
Adding Domain-Specific and General Purpose Language
Features to Java with the Java Language Extender ∗

Eric Van Wyk Lijesh Krishnan Derek Bodin Eric Johnson
Department of Computer Science and Engineering

University of Minnesota
evw,krishnan,bodin,johnson@cs.umn.edu

Abstract
The Java Language Extender is a compiler-generator tool that al-
lows programmers to create new domain-adapted languages by
importing a set of domain-specific language extensions into an
extensible specification of Java 1.4. Language extensions define
the syntax, semantic analysis, and optimizations of new language
constructs. Java and the language extensions are specified as at-
tribute grammar fragments written in Silver, an attribute gram-
mar language supporting forwarding and higher-order attributes.
Programmers need no implementation-level knowledge of the lan-
guage extensions and the Silver tools automatically compose the
programmer-selected extensions and the Java host language speci-
fication. We demonstrate several language extensions. One embeds
the SQL database query language into Java and statically checks for
syntax and type errors in SQL queries. Other extensions for the do-
main of computational geometry provide transformations that sim-
plify the writing of efficient and robust geometric algorithms. Gen-
eral purpose extensions include Java 1.5 features such as the for-
each loop and auto-boxing and unboxing and features from Pizza
such as pattern matching.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors

General Terms Compilers, Programming Languages, Domain-
Specific Languages

Keywords Extensible Languages, Attribute Grammars, Forward-
ing

1. Introduction
Software development is difficult. It is an error-prone and time-
consuming process. This is at least partially because of the the wide
semantic gap between the programmer’s high-level understanding
of a problem’s solution and the relatively low-level language in
which the solution must be encoded. General purpose language fea-
tures such as classes and generics in object-oriented programming

∗ This work is partially funded by the National Science Foundation under
NSF CAREER Award #0347860 and NSF CCF Award #0429640 and by
the McKnight Foundation.

Copyright is held by the author/owner(s).

OOPSLA’06 October 22–26, 2006, Portland, Oregon, USA.
ACM 1-59593-491-X/06/0010.

or higher-order functions in functional programming are useful for
specifying abstractions for a given problem or specific domain,
but they only provide the functionality of the desired abstractions.
Domain-specific languages (DSLs) can provide this functionality
as well as language constructs (new syntax) for the domain-specific
abstractions. These raise the level of abstraction of the language to
a specific domain and thus reduce the semantic gap. DSLs also pro-
vide domain-specific optimizations and analyses that are either im-
possible or quite difficult to specify for programs written in general
purpose languages. But problems often cross multiple domains and
no language will contain all of the general-purpose and domain-
specific features needed to address all of the problem’s aspects, thus
the fundamental problem remains. Thus, programmers cannot “say
what they mean” but must encode their ideas as programming id-
ioms at a lower level of abstraction.

The Java Language Extender (JLE) is a language processing
tool that addresses this fundamental problem. It makes it possible
for programmers to import a set of domain-specific language ex-
tensions into an extensible specification of Java in order to create
new domain-adapted languages. An extended language defined by
this process has features that raise the level of abstraction to that
of a particular problem. These features may be new language con-
structs, semantic analyses, or optimizing program transformations,
and are packaged as modular language extensions. Language ex-
tensions can be as simple as a the Java 1.5 for-each loop or the
more sophisticated set of SQL language constructs that statically
check for syntax and type errors in SQL queries.

JLE makes an important distinction between two activities:
(i) implementing a language extension, which is performed by
a domain-expert feature designer and (ii) selecting the language
extensions that will be imported into an extensible language speci-
fication in order to create an extended language. This second activ-
ity is performed by a programmer. This is similar to the distinction
between library writers and library users. This distinction and the
way that extensible languages and language extensions are used
in our framework is diagrammed in Figure 1 in which a program-
mer selects the SQL and geometric (CG) language extensions that
they want to use in writing a program with both database query
and geometric aspects to it. An important characteristic of lan-
guage extensions in JLE is that the programmer does not need any
implementation-level knowledge of the extensions to import them
into the host language. The extensions are also modular and com-
posable so that several can be simultaneously composed with the
Java host language. The specifications for the selected language ex-
tensions and the host language are provided to the Silver extensible
compiler tools that generate a customized compiler. Thus, there is
an initial “compiler generation” step that the tools, at the direction
of the programmer, must perform. Language extensions are not
loaded into the compiler during compilation.

728



selects �

�writes

�

�

�

�

Programmer

Java program
with SQL and
CG constructs

�

Java 1.4 language
specification

���
JLE/Silver extensible

compiler tools

�generates
input outputCustomized Java

compiler
� Pure Java 1.4

program

Language
Extensions

Feature
Designers

implements
SQL

implements
CG

implements
foreach

Figure 1. Using JLE and Language Extensions.

The Java 1.4 “host” language and the language extensions de-
scribed below are specified as attribute grammars and implemented
in the Silver, an attribute grammar specification language that sup-
ports higher-order attributes [10] and forwarding [8]. Language ex-
tensions specify new productions to define new language constructs
and attribute definitions to define static analysis on extension or
host language productions. Extension productions also specify their
translation to pure Java code and “forward” attribute queries for at-
tribute they do not explicitly define to this semantically equivalent
construct [8]. This enables the high degree of modularity in lan-
guage specification that we seek. JLE does not generate byte-codes,
instead, forwarding is employed to extract a programs translation to
pure Java 1.4 code that a traditional Java compiler then converts to
byte-codes for execution.

2. Language Extensions
We have specified a number of modular language extensions in
Silver that extend the host Java 1.4 language specification in order
to highlight the static analysis and optimization capabilities of JLE.

One domain-specific extension embeds SQL into Java so that
queries can be written directly, as opposed to creating character
strings containing the SQL queries as is done in library-based ap-
proaches. This extension also defines attributes on the SQL produc-
tions that check at compiler-time that no syntax errors and no type
errors have been made in SQL queries. When this extension is used,
the extended compiler would detect the type error in the following
syntactically valid program fragment (where c is a Connection to
the database server and first name is a String-valued field):

ResultSet rs = using c query { SELECT first name
FROM person table WHERE first name > 18 } ;

A second domain-specific extension [9] introduces static analy-
sis and optimizing program transformations for exact-precision nu-
meric types and symbolic-perturbation transformations for coping
with data degeneracies that are specific to the domain of computa-
tional geometry. These greatly simplify the writing of efficient and
robust geometric programs.

We have also created a number of modular language extensions
that add new general purpose features to Java 1.4. One such ex-
tension adds algebraic data types and pattern matching similar to
those found in ML and Pizza [7]. Another extension adds the for-
each loop and auto-boxing and unboxing features of Java 1.5 to
the Java 1.4 specification as language extensions. These extensions
support our on-going development of a Silver attribute grammar
specification of Java 1.5.

3. Related Work
Many language processing tools have been developed for build-
ing extensions to languages. For example, MetaBorg[4] allows
one to extend a host language by adding concrete syntax for ob-
jects. This system uses strategies and term-rewriting to process pro-
grams. Specifying semantic analyses, like the error checking, is less
straight forward that it is in JLE using attributes. The Polyglot ex-
tensible Java compiler [6] allows Java to be extended with powerful
abstractions, but it requires one to write Java code to incorporate
new extensions into Java host language. Macro based systems such
as JSE (Java Syntax Extender) [1], Maya [2], and JTS [3] have also
been proposed. Maya and JTS provide specific error checking facil-
ities but they lack the ability to specify more general static analysis.
These approaches do not support the automatic composition of the
full-featured language extensions expressible in JLE.

The attribute grammar community has also addressed issues of
modular language design. Of particular interest are the rewritable
reference attribute grammars [5] in the JastAddII system. Language
extension constructs are translated to host language constructs by
destructive rewrites on the syntax tree. Thus all analysis on an
extension construct must be completed before any analysis on its
translation to the host language. This is more restrictive than for-
warding and hinders the automatic composition of language fea-
tures that perform semantic analysis.

4. Software Availability
The Java Language Extender, including Silver and the Java 1.4
and language extension attribute grammar specifications are freely
available at http://www.melt.cs.umn.edu.

Acknowledgments
We thank Phil Russel, Paul Huntington, August Schwerdfeger, and
Jimin Gao for their help in developing extensions to Java.

References
[1] J. Bachrach and K. Playford. The Java syntactic extender (JSE). In

Proc. of OOPSLA ’01 Conf., pages 31–42. ACM Press, 2001.

[2] J. Baker and W. Hsieh. Maya: Multiple-dispatch syntax extension in
java. In Proc. of ACM PLDI Conf., pages 270–281. ACM, 2002.

[3] D. Batory, D. Lofaso, and Y. Smaragdakis. JTS: tools for implement-
ing domain-specific languages. In Proceedings Fifth International
Conference on Software Reuse, pages 143–53. IEEE, 2–5 1998.

[4] M. Bravenboer and E. Visser. Concrete syntax for objects: domain-
specific language embedding and assimilation without restrictions. In
Proc. of OOPSLA ’04 Conf., pages 365–383, 2004.

[5] T. Ekman and G. Hedin. Rewritable reference attributed grammars.
In Proc. of ECOOP ’04 Conf., pages 144–169, 2004.

[6] N. Nystrom, M. R. Clarkson, and A. C. Myer. Polyglot: An extensible
compiler framework for java. In Proc. 12th International Conf. on
Compiler Construction, volume 2622 of LNCS, pages 138–152.
Springer-Verlag, 2003.

[7] M. Odersky and P. Wadler. Pizza into Java: translating theory into
practice. In Proc. of ACM POPL Conf., pages 146–159, 1997.

[8] E. Van Wyk, O. de Moor, K. Backhouse, and P. Kwiatkowski.
Forwarding in attribute grammars for modular language design.
In Proc. 11th Intl. Conf. on Compiler Construction, volume 2304 of
LNCS, pages 128–142. Springer-Verlag, 2002.

[9] E. Van Wyk and E. Johnson. Composable language extensions
for computational geometry: a case study. In Proc. 40th Hawaii
International Conf. on System Sciences, 2007.

[10] H. Vogt, S. D. Swierstra, and M. F. Kuiper. Higher-order attribute
grammars. In ACM PLDI Conf., pages 131–145, 1990.

729


