
Ada 9X : From 
Abstraction-Oriented to Obiect-Oriented 

J 

S. Tucker Taft 
Intermetrics, Inc. 

733 Concord Avenue 
Cambridge, MA 02138 

stt@inmet.com 

Abstract 

Ada 83 is an abstraction-oriented programming 
language. It supports the definition of abstract 
data types in modules called “packages,” with a 
separate interface and implementation. The next 
revision of the language is now being prepared, 
and is designated Ada 9X. This revision will 
support full object-oriented programming. As 
part of designing the object-oriented features of 
Ada 9X, we had a choice whether to construct a 
conventional but essentially independent object- 
oriented capability in addition to the existing 
abstraction-oriented features of Ada 83, or to 
make an effort to integrate the existing abstraction 
support with the minimal set of additional 
capabilities necessary to support object-oriented 
programming. We have chosen the latter 
approach, and as part of this effort, we have tried 
to isolate exactly what capabilities distinguish a 
full object-oriented programming language from 
an abstraction-oriented programming language 
like Ada 83. Our conclusion is that the essential 
new capability of object-oriented programming is 
that a given abstraction may effectively have 
multiple implementations. The objects carry 
sufficient extra information at run-time to identify 
to which implementation they correspond. In Ada 
9X, we call this run-time type identification the 
“tag” of the object, and the corresponding new 
language capability is called “tagged types.” 
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Introduction 

Ada 83[8] is an abstraction-oriented programming 
language. By this we mean it is a language that 
supports the definition of abstractions, each with a 
well-defined interface separated from its 
implementation. An abstraction (defined by a 
“package” in Ada) generally consists of one or 
more abstract data types (called “private types” in 
Ada), with corresponding operations for 
constructing, updating, and querying instances of 
the type. The implementations of the operations 
can be changed without disturbing the clients of 
the abstraction. The abstraction may or may not 
contain global state over and above the state 
represented within instances of the abstract data 
types. It if does, this global state is also generally 
managed internally, with operations provided for 
updating and querying the state, as appropriate. 

Ada is now undergoing a revision, as part of the 
normal ANSI and IS0 processes for periodically 
updating language standards. The revised 
language is currently designated Ada 9X]S], with 
balloting on the revised standard planned to start 
in late 1993. 

Adding Object-Orientation 

As part of this revision we are updating the 
language to be a true object-oriented language. 
This has turned out to be a challenging task, 
because many of the capabilities normally 
associated with object-orientation are already 
present in Ada 83, and rather than reinventing 
these capabilities in a different guise as part of a 

OOPSLA’93, pp. 127-136 

127 



separate object-oriented extension to the language, 
we have chosen to enhance the existing language 
mechanisms. As might be expected, this poses a 
difficult integration problem, as we try to 
minimize redundancy while providing full object- 
oriented functionality in a seamless whole. 

Other efforts to add object-oriented capabilities to 
existing programming languages have generally 
started from languages without built-in support for 
user-defined abstract data types. The original 
object-oriented language, Simula-67[ 11, was an 
outgrowth of Algol 60, which did not even support 
the definition of record types. It was the nested 
block structure of Algol 60 that provided the 
starting point for the class construct of Simula-67. 
Similarly, C++[7] was developed as an extension 
of C, which provides user-defined data structures 
(structs), but no built-in mechanism for data 
abstraction. With these languages, both abstraction 
and full object-orientation were incorporated in a 
single set of new features, thereby blurring the 
distinction between abstraction-orientation and 
object-orientation. 

In fact, many of the benefits associated with 
object-orientation are due to its support for 
abstractions. If a language already supports 
abstractions, like Ada 83, extending the language 
to support object-orientation is a quite different 
process. One could of course ignore the existing 
facilities, and build an independent object-oriented 
“comer” of the language. But the net result 
would be a bigger, more complex, and less usable 
language. A user would have to make an explicit 
shift from using the preexisting abstraction 
facilities, to using the new object-oriented 
facilities. 

For Ada 9X, we have taken a different approach. 
Rather than adding a new “class construct” or 
“object type” to the language, we have chosen to 
directly enhance the existing record type, private 
type, and “derived” type capabilities. Ada 83 is 
unusual in being an abstraction-oriented language 
that already provides a limited form of inheritance, 

where a new abstract data type may be defined in 
terms of a preexisting abstract data type. However, 
the facility is quite limited, because a “derived” 
data type is limited to having exactly the same set 
of internal data components as its “parent” data 
type. Only the operations of the type may be 
extended or overridden as part of deriving from 
the type. Furthermore, the parent type and the 
derived type are totally distinct types -- there are 
no operations other than explicit conversion that 
can treat the different derivatives of a given parent 
type equivalently. Essentially these different 
derivatives represent independent abstractions, 
even though they happen to have a common 
structure and a common set of operations. 

If you compare this relatively primitive kind of 
inheritance with a true object-oriented capability, 
the critical difference is that with object- 
orientation, one can take advantage of the 
common structure and operations of types related 
by inheritance, and treat them as simply different 
implementations of the same abstraction, rather 
than as separate abstractions. Or to put it another 
way: in an abstraction-oriented languages, a given 
abstraction interface has exactly one 
implementation, thereby allowing full static 
binding between clients of the interface and this 
implementation; with object-orientation, a given 
interface may have many implementations, and 
each object carries around sufficient information 
(a run-time “tag” of some sort) to identify its 
implementation, allowing a dynamic binding 
between clients and the appropriate 
implementation of any given operation of the 
interface. This distinction between the static 
binding of abstraction-oriented languages and the 
dynamic binding of object-oriented languages is 
illustrated graphically in Figure 1. 

It is worth noting that in the computer science 
literature on data abstractions, the possibility of 
multiple implementations of a given abstraction 
has always been recognized[3,4]. However, when 
abstraction facilities were incorporated into 
conventional compiled languages, a single 
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Abstraction-Oriented Language 

Abstraction Interface 

Client of Abstraction, 
call on Eval is statically 
bound. 

pkg bdy Exps is 
func Eval(..) is 
begin 

case E.D is 
when Lit => 
. . . 

end Eval; 
end Exps; 

Abstraction Implementation 

Object-Oriented Language 
1 package Exps is 1 

I .typeExpis 
tagged . . . 

Client of Abstracti 
call on Eval is boun 
Client of Abstracti 
call on Eval is bowlI, 
dynamically based OI 
tag of E. 

Abstraction Interface 

. . . 
end Exps; 

J 

Multiple Implementations 

Figure 1 
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implementation per interface was typically 
adopted for pragmatic reasons(21. This is 
illustrated by the languages CLU[6], Ada 83, and 
Modula[9]. It was really C++ that was the first 
main-stream systems programming language that 
recognized that the dynamic binding inherent in 
having objects identify their own implementation 
could be provided while preserving high 
performance. In fact, once it was recognized that 
this “dynamic binding” was essentially equivalent 
to the explicit case analysis performed on variant 
records, it became clear that an object-oriented 
approach to managing related variants of the 
same abstraction could actually be more efficient 
than the traditional methods. 

In retrospect, it seems clear that variant records 
with the attendant explicit case analysis 
represented a somewhat awkward way-station on 
the path between the simple numeric-array- 
oriented processing of the early Fortran days, and 
the complex information-oriented processing of 
today. In a similar vein, the very strong type 
checking inherent in abstraction-oriented 
languages like Ada 83, which developed somewhat 
as a reaction to the very weak type checking of the 
early variants of Fortran, now appears as an 
overreaction. One needs the flexibility of treating 
related types all as a single type when desired, 
presuming they have some degree of 
commonality in their interface. Although a 
variant record can be used for this purpose, it 
rapidly becomes unwieldy as the number of 
variants grows large, and adding a new variant 
becomes a maintenance nightmare. Having a 
separate type for each variant is a much more 
natural, open-ended solution. But once you go 
this route, you need some way to bring the distinct 
types back together for that processing which can 
be common across the types. This inevitably 
requires that objects of such types carry some kind 
of tag to allow a predominantly common 
algorithm to dispatch back to type-specific 
processing when appropriate. 

With this as a backdrop, it now becomes relatively 

clear what capabilities are needed to go from an 
abstraction-oriented language like Ada 83 to a full 
object-oriented language. First of all, we must 
enhance the ability to derive one type from 
another, by allowing not only the extending or 
overriding of operations, but also the extension of 
the type with additional data components. 
Secondly, we need a way to refer to a set of related 
types when defining the type of a parameter to an 
operation, or the type designated by a pointer 
(called an “access value” in Ada). Finally, we 
need a way for objects to identify their 
“underlying” type, so that when all we know 
statically (at compile-time) is what set of types 
(“class of types”) it belongs to, at run-time we 
can determine the specific type of the object so as 
to dispatch to the particular type-specific 
implementation of a given primitive operation of 
the abstract data type. 

The Ada 9X Approach 

In Ada 9X, these capabilities are all provided by a 
modest enhancement of the existing record, 
private, and derived type facilities. Record and 
private types can be identified as “tagged” types. 
This indicates that their objects will be self- 
identifying, allowing tagged types related by 
derivation to be grouped into “classes” for 
parameter passing and pointer manipulation, while 
preserving the ability to dispatch on the specific 
type of an object in such a class at a later point. 
When deriving from a tagged type, one can add 
components, either privately (a private extension), 
or publicly (a record extension). Private types can 
have public extensions, and vice-versa, thereby 
allowing a single type with some public and some 
private components. 

Ada 9X Example 

These capabilities are best illustrated by example: 

package Expressions is 
-- This package defines a class of types 
-- used to represeti an arithmetic 
-- expression, as might be used 
-- by a simple desk calculator program. 

130 



type Expression is tagged null record; 
-- This is the root of the class of 
-- types that will represent 
-- expressions 

fknction Evaluate(E : Expression) 
return Float is 0; 

-- iThis is a primitive operation of 
-- the type; no implementation will 
-- be provided for the root type (it 
-- is called an “abstra& n operation) 

type Literal is new Expression with 
-- This is a simple, visible extension 
-- of the root Expression type, 
-- used to represent the “leaves ” of 
-- an expression tree. 

Value : Float; 
endltcmk 

function Evaluate(E : Literal) 
return Float; 

-- The inherited Evaluatefinction is 
-- overridden; the implementation 
-- will appear in the package body. 

type ExprJ’tr is 
access Expression’Class; 

-- This is a pointer type; its values 
-- can point to objects of any type 
-- in the class rooted at Expression. 
-- This class is represented by the 
-- “class- wide ” type 
-- Expression ‘Class. 

type Binary-Operator is 
new Expression with private; 

-- TXis type is the root of a subclass 
-- of types, one for each 
- binary operator. 

function Evaluate( Bop : Binary-Operator) 
return Float is <>; 

function Create-Binary-Op( 
Op-Name : String; 
L.&t-Opnd, Right-Opnd : ExprJ’tr) 

return Expr-Ptr; 
-- This creates an instance of an 
-- appropriate derivative of 
- Binary-Operator, determined 
-- by the operasor name. 

type Unafy-Operator is 
new Expression with private; 

-- This is the root of the subclass of 

-- types used to represent 
-- invocations of wzary operators 

function Evaluate(Uop : Unary-Operator) 
return Float is G-; 

function Create-Unary-Op( 
Op-Name : String; 
Right-Opnd : Expr-Ptr) 

return Expr-Ptr; 
-- This creates an instance of an 
-- appropriate der&.tiMe of 
-- Unury-Operator, aktermined 
-- by the operator name. 

Invalid~Opexator~Name : exception; 
-- l?zis exception is raised ifthe 
-- operator name is unrecognized, 
-- or requires a diflerent number of 
- operana!s than are provided 
-- by the Create routine. 

private 
-- These full type declarations are 
-- hidden from clients of this package 
type Binary-Operator is 

new Expression with 
-- The operator name will be inherent 
- in each particular derivative 

Left-Opnd : ExprJtr; 
Right-Opnd : ExprJtr; 

end monk 

type Unary-Operator is 
new Expression with 

-- The operator name will be inherent 
-- in each particular den’m’ve 

Right-Opnd : Expr-Ptr; 
end&, 

end Expressions; 

Types and Classes 

The above package represents the interface to the 
Expression class of types. It is worthwhile noting 
at this point certain unique characteristics of the 
Ada 9X object-oriented facilities. Because we are 
building on a language that is very strongly type- 
checked, we choose to retain an explicit distinction 
between a “specific” type like Expression, Literal, 
Binary-Operator, or Unary-Operator, and the set 
of types (“class” of types) rooted at such a type. 
This distinction is blurred in most object-oriented 
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approaches, with the same name referring to a 
single type or a set of types depending on context. 

In Ada 9X, if one wants to define a parameter or 
an access type that permits references to objects of 
any type in a class, one must explicitly specify the 
“class-wide” type, such as ExpressionClass. This 
class-wide type stands for the type Expression, 
plus all of its derivatives, direct or indirect (Literal, 
Binary-Operator, etc.) Similarly, a class-wide type 
Binary-Operator’Class stands for 
Binary-Operator and its derivatives (such as 
Add-Op and Subtract-Op defined below in the 
body of package Expressions). 
Binary-Operator’Class can be thought of as a 
subclass of Expression’Class, in that it represents a 
subset of the types represented by 
Expression’Class. 

By making this explicit distinction between 
specific types and their associated class-wide types, 
Ada 9X gives the programmer full control over 
static versus dynamic binding to operations. It is 
only operations on a class-wide operand, such as 
the dereference of a class-wide pointer (like 
Expr-Ptr) that result in a run-time dispatch to an 
“appropriate” implementation of a given 
primitive operation (like Evaluate). Operands of a 
specific type result in a normal statically bound 
call. This distinction makes it easier to identify, 
and hence document, those places where 
(re)dispatching occurs, which is essential when 
detining derivatives of a type that inherit some of 
the primitive operations, but choose to override 
others. If the implementation of one primitive 
operation involves a redispatch to the 
implementation of a second primitive, overriding 
this second primitive has an indirect effect on the 
first. The Ada 9X approach ensures that these 
indirect effects are readily visible in the source, 
and deserving of documentation. 

Completing the Example 

Here is a simple test program that illustrates how 
the interface to the Expressions abstraction is used, 

and includes a call on Evaluate that involves run- 
time dispatch (dynamic binding): 

with Expressions; use Expressions; 

procedure Test-Expr is 
-- Simple test for the expression 
- abstraction 

X : Float; 

E : Expr-ptr; 

begin 
-- Build an expression tree 
--for (12.0 - 7.0) + 10.0 
E := Create-Binary-Op(“+“, 

Create-Binary_Op(“-“, 
new Literal’(ValuW12.0), 
new Literal’(value=>7.0)), 

new Literal’(ValUe=> 10.0)); 

-- Dispatch to the appropriate Evaluute 
-- routine, based on the tag of E.all (it 
-- should identtJv the adding operator) 
X := Evaluate(E.all); 
if X I= 15.0 then 

raise Program.Jrror; 
-- Something is amiss 

endif; 

end TestJSxpr; 

Here is a possible implementation of the 
Expressions package: 

package body Expressions is 

-- First we de3ne the body for the 
-- Evaluate for literals 
fimction Evaluate(E : Literal) 

return Float is 

begin 
return E&Value; 

end Evaluate: 

-- Next we dejne some derivatives of 
-- Binury~Operator 

type Add-Op is 
new Binary-Operator with null record; 

-- lkis is a null record extension of 
-- Binary~Operator, since the 
-- components in Binary-Operator 
-- are suflcient for Aad-Op 

function Evaluate(Aop : Add-Op) 

return Float is 

h+ 
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return Evaluate(Aop.Left-Opndall) + 
Evaluate(Aop.Right~Opnd.all); 

-- The above calls on Evaluate 
-- dispatch at run-time to the 
-- “appropriate n implementation, 
-- based on the tags of the 
-- objects designated by the left 
-- and tight operand pointers. 

end Evaluate; 

type Subtract-Op is 
new Binary-Operator with null recor&, 

function Evaluate(Sop : Subtract-Op) 

return Float is 
begin 

return Evaluate(Sop.Left~Opnd.all) - 
Evaluate(Sop.Right-Opndall); 
-- The above calls involve run- 
-- time dispatching, as in the 
-- version of Evaluate for 
-- Aad-ops. 

end Evaluate; 

. . . -- etc. for other binary operators; 
-- a similar approach wouid be used 
--for unary operators. 

-- This de$nes an access-to-function 
-- type, whose values point to an 
-- appropriate creation fin&on 
type Bin-Op-Creator is 

access function( 
Left-Opnd, Right-Opnd : ExprJtr) 

return Expr-Ptr; 

- Here we deBne a data structure for 
- associating operator names 
-- with afinction for creating a 
-particular derivative of 
-- &ary~Operator 

type Bin-Op-Name-Record( 
Name-Length : Positive); 

type Bin-Op-Name& is 
access Bin-Op-Name-Record; 

type Bin-Of-Name_Record( 
NameJength : Positive) is 

Next : Bin-Op-Name&; 
-- link on chain 

Creator : Bin~Op~Creatoq 
_* creationfunction 

Op-Name : String( 1.. 
NameJmgth); 

- operator name 
endrecord; 

First-Bin-Op : Bin-Op-NameJtr := null; 
-- Singly-linked list of registered 
- binary operators 

procedure Register~Binary-Op( 
Op-Name : String; 
Creation-Function : Bin-Op--Creator) 

L&ill 

-- Prepend operator to list of 
-- registered binary operators 
First-Bin-Op := 

new Bin-Op-Name-Record’( 

NameLength => Op-Name’Length, 
Next => First-Bin-Op, 

-- Chain onto head of list 
Creator => Creation-Function, 

Op-Name => Op-Name); 
end Register~Binary~Op; 

function Create-Binary-Op( 
Op-Name : String; 

Left-Opnd : Expr-Ptr; 
Right-Opnd : Expr-Ptr) is 

Op-Ptr : Binary-Op-Name-Ptr := 
First-Binary-Op; 

begn 
-- Look for operator in list of 
-- registered binary ops 
while Op-Ptr I= null loop 

if Op-Ptr.Op-Name = Op-Name 

then 
- Found it, call its creation 
--function 

OpJtr.Creator(Left~Opnd, 

Right-Opnd); 
end if; 

op_Ptr := OpJtr.Next; 

end loop; 
- Not a registered binary operator, 
-- raise an excepion 
raise Invalid-Open&r-Name; 

end Create-Binary-Op; 

-- Here we a!e@e the creation finctions, 
- one for each binary operator: 

function Create-Add-Op( 
Left-Opnd : Expr-Ptr, 
Right-Opnd : Expr-Ptr) 
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return Expr-Ptr is 
begin 

return new Add-Op’( 

Left-Opnd, Right-Opnd); 
end Create-Add-Op; 

function Create-Sub-Op( 

Left-Opnd : Expr-Ptr; 
Right-Opnd : ExprJ’tr) 

return Expr-Ptr is 

&sin 
return new Subtract-Op’( 

Left_Opnd, Right-Opnd); 
end Create-Sub-Op; 

begin 
-- Now register the various binary 
-- operators 
Register-Binary-Op( 

Op-Name => “+“, 
Creation-Function - 

Create-Add-Op’ Access); 

N&er_Binary_Op( 
%-Name => “-“, 

Creation-Function =7 

Create-Sub-Op’ Access); 
. . . -- etc. for other binary operators. 

-- Unary operators would be handled 
-* in a similarfashion 

end Expressions; 

Generics and OOP 

If you look at the implementations given above 
for the various operators, you should notice that 
the definitions tend to be quite repetitive. This 
provides an opportunity to show how the generic 
facilities of Ada are integrated with the tagged 
type features. The following implementation is 
essentially equivalent to the above, but 
encapsulates in a generic the type extension, the 
implementation of the operations, and the 
registration all in one place, allowing it to be 
instantiated repeatedly, once for each operator: 

package body Expressions is 
-- l’his version of the body illustrates 
-- the combination of tagged type 
- capabilities and the genenk 
-- capabilities of Ada 9X 

type Bin-Op-Creator is 

access function( 

Left-Opnd, Right-Opnd : Expr-Ptr) 
return Expr-Ptr; 

*- as above 

procedure Register~Binary~Op( 
Op-Name : String; 
Creation-Function : Bin-Op-Creator) 

i&in 

. . . -- us above 
end Register-Binary-Op; 

generic 
Op-Name : String; 
with function Operate( 

Left, Right : Float) return Float; 
package Define-Bin-Op is 

type Bin-Op is new Binary-Operator 
with null record, 

function Evaluate(Bop : Bin-Op) 
return Float; 

function Create( 
Left-Opnd, Right-Opnd : ExprJ’tr) 

return ExprJtr; 
Create-P& : constant Bin-Op-Creator 

: = Create’ Access; 
end Define-Bin-Op; 

package body Define_Bin-Op is 
function Evaluate(Bop : Bin-Op) 

return Float is 

begin 
-- Apply the Operate function to 
-- the value of the operands 

mmoperate( 
Evaluate(Bop.Left-Opndall), 

Evahrate(Bop.Right~Opnd.all)); 
-- These two dispatch based 
-- on the tag of the operands 

end Evaluate; 
function Create( 

Left-Opnd, Right-Opnd : ExprJ’tr) 
return Expr-Ptr is 

begin 
-- Create and return a pointer to 
-- an instance of the type 
return new Bin-Op’( 

Left-Opnd, Right-Opnd); 

end Create; 

&Tin 
-- Register operator as part of 

-- instantiation 
Register~Binary~Op( 
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Op-Name, Create-h); 
end Define-Bin_Op; 

-- Given the above generic, we can now 
-- de$ne and register a binary operator 
-- by a single instantiation. 
package Defme-Add-Op is 

new Defme-Bin-Op( 

Op-Name => “+“, 
Operate =7 “+“); 

package Define-Subtract-Op is 
new Define-Bin-Op( 

Op_Name =7 “-“, 
Operate ~7 “-“); 

. . . -- etc. for other operators; a similar 
-- generic could be de$ned and 
-- then instantiazed.for each 
- unary operator. 

end Expressions; 

As is illustrated above, object-oriented facilities are 
complemented by generic facilities; they do not 
take their place. Both the run-time polymorphism 
inherent in class-wide types with dispatching on 
object tags, and the compile-time polymorphism 
inherent in generic templates and parameter 
substitution, are critical to building sophisticated 
yet maintainable abstractions. 

Summary 

Adding object-oriented facilities to Ada 83 
represents both a unique opportunity and a 
challenging integration task. In contrast to C++ 
and Simula-67, Ada 9X is building on a modern 
abstraction-oriented language, that already has 
support for modularization (packages), abstract 
data types (private types), compile-time 
polymorphism (generic templates and 
instantiation), and run-time exception handling. 
We considered simply adding an object-oriented 
“corner” to the language. But instead, we chose 
to identify the minimal set of enhancements that 
would provide full support for object-oriented 
programming, while remaining consistent and 
integrated with the existing abstraction facilities. 
In so doing, we believe we identified the critical 

capability that distinguishes true object-oriented 
programming languages from abstraction-oriented 
programming languages, namely the ability to 
have effectively multiple implementations for a 
single abstraction. Each object identifies its 
particular implementation, allowing a dynamic 
binding between the client of an abstraction and 
the appropriate implementation of a given 
operation. 
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