
Ada 9X : From
Abstraction-Oriented to Obiect-Oriented

J

S. Tucker Taft
Intermetrics, Inc.

733 Concord Avenue
Cambridge, MA 02138

stt@inmet.com

Abstract

Ada 83 is an abstraction-oriented programming
language. It supports the definition of abstract
data types in modules called “packages,” with a
separate interface and implementation. The next
revision of the language is now being prepared,
and is designated Ada 9X. This revision will
support full object-oriented programming. As
part of designing the object-oriented features of
Ada 9X, we had a choice whether to construct a
conventional but essentially independent object-
oriented capability in addition to the existing
abstraction-oriented features of Ada 83, or to
make an effort to integrate the existing abstraction
support with the minimal set of additional
capabilities necessary to support object-oriented
programming. We have chosen the latter
approach, and as part of this effort, we have tried
to isolate exactly what capabilities distinguish a
full object-oriented programming language from
an abstraction-oriented programming language
like Ada 83. Our conclusion is that the essential
new capability of object-oriented programming is
that a given abstraction may effectively have
multiple implementations. The objects carry
sufficient extra information at run-time to identify
to which implementation they correspond. In Ada
9X, we call this run-time type identification the
“tag” of the object, and the corresponding new
language capability is called “tagged types.”

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

@ 1993 ACM 0-89791~587-9/93/0009/0127...$1.50

Introduction

Ada 83[8] is an abstraction-oriented programming
language. By this we mean it is a language that
supports the definition of abstractions, each with a
well-defined interface separated from its
implementation. An abstraction (defined by a
“package” in Ada) generally consists of one or
more abstract data types (called “private types” in
Ada), with corresponding operations for
constructing, updating, and querying instances of
the type. The implementations of the operations
can be changed without disturbing the clients of
the abstraction. The abstraction may or may not
contain global state over and above the state
represented within instances of the abstract data
types. It if does, this global state is also generally
managed internally, with operations provided for
updating and querying the state, as appropriate.

Ada is now undergoing a revision, as part of the
normal ANSI and IS0 processes for periodically
updating language standards. The revised
language is currently designated Ada 9X]S], with
balloting on the revised standard planned to start
in late 1993.

Adding Object-Orientation

As part of this revision we are updating the
language to be a true object-oriented language.
This has turned out to be a challenging task,
because many of the capabilities normally
associated with object-orientation are already
present in Ada 83, and rather than reinventing
these capabilities in a different guise as part of a

OOPSLA’93, pp. 127-136

127

separate object-oriented extension to the language,
we have chosen to enhance the existing language
mechanisms. As might be expected, this poses a
difficult integration problem, as we try to
minimize redundancy while providing full object-
oriented functionality in a seamless whole.

Other efforts to add object-oriented capabilities to
existing programming languages have generally
started from languages without built-in support for
user-defined abstract data types. The original
object-oriented language, Simula-67[11, was an
outgrowth of Algol 60, which did not even support
the definition of record types. It was the nested
block structure of Algol 60 that provided the
starting point for the class construct of Simula-67.
Similarly, C++[7] was developed as an extension
of C, which provides user-defined data structures
(structs), but no built-in mechanism for data
abstraction. With these languages, both abstraction
and full object-orientation were incorporated in a
single set of new features, thereby blurring the
distinction between abstraction-orientation and
object-orientation.

In fact, many of the benefits associated with
object-orientation are due to its support for
abstractions. If a language already supports
abstractions, like Ada 83, extending the language
to support object-orientation is a quite different
process. One could of course ignore the existing
facilities, and build an independent object-oriented
“comer” of the language. But the net result
would be a bigger, more complex, and less usable
language. A user would have to make an explicit
shift from using the preexisting abstraction
facilities, to using the new object-oriented
facilities.

For Ada 9X, we have taken a different approach.
Rather than adding a new “class construct” or
“object type” to the language, we have chosen to
directly enhance the existing record type, private
type, and “derived” type capabilities. Ada 83 is
unusual in being an abstraction-oriented language
that already provides a limited form of inheritance,

where a new abstract data type may be defined in
terms of a preexisting abstract data type. However,
the facility is quite limited, because a “derived”
data type is limited to having exactly the same set
of internal data components as its “parent” data
type. Only the operations of the type may be
extended or overridden as part of deriving from
the type. Furthermore, the parent type and the
derived type are totally distinct types -- there are
no operations other than explicit conversion that
can treat the different derivatives of a given parent
type equivalently. Essentially these different
derivatives represent independent abstractions,
even though they happen to have a common
structure and a common set of operations.

If you compare this relatively primitive kind of
inheritance with a true object-oriented capability,
the critical difference is that with object-
orientation, one can take advantage of the
common structure and operations of types related
by inheritance, and treat them as simply different
implementations of the same abstraction, rather
than as separate abstractions. Or to put it another
way: in an abstraction-oriented languages, a given
abstraction interface has exactly one
implementation, thereby allowing full static
binding between clients of the interface and this
implementation; with object-orientation, a given
interface may have many implementations, and
each object carries around sufficient information
(a run-time “tag” of some sort) to identify its
implementation, allowing a dynamic binding
between clients and the appropriate
implementation of any given operation of the
interface. This distinction between the static
binding of abstraction-oriented languages and the
dynamic binding of object-oriented languages is
illustrated graphically in Figure 1.

It is worth noting that in the computer science
literature on data abstractions, the possibility of
multiple implementations of a given abstraction
has always been recognized[3,4]. However, when
abstraction facilities were incorporated into
conventional compiled languages, a single

128

Abstraction-Oriented Language

Abstraction Interface

Client of Abstraction,
call on Eval is statically
bound.

pkg bdy Exps is
func Eval(..) is
begin

case E.D is
when Lit =>
. . .

end Eval;
end Exps;

Abstraction Implementation

Object-Oriented Language
1 package Exps is 1

I .typeExpis
tagged . . .

Client of Abstracti
call on Eval is boun
Client of Abstracti
call on Eval is bowlI,
dynamically based OI
tag of E.

Abstraction Interface

. . .
end Exps;

J

Multiple Implementations

Figure 1

129

implementation per interface was typically
adopted for pragmatic reasons(21. This is
illustrated by the languages CLU[6], Ada 83, and
Modula[9]. It was really C++ that was the first
main-stream systems programming language that
recognized that the dynamic binding inherent in
having objects identify their own implementation
could be provided while preserving high
performance. In fact, once it was recognized that
this “dynamic binding” was essentially equivalent
to the explicit case analysis performed on variant
records, it became clear that an object-oriented
approach to managing related variants of the
same abstraction could actually be more efficient
than the traditional methods.

In retrospect, it seems clear that variant records
with the attendant explicit case analysis
represented a somewhat awkward way-station on
the path between the simple numeric-array-
oriented processing of the early Fortran days, and
the complex information-oriented processing of
today. In a similar vein, the very strong type
checking inherent in abstraction-oriented
languages like Ada 83, which developed somewhat
as a reaction to the very weak type checking of the
early variants of Fortran, now appears as an
overreaction. One needs the flexibility of treating
related types all as a single type when desired,
presuming they have some degree of
commonality in their interface. Although a
variant record can be used for this purpose, it
rapidly becomes unwieldy as the number of
variants grows large, and adding a new variant
becomes a maintenance nightmare. Having a
separate type for each variant is a much more
natural, open-ended solution. But once you go
this route, you need some way to bring the distinct
types back together for that processing which can
be common across the types. This inevitably
requires that objects of such types carry some kind
of tag to allow a predominantly common
algorithm to dispatch back to type-specific
processing when appropriate.

With this as a backdrop, it now becomes relatively

clear what capabilities are needed to go from an
abstraction-oriented language like Ada 83 to a full
object-oriented language. First of all, we must
enhance the ability to derive one type from
another, by allowing not only the extending or
overriding of operations, but also the extension of
the type with additional data components.
Secondly, we need a way to refer to a set of related
types when defining the type of a parameter to an
operation, or the type designated by a pointer
(called an “access value” in Ada). Finally, we
need a way for objects to identify their
“underlying” type, so that when all we know
statically (at compile-time) is what set of types
(“class of types”) it belongs to, at run-time we
can determine the specific type of the object so as
to dispatch to the particular type-specific
implementation of a given primitive operation of
the abstract data type.

The Ada 9X Approach

In Ada 9X, these capabilities are all provided by a
modest enhancement of the existing record,
private, and derived type facilities. Record and
private types can be identified as “tagged” types.
This indicates that their objects will be self-
identifying, allowing tagged types related by
derivation to be grouped into “classes” for
parameter passing and pointer manipulation, while
preserving the ability to dispatch on the specific
type of an object in such a class at a later point.
When deriving from a tagged type, one can add
components, either privately (a private extension),
or publicly (a record extension). Private types can
have public extensions, and vice-versa, thereby
allowing a single type with some public and some
private components.

Ada 9X Example

These capabilities are best illustrated by example:

package Expressions is
-- This package defines a class of types
-- used to represeti an arithmetic
-- expression, as might be used
-- by a simple desk calculator program.

130

type Expression is tagged null record;
-- This is the root of the class of
-- types that will represent
-- expressions

fknction Evaluate(E : Expression)
return Float is 0;

-- iThis is a primitive operation of
-- the type; no implementation will
-- be provided for the root type (it
-- is called an “abstra& n operation)

type Literal is new Expression with
-- This is a simple, visible extension
-- of the root Expression type,
-- used to represent the “leaves ” of
-- an expression tree.

Value : Float;
endltcmk

function Evaluate(E : Literal)
return Float;

-- The inherited Evaluatefinction is
-- overridden; the implementation
-- will appear in the package body.

type ExprJ’tr is
access Expression’Class;

-- This is a pointer type; its values
-- can point to objects of any type
-- in the class rooted at Expression.
-- This class is represented by the
-- “class- wide ” type
-- Expression ‘Class.

type Binary-Operator is
new Expression with private;

-- TXis type is the root of a subclass
-- of types, one for each
- binary operator.

function Evaluate(Bop : Binary-Operator)
return Float is <>;

function Create-Binary-Op(
Op-Name : String;
L.&t-Opnd, Right-Opnd : ExprJ’tr)

return Expr-Ptr;
-- This creates an instance of an
-- appropriate derivative of
- Binary-Operator, determined
-- by the operasor name.

type Unafy-Operator is
new Expression with private;

-- This is the root of the subclass of

-- types used to represent
-- invocations of wzary operators

function Evaluate(Uop : Unary-Operator)
return Float is G-;

function Create-Unary-Op(
Op-Name : String;
Right-Opnd : Expr-Ptr)

return Expr-Ptr;
-- This creates an instance of an
-- appropriate der&.tiMe of
-- Unury-Operator, aktermined
-- by the operator name.

Invalid~Opexator~Name : exception;
-- l?zis exception is raised ifthe
-- operator name is unrecognized,
-- or requires a diflerent number of
- operana!s than are provided
-- by the Create routine.

private
-- These full type declarations are
-- hidden from clients of this package
type Binary-Operator is

new Expression with
-- The operator name will be inherent
- in each particular derivative

Left-Opnd : ExprJtr;
Right-Opnd : ExprJtr;

end monk

type Unary-Operator is
new Expression with

-- The operator name will be inherent
-- in each particular den’m’ve

Right-Opnd : Expr-Ptr;
end&,

end Expressions;

Types and Classes

The above package represents the interface to the
Expression class of types. It is worthwhile noting
at this point certain unique characteristics of the
Ada 9X object-oriented facilities. Because we are
building on a language that is very strongly type-
checked, we choose to retain an explicit distinction
between a “specific” type like Expression, Literal,
Binary-Operator, or Unary-Operator, and the set
of types (“class” of types) rooted at such a type.
This distinction is blurred in most object-oriented

131

approaches, with the same name referring to a
single type or a set of types depending on context.

In Ada 9X, if one wants to define a parameter or
an access type that permits references to objects of
any type in a class, one must explicitly specify the
“class-wide” type, such as ExpressionClass. This
class-wide type stands for the type Expression,
plus all of its derivatives, direct or indirect (Literal,
Binary-Operator, etc.) Similarly, a class-wide type
Binary-Operator’Class stands for
Binary-Operator and its derivatives (such as
Add-Op and Subtract-Op defined below in the
body of package Expressions).
Binary-Operator’Class can be thought of as a
subclass of Expression’Class, in that it represents a
subset of the types represented by
Expression’Class.

By making this explicit distinction between
specific types and their associated class-wide types,
Ada 9X gives the programmer full control over
static versus dynamic binding to operations. It is
only operations on a class-wide operand, such as
the dereference of a class-wide pointer (like
Expr-Ptr) that result in a run-time dispatch to an
“appropriate” implementation of a given
primitive operation (like Evaluate). Operands of a
specific type result in a normal statically bound
call. This distinction makes it easier to identify,
and hence document, those places where
(re)dispatching occurs, which is essential when
detining derivatives of a type that inherit some of
the primitive operations, but choose to override
others. If the implementation of one primitive
operation involves a redispatch to the
implementation of a second primitive, overriding
this second primitive has an indirect effect on the
first. The Ada 9X approach ensures that these
indirect effects are readily visible in the source,
and deserving of documentation.

Completing the Example

Here is a simple test program that illustrates how
the interface to the Expressions abstraction is used,

and includes a call on Evaluate that involves run-
time dispatch (dynamic binding):

with Expressions; use Expressions;

procedure Test-Expr is
-- Simple test for the expression
- abstraction

X : Float;

E : Expr-ptr;

begin
-- Build an expression tree
--for (12.0 - 7.0) + 10.0
E := Create-Binary-Op(“+“,

Create-Binary_Op(“-“,
new Literal’(ValuW12.0),
new Literal’(value=>7.0)),

new Literal’(ValUe=> 10.0));

-- Dispatch to the appropriate Evaluute
-- routine, based on the tag of E.all (it
-- should identtJv the adding operator)
X := Evaluate(E.all);
if X I= 15.0 then

raise Program.Jrror;
-- Something is amiss

endif;

end TestJSxpr;

Here is a possible implementation of the
Expressions package:

package body Expressions is

-- First we de3ne the body for the
-- Evaluate for literals
fimction Evaluate(E : Literal)

return Float is

begin
return E&Value;

end Evaluate:

-- Next we dejne some derivatives of
-- Binury~Operator

type Add-Op is
new Binary-Operator with null record;

-- lkis is a null record extension of
-- Binary~Operator, since the
-- components in Binary-Operator
-- are suflcient for Aad-Op

function Evaluate(Aop : Add-Op)

return Float is

h+

132

return Evaluate(Aop.Left-Opndall) +
Evaluate(Aop.Right~Opnd.all);

-- The above calls on Evaluate
-- dispatch at run-time to the
-- “appropriate n implementation,
-- based on the tags of the
-- objects designated by the left
-- and tight operand pointers.

end Evaluate;

type Subtract-Op is
new Binary-Operator with null recor&,

function Evaluate(Sop : Subtract-Op)

return Float is
begin

return Evaluate(Sop.Left~Opnd.all) -
Evaluate(Sop.Right-Opndall);
-- The above calls involve run-
-- time dispatching, as in the
-- version of Evaluate for
-- Aad-ops.

end Evaluate;

. . . -- etc. for other binary operators;
-- a similar approach wouid be used
--for unary operators.

-- This de$nes an access-to-function
-- type, whose values point to an
-- appropriate creation fin&on
type Bin-Op-Creator is

access function(
Left-Opnd, Right-Opnd : ExprJtr)

return Expr-Ptr;

- Here we deBne a data structure for
- associating operator names
-- with afinction for creating a
-particular derivative of
-- &ary~Operator

type Bin-Op-Name-Record(
Name-Length : Positive);

type Bin-Op-Name& is
access Bin-Op-Name-Record;

type Bin-Of-Name_Record(
NameJength : Positive) is

Next : Bin-Op-Name&;
-- link on chain

Creator : Bin~Op~Creatoq
_* creationfunction

Op-Name : String(1..
NameJmgth);

- operator name
endrecord;

First-Bin-Op : Bin-Op-NameJtr := null;
-- Singly-linked list of registered
- binary operators

procedure Register~Binary-Op(
Op-Name : String;
Creation-Function : Bin-Op--Creator)

L&ill

-- Prepend operator to list of
-- registered binary operators
First-Bin-Op :=

new Bin-Op-Name-Record’(

NameLength => Op-Name’Length,
Next => First-Bin-Op,

-- Chain onto head of list
Creator => Creation-Function,

Op-Name => Op-Name);
end Register~Binary~Op;

function Create-Binary-Op(
Op-Name : String;

Left-Opnd : Expr-Ptr;
Right-Opnd : Expr-Ptr) is

Op-Ptr : Binary-Op-Name-Ptr :=
First-Binary-Op;

begn
-- Look for operator in list of
-- registered binary ops
while Op-Ptr I= null loop

if Op-Ptr.Op-Name = Op-Name

then
- Found it, call its creation
--function

OpJtr.Creator(Left~Opnd,

Right-Opnd);
end if;

op_Ptr := OpJtr.Next;

end loop;
- Not a registered binary operator,
-- raise an excepion
raise Invalid-Open&r-Name;

end Create-Binary-Op;

-- Here we a!e@e the creation finctions,
- one for each binary operator:

function Create-Add-Op(
Left-Opnd : Expr-Ptr,
Right-Opnd : Expr-Ptr)

133

return Expr-Ptr is
begin

return new Add-Op’(

Left-Opnd, Right-Opnd);
end Create-Add-Op;

function Create-Sub-Op(

Left-Opnd : Expr-Ptr;
Right-Opnd : ExprJ’tr)

return Expr-Ptr is

&sin
return new Subtract-Op’(

Left_Opnd, Right-Opnd);
end Create-Sub-Op;

begin
-- Now register the various binary
-- operators
Register-Binary-Op(

Op-Name => “+“,
Creation-Function -

Create-Add-Op’ Access);

N&er_Binary_Op(
%-Name => “-“,

Creation-Function =7

Create-Sub-Op’ Access);
. . . -- etc. for other binary operators.

-- Unary operators would be handled
-* in a similarfashion

end Expressions;

Generics and OOP

If you look at the implementations given above
for the various operators, you should notice that
the definitions tend to be quite repetitive. This
provides an opportunity to show how the generic
facilities of Ada are integrated with the tagged
type features. The following implementation is
essentially equivalent to the above, but
encapsulates in a generic the type extension, the
implementation of the operations, and the
registration all in one place, allowing it to be
instantiated repeatedly, once for each operator:

package body Expressions is
-- l’his version of the body illustrates
-- the combination of tagged type
- capabilities and the genenk
-- capabilities of Ada 9X

type Bin-Op-Creator is

access function(

Left-Opnd, Right-Opnd : Expr-Ptr)
return Expr-Ptr;

*- as above

procedure Register~Binary~Op(
Op-Name : String;
Creation-Function : Bin-Op-Creator)

i&in

. . . -- us above
end Register-Binary-Op;

generic
Op-Name : String;
with function Operate(

Left, Right : Float) return Float;
package Define-Bin-Op is

type Bin-Op is new Binary-Operator
with null record,

function Evaluate(Bop : Bin-Op)
return Float;

function Create(
Left-Opnd, Right-Opnd : ExprJ’tr)

return ExprJtr;
Create-P& : constant Bin-Op-Creator

: = Create’ Access;
end Define-Bin-Op;

package body Define_Bin-Op is
function Evaluate(Bop : Bin-Op)

return Float is

begin
-- Apply the Operate function to
-- the value of the operands

mmoperate(
Evaluate(Bop.Left-Opndall),

Evahrate(Bop.Right~Opnd.all));
-- These two dispatch based
-- on the tag of the operands

end Evaluate;
function Create(

Left-Opnd, Right-Opnd : ExprJ’tr)
return Expr-Ptr is

begin
-- Create and return a pointer to
-- an instance of the type
return new Bin-Op’(

Left-Opnd, Right-Opnd);

end Create;

&Tin
-- Register operator as part of

-- instantiation
Register~Binary~Op(

134

Op-Name, Create-h);
end Define-Bin_Op;

-- Given the above generic, we can now
-- de$ne and register a binary operator
-- by a single instantiation.
package Defme-Add-Op is

new Defme-Bin-Op(

Op-Name => “+“,
Operate =7 “+“);

package Define-Subtract-Op is
new Define-Bin-Op(

Op_Name =7 “-“,
Operate ~7 “-“);

. . . -- etc. for other operators; a similar
-- generic could be de$ned and
-- then instantiazed.for each
- unary operator.

end Expressions;

As is illustrated above, object-oriented facilities are
complemented by generic facilities; they do not
take their place. Both the run-time polymorphism
inherent in class-wide types with dispatching on
object tags, and the compile-time polymorphism
inherent in generic templates and parameter
substitution, are critical to building sophisticated
yet maintainable abstractions.

Summary

Adding object-oriented facilities to Ada 83
represents both a unique opportunity and a
challenging integration task. In contrast to C++
and Simula-67, Ada 9X is building on a modern
abstraction-oriented language, that already has
support for modularization (packages), abstract
data types (private types), compile-time
polymorphism (generic templates and
instantiation), and run-time exception handling.
We considered simply adding an object-oriented
“corner” to the language. But instead, we chose
to identify the minimal set of enhancements that
would provide full support for object-oriented
programming, while remaining consistent and
integrated with the existing abstraction facilities.
In so doing, we believe we identified the critical

capability that distinguishes true object-oriented
programming languages from abstraction-oriented
programming languages, namely the ability to
have effectively multiple implementations for a
single abstraction. Each object identifies its
particular implementation, allowing a dynamic
binding between the client of an abstraction and
the appropriate implementation of a given
operation.

References

1. Dahl, D.J., Myhrhaug, B. and Nygaard, K. 27ze
Simula 67 Common Base Language. Norwegian
Computing Center, Oslo, 1970.

2. Dijkstra, E. Notes on structured programming.
In Structured Programming, O.J. Dahl et al., Eds.,
Academic Press, New York, 1972.

3. Guttag, J. Abstract data types and the
development of data structures. Communications
of the ACM 20, 6 (June 1977), 396-404.

4. Guttag, J.V., Horowitz, E., and Musser, D.R.
Abstract data types and software validation.
Communications of the ACM 21, 12 (Dec. 1978),
10481064.

5. Intermetrics, Inc. Ada 9X D-a@ Reference
Manual Version 3.0 (June 1993).

6. Liskov, B., Snyder, A., Atkinson, R., and
Schaffert, C. Abstraction mechanisms in CLU.
Communications of the ACM 20, 8 (Aug. 1977),
564-576.

7. Stroustrup, B. The C+ + Programming
Language, 2nd Ed., Addison-Wesley, Reading,
MA, 1991.

8. US DoD. Military standard Ada programming
language. ANSVMIL-STD 18 15A. American
National Standards Institute, 1983.

9. Wirth, N. Modula: A language for modular
multiprogramming. Sofrware--Practice and
Experience (Jan. 1977), 3-35.

135

\documentstyle[llpt,twocolumn](article)
\columnsep-0.33in
\topmargin--0.25in
\textheight=8.75in
\oddsidemargin--0.25in
\evensidemargin--0.25in
\textwidth-7.0in
% No page numbers:

\pagestylelempty)

\begin(document)

4: Have title and abstract with narrow interline spacing:
\baselineskip 12pt

\title(
(\LARGE How to Get Your Paper Accepted at OOPSLA))

\author((\bf Alan Snyder)\\

\\
(\it Hewlett-Packard Laboratories)\\
(\it P.O. Box 10490)\\
(\it Palo Alto, CA 94303-0969))

% The following suppresses the date:

\datet 1
\maketitle
% No page number on title page (the global empty declaration takes effect
% on second page):
\thispagestyle(empty)

% In order to get room for the copyright notice at the bottom of the left
% column of the first page, use the '\newpage' command which starts a new
% column, rather than a new page when in two-column format, Insert the
% \newpage command where appropriate in your text or abstract.

\begin(abstract)
Abstract body.

\end(abstract)

% Regular interline spacing:
\baselineskip 14pt

\section(Introduction)

Body of the paper.

\end(document)

136

