes shared, which,
combined with the first, grant them privilege to write every
field.

• the constructor is especially restricted; the body of it must be
a sequence of assignments to the fields, followed by returning
this.

The type system is built on a Java-like kernel language for
reasoning about concurrent imperative language, which, alone with
its semantics, is already defined in Twelf. Both the existing proof
for permission type system and the conservative type system are
based on the assumption of single-threaded programs, although a
proof for multi-thread programs is ongoing.

The proof is done by (roughly) first transforming all the rele-
vant environments (class map, method map, etc) to the correspond-
ing structures under the permission system. Then, we prove that for
every program in the kernel language, if it’s well-typed under con-
sistent environments, then after converting these environments, the
same program can also be checked under the system of fractional
permission.

The machine-checked proof for the non-null system consists
of 15 files and 769 KBytes. Although it seems large, over 500K
of the code is automatically generated, and contains many unused
theorems. The definition of types also occupies a reasonable part of
the code.

Implementation Our implementation of the type system is
based on the Fluid project, which is an analysis framework im-
plemented as plugin for Eclipse IDE. In the previous work, the
fractional permission type system has been implemented [17] by
William Retert on it as control-flow analysis, and some case stud-
ies have also been done both on some simple code fragments and
JEdit, a reasonably large sample of annotated Java code.

Because our goal is to improve the speed of annotation checking
based on the current permission analysis, we need to collect vari-
ous statistics to see the result using different measures. Currently,
the main issue is lacking of sample annotated code. Although JEdit
has a reasonably large size, the annotations on it are mainly used for
thread and lock analyses (only six fields are annotated as unique).
In future, we need more sample code for benchmarking. The result
of this not only can provide us a general idea of how much improve-
ment can be achieved with the multi-layered approach, but also can
give us feedbacks for the cases that the lightweight checkers should
handle.

References
[1] Jonathan Aldrich and Craig Chambers. Ownership domains: Sepa-

rating aliasing policy from mechanism. In Martin Odersky, editor,
ECOOP’04 — Object-Oriented Programming, 18th European Con-
ference, volume 3086 of Lecture Notes in Computer Science, pages
1–25, Berlin, Heidelberg, New York, 2004. Springer.

[2] Boris Bokowski and Jan Vitek. Confined types. In OOPSLA’99 Con-
ference Proceedings—Object-Oriented Programming Systems, Lan-
guages and Applications, volume 34, pages 82–96, New York, October
1999. ACM Press.

[3] John Boyland. Alias burying: Unique variables without destructive
reads. Software Practice and Experience, 31(6):533–553, May 2001.

[4] John Boyland and William Retert. Connecting effects and unique-
ness with adoption. In Conference Record of POPL 2005: the 32nd
ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, pages 283–295, New York, 2005. ACM Press.

[5] John Boyland, William Retert, and Yang Zhao. Comprehending anno-
tations on object-oriented programs using fractional permissions. In
Matthew Parkinson, editor, International Workshop on Aliasing, Con-
finement and Ownership in object-oriented programming (IWACO),
New York, 2009. ACM Press. To appear.

[6] John Tang Boyland. Semantics of fractional permissions with nesting.
ACM Trans. Program. Lang. Syst., 32:22:1–22:33, August 2010.

[7] David Clarke. Object Ownership and Containment. PhD thesis,
University of New South Wales, Sydney, Australia, 2001.

[8] David G. Clarke, John M. Potter, and James Noble. Owner-
ship types for flexible alias protection. In OOPSLA’98 Con-
ference Proceedings—Object-Oriented Programming Systems, Lan-
guages and Applications, volume 33, pages 48–64, New York, October
1998. ACM Press.

[9] Manuel Fähndrich and Robert DeLine. Adoption and focus: Practical
linear types for imperative programming. In Proceedings of the ACM
SIGPLAN ’02 Conference on Programming Language Design and
Implementation, volume 37, pages 13–24, New York, May 2002. ACM
Press.

[10] Manuel Fähndrich and K. Rustan M. Leino. Declaring and checking
non-null types in an object-oriented language. In OOPSLA’03 Con-
ference Proceedings—Object-Oriented Programming Systems, Lan-
guages and Applications, volume 38, pages 302–312, New York,
November 2003. ACM Press.

[11] Aaron Greenhouse. A Programmer-Oriented Approach to Safe Con-
currency. PhD thesis, School of Computer Science, Carnegie Mellon
University, Pittsburgh, Pennsylvania, USA, 2003.

[12] Aaron Greenhouse, T. J. Halloran, and William L. Scherlis. Using
Eclipse to demonstrate positive static assurance of Java program con-
currency design intent. In Proceedings of the 2003 OOPSLA workshop
on eclipse technology eXchange, pages 99–103, October 2003.

[13] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for
defining logics. Journal of the ACM, 40(1):143–184, 1993.

[14] K. Rustan M. Leino, Arnd Poetzsch-Heffter, and Yunhong Zhou. Us-
ing data groups to specify and check side effects. In Proceedings of
the ACM SIGPLAN ’02 Conference on Programming Language De-
sign and Implementation, volume 37, pages 246–257, New York, May
2002. ACM Press.

[15] Naftaly Minsky. Towards alias-free pointers. In Pierre Cointe, editor,
ECOOP’96 — Object-Oriented Programming, 10th European Con-
ference, volume 1098 of Lecture Notes in Computer Science, pages
189–209, Berlin, Heidelberg, New York, July 1996. Springer.

[16] Frank Pfenning and Carsten Schürmann. Twelf user’s guide, version
1.4. Available at http://www.cs.cm.edu/~twelf, 2002.

[17] William S. Retert. Implementing Permission Analysis. PhD thesis,
University of Wisconsin–Milwaukee, Department of EE & CS, 2009.

[18] Philip Wadler. Linear types can change the world! In M. Broy and
C. B. Jones, editors, Programming Concepts and Methods. Elsevier,
North-Holland, 1990.

77




