
Experiences in DBMS Implementation Using an Object-oriented

Persistent Programming Language and a Database Toolkit

Eric N. Hanson+ Tina M. Harveyj Mark A. Roths

Abstract

The EXODUS database toolkit, and in particular
the E persistent programming language, have been
used in two substantial database system implemen-
tation efforts by the authors (the Ariel database
rule system and the Triton nested relation DBMS).
Observed advantages of using a persistent pro-
gramming language for database system implemen-
tation include ease of implementation of special-
purpose persistent objects used by the DBMS such
as catalogs, data indexes, rule indexes, and nested
relational structures. Other advantages of using E
(a persistent version of C++) that are independent
of the persistence issue are the usefulness of object-
oriented programming in developing large software
systems, and the utility of the Collection abstrac-
tion in E. Observed disadvantages include (1) the
inability to map the type system of the DBMS to
the type system of the underlying programming
language while still retaining good performance for

tEric Hanson is with the Artificial Intelligence Tech-

nology Office (WL/AAA-l), Air Force Wright Laboratory,

Wright-Patterson AFB, OH 45433, and with Wright State

University. His work was supported in part by the Air Force

Office of Scientific Research under grant number AFOSR-

89-0286.

*Tina Harvey’s work was done while with the Department

of Electrical and Computer Engineering Air Force Institute

of Technology. She is currently with the 7th Communica-

tions Group/DOWI, The Pentagon, Washington DC 20330.

§Mark Roth is with the Department of Electrical and

Computer Engineering (AFIT/ENG), Air Force Institute of

Technology, Wright-Patterson AFB, OH 45433.

ad-hoc queries, and (2) software engineering diffi-
culties due to the distinction in E between database
types and main-memory types.

1 Introduction

It is well-known in the database community that

implementing DBMS code is difficult and time-

consuming. Recent research on persistent pro-

gramming languages and other tools to support

database implementation has given hope that the

burden of implementing DBMS code could be sub-

stantially reduced. In an attempt to simplify the

implementation of two different prototype database

systems (the Ariel database rule system [13, 141

and the Triton nested relational database system

[15, 271) we have used the EXODUS database

toolkit extensively [7]. In particular, we have made

significant use of the E programming language of

EXODUS [24], a version of C++ [32] extended with

persistent objects. This paper reviews the advan-

tages and disadvantages of using a database toolkit

and a persistent programming language (E) that

we observed while implementing non-trivial DBMS

soft ware.

The next section describes the EXODUS toolkit.

Section 3 discusses the impact of persistence on our

implementations, as well as issues related to the

type systems of the DBMS and the underlying pro-

gramming language. Section 4 discusses the impact

of features of the language and toolkit unrelated to

persistence, including the impact of object-oriented

programming, collections, and the EXODUS opti-

mizer generator [12]. Section 5 covers issues related

to performance, Section G briefly reviews related

research, and Section 7 summarizes and presents

OOPSLA’91, pp. 314-328

314

conclusions. We now turn to the discussion of EX-

ODUS.

2 Overview of EXODUS

EXODUS provides some powerful tools to help

automate the generation of application-specific

database systems, including a storage manager,

the persistent programming language E, a rule-

based query optimizer generator and a B+tree class

generator. One possible architectural framework

for using EXODUS to build a database system is

shown in Figure 1.

The EXODUS storage manager is accessed via

procedural calls which allow creation and destruc-

tion of database files containing sets of objects, and

iteration through the contents of files. Objects can

be inserted in and deleted from a file at any off-

set in the file, and explicit clustering of objects on

disk can be specified. The storage manager pro-

vides procedures for transaction and version man-

agement .

The E programming language provided by the

EXODUS toolkit is an extension of C++ with per-

sistent objects. Persistence in E is implemented on

top of the EXODUS storage manager. E extends

C++ types and defines a corresponding db type

(database type) for each C++ and user defined

type. These db types are used to define objects

in the database. There are four kinds of db types

in E:

l fundamental db types - dbshort, dbint, db-

long, dbfloat, dbdouble, dbcha.r, and dbvoid

l dbclass, dbstruct and dbunion (every sub com-

ponent of a dbclass must be of a db type)

l pointer to a db type object

l arrays of db type objects

If the persistent keyword is used before the dec-

laration of a db type, EXODUS will map the persis-

tent db variables to a permanent storage location.

In E, a collection is an unordered set of objects.

E also has a feature called generator classes which

allows defining a generic template for a Q-+-style

class. Customized classes can then be declared us-

ing the generator class name plus additional pa-

rameters for customization. Collections are sup-

ported in E using a built-in generator class called

collection, which is invoked by collection [T] where

T is any db type. A collection must be instantiated

for a specific type before it can be used to declare

collection objects. EXODUS provides a generator

class for B+trees to allow straightforward creation

of indexes for different data types. A typical way

to create an indexed data set is to create a collec-

tion, and then create a B+tree as an index on the

objects in that collection.

In E, iterutors are controlled looping functions

that are used to step through a sequence of values

such as collections. An iterator is made up of an

iterator function and an interate loop. The iter-

ate loop consumes values that the iterator function

produces. The iterator function yields values to the

iterate loop.

The EXODUS optimizer generator takes as in-

put (1) a set of operators, (2) a set of methods

that implement the operators, (3) transformation

rules that describe equivalence-preserving transfor-

mations of query trees, and (4) implementation

rules that describe how to replace an operator with

a specific method. Using these rules, a specific op-

timizer is generated for the particular application.

Neither the Ariel nor Triton developers made use

of the optimizer generator, so we are not able to

comment extensively on it. The developers of Ariel

made the decision to implement a custom optimizer

rather than use the optimizer generator. One rea-

son for this is that the original optimizer generator

required use of C functions and structures, and we

were committed to using object-oriented program-

ming in C++. The latest version of the optimizer

generator now also handles C++ and E objects, so

we would no longer object to using the optimizer

generator on these grounds. Another reason we

decided against using the optimizer generator was

the need to be able to optimize a set of commands

in the action of an Ariel rule. We felt it might be

difficult to implement special-purpose optimization

315

PARSER

QUERY E
+ OPTIMIZER COMPILED

>
8.5 COMPILER

COMPILER
QUERY

v 1:

OPERATOR
METHODS

CATALOG
ACCESS

MANAGER METHODS

STORAGE

f] F

Figure 1: An architecture for a DBMS based on EXODUS

routines for rule actions using the optimizer gener-

ator. The Triton optimizer has not been developed,

but the intent is to use the optimizer generator. A

more thorough discussion of the merits of the op-

timizer generator awaits more experience using it.

In the next section we comment on the impact

of persistence in the programming language based

on our experiences with E.

3 The Impact of Persistence

The availability of persistent objects and collec-

tions in E has definitely proved worthwhile to use,

significantly simplifying implementation of system

catalogs, data indexes, rule indexes, and data stor-

age structures. Having persistent objects in the

programming language is a convenient interface to

the storage manager that frees the programmer

from most of the details of mapping data between

disk and main-memory data structures. The pri-

mary disappointment with persistence in E is re-

lated to issues of interaction between the database

type system and E language type system, which

will be discussed later in Section 4. Also, our expe-

riences reinforce the belief that persistence should

be a property of data independent of type. This

property was defined as persistence data type or-

thogonality, in the design of PS-algol [4], and is also

sometimes called simply persistence orthogonality.

3.1 Catalogs

The catalogs in Ariel have been implemented using

persistent E objects. The Relation catalog consists

of a collection of objects of type Relation. The

316

Relation object has methods on it to set and get

information about attributes, presence of indexes,

statistics about relation size, number of unique val-

ues per attribute and so on. Instance variables of

the Relation object include a list of Attribute ob-

jects to describe the attribute names, data types,

and other information about each attribute. Using

E provided high-performance access to the catalog

data without the need to implement any code for

mapping the catalog information into special inter-

nal data structures. Typically, relational database

systems store catalog information in relations, and

map data about a recently-accessed set of relations

into a main-memory cntulog cache (this is the ap-

proach used in POSTGRES [31]). Using persistent

objects for the catalogs freed us from having to im-

plement a catalog cache.

The only drawback to our approach was that it

is not possible to use the query language to query

our catalogs. Special-purpose commands have been

provided to get information from the catalogs to

make up for this, but these commands do not give

access in as flexible a manner as a general-purpose

query language. Similar advantages to using per-

sistent data for the catalogs have been realized in

the Triton project.

3.2 Indexes

Using persistent objects definitely simplifies the im-

plementation of complex permanent storage struc-

tures such as data indexes and other special pur-

pose indexes such as rule indexes. As with the cat-

alogs, the primary simplification is that the pro-

grammer does not need to be concerned with map-

ping data between the disk and main-memory data

structures. Hence, it becomes essentially no more

difficult to implement a persistent index structure

such as a B+-tree than it would be to implement

a main-memory index structure, except that per-

formance artifacts such as node size and clustering

must be addressed more carefully in the persistent

implementation.

The amount of code saved by using a persistent

language to implement indexes depends on a num-

ber of factors including the complexity of the index

being implemented, the programming language fea-

tures available independent of persistence, etc. Re-

search prototypes using PS-algol have shown that

code size can be reduced by a factor of 3 in some

cases [18]. The Ariel implementors are using per-

sistent objects to implement a fairly complex rule

index [14]. We believe that this rule index would

have been infeasible to implement without the aid

of a persistent programming language.

3.3 Data Storage Structures and Lan-
guage and Database Type System
Issues

Implementation of data storage structures for rela-

tions and nested relations was made simpler than

it would have been otherwise by the availability

of persistent collections provided in E. There are

two main approaches to building database stor-

age structures using E, and using them to process

database queries (these approaches also apply for

other persistent programming languages that do

all type checking at compile time and use conven-

tional compiler and linker technology). The first

approach, which we call the compiled approach, is

to compile database type definitions and object

(e.g., relation) creation commands into E code, and

compile this code into object files using the E com-

piler. To compile a query, the system generates an-

other file of E code, which is compiled and linked

with the object files containing the compiled type

definitions. The resulting executable is then run

to process the query. This approach has the ap-

pealing property that database types are mapped

directly into types in the underlying programming

language. It can also provide fast query execution

since queries are compiled directly into machine

code. Unfortunately, it results in a severe perfor-

mance problem for query compilation if a conven-

tional compiler and linker are used by the persis-

tent programming language, as they are in E (we

will discuss performance figures later).

The second approach, which we call the inter-

preted approach, does not use the persistent pro-

317

gramming language at all for compiling types and

queries. Instead, type definitions and queries are

interpreted directly by the DBMS. Data is stored

in persistent collections of generic storage objects

(e.g., byte strings) for which one type (e.g., Tu-

pIeCollection in Ariel) is defined when the database

system itself is compiled. Implementing code to in-

terpret the format of these generic objects stored

in the persistent collections of data is left to the

DBMS implementor. Execution of queries is done

by compiling a query into an execution plan, which

is then interpreted. A drawback of this approach

is that interpreted queries will run slower than the

compiled queries in the first approach, given that

the same query plan is used in both approaches.

However, response time for any query generated

in text form and sent to the DBMS for execution

is dramatically better in the second approach (a

fraction of a second vs. many seconds). Such long

response time for ad-hoc queries is not tolerable.

We chose to implement the interpreted approach

in Ariel since we felt the response time of the

compiled approach was unacceptable. Relations in

Ariel are persistent collections of byte strings. Tu-

ples are mapped onto these byte strings explicitly.

A TupleDescriptor object describes how tuple

fields are arranged in the byte strings in a collec-

tion representing a relation. An alternative to this

approach would have been to map a relation defini-

tion directly into E language constructs, and then

compile the resulting E code with the E compiler.

The Ariel type system allows separate commands

for defining relation types and constructing in-

stances of relations with those types, similar to

the mechanism provided in the EXCESS query lan-

guage [8]. Th e o f 11 owing is an example definition

of a relation type and a relation in Ariel:

define relation type

emp_type(name=c20, age=int,

salary=float, dept,no= int)
create relation emp : emp,type

The E code that would be generated to represent

the same information is:

dbclass emp-type

<
dbchar name [20] ;

dbint age;

dbfloat salary;

dbint dept,no;

1;

dbclass emp,Collection :

collection[emp,typel ;

persistent emp_Collection emp;

Compiling a source file containing the E code

above into an object file takes 3 seconds on a Sun

SPARCstation 1 computer. Compiling an E source

file containing a trivial one-relation selection query

and linking that file with the appropriate object

file for the relation and the E library to create an

executable file takes more than 15 seconds.

An alternative approach to implementing a per-

sistent language to support DBMS development

would be to start with a language supporting in-

cremental compilation of both types and program

code, such as Smalltalk [ll] or Lisp and CLOS

[17]. This would allow direct mapping of database

types into language types, and fast compilation of

both types and queries, making the “compiled” ap-

proach discussed earlier practical. However, this

approach would bring with it the larger run-time

overhead associated with Smalltalk or Lisp.

3.4 Type System Mapping Example

As another more sophisticated example of a trans-

lation from a database type to underlying E types,

in Triton, a nested relation definition is mapped

directly into a persistent collection of E objects,

which in turn have fields which contain collections

of objects. Figure 2 shows a nested relation that

holds information on VHSIC Hardware Description

Language (VHDL) systems[3]. Figure 3 gives the

E code representation of the Systems relation.

This implementation illustrates the ease with

which nested relation types can be mapped into

E and also allows compilation of Triton queries

318

number name

43191 COUNTER

14701 FULL-ADDER

I

camps ports

cov# name mode type start-bit stop-bit

STRT in BIT 0 0
15899 STROBE in BIT 0 0

CON in BIT-V 0 1
30018 DATA-BUS in BIT-V 0 3

Figure 2: The Systems Relation

into machine code. However, it suffers from the etc., without modification. It would also be pos-

performance problem mentioned above for ad hoc sible to build on the PersistentCollection class by

queries and thus an interpreted implementation of creating subclasses. The E language does not allow

the Triton type system and query processor is be- subclasses to be derived from the built-in collection

ing considered for use by Triton application devel- classes of E, although there appears to be noth-

opers. On the other hand, Since the Triton system ing preventing this. Although object persistence in

is targeted for use by embedded database appli- E was not especially useful for storing relations in

cations (such as CAD or CASE tools), extended Ariel, we still believe persistence is worthwhile in

SQL commands [25] will be embedded in a host a database implementation language because of its

programming language and compiled as part of the usefulness for implementing indexes, catalogs, and

application. Thus, ad hoc queries will not normally any other data structures with object types that

be performed. cannot change at run time.

It is unfortunate that the difficulty in making use

of the E compiler to compile database types and

queries negates some of the advantages of using a

persistent programming language. Essentially the

only language feature necessary to support stored

data using the “interpreted” approach to DBMS

implementation is the persistent collection of byte

strings. It would thus be about the same amount of

work to implement stored relations using a direct

interface to the storage manager (e.g., a C+ •l- class

called PersistentCollection with the same meth-

ods provided by E collections, including get-first,

getnext, getlast and get-prev). This would not

require extensions to the C-l-+ compiler on the part

of the EXODUS implementors. Moreover, it would

have allowed use of a standard C-l-+ programming

environment including code inspectors, debuggers,

Another difficulty we have faced implementing

Ariel is a distinction in E between database classes

defined using the dbclass notation, and normal

classes. There is a slight overhead to accessing a

dbclass object compared to a normal object since

dbclass objects reside in the storage manager, and

a pointer to a dbclass object is a 16-byte record,

compared to a 4-byte word for a main-memory

pointer. The designers of E wanted to give the im-

plementor a choice whether or not to use classes or

dbclasses to have more control over performance.

Objects that needed to be persistent would be de-

fined using dbclasses, and the rest of the objects

would be defined using classes.

This design choice in E violates the principle

of persistence orthogonality, which states that all

data objects should be allowed the full range of

319

dbstruct port f

dbchar nameC121;

dbchar modeC41;

dbchar typeC61;

dbint start-bit;

dbint stop-bit;

public:
port (char *, char *, char *, int, int);

char * get-nameo;

void change-name (char *I;

char * get_modeO;

void change-mode (char *I;

char * get-typeo;

void change-type (char *>;

int get-start-bit0;

void change-start-bit (int);

int get-stop-bit0;

void change-stop-bit (int);

void print (port *I;

I;
dbstruct camp 1

dbint camp-num;

public:

camp (int);

int get-comp_numO;

void change,camp-num (int);

void print (camp *I;

I;

dbstruct system c

dbchar namecl21;

dbint number;

dbclass compRVA:collectionCcompl;

compRVA camps;

dbclass portRVA:collection[portl;

portRVA ports;

public:

system (char *, int);

char * get-nameo;

void change-name (char *I;

int get-numbero;

void change-number (int>;

void print (system 8);

I;

dbclass systemRVA:collectionCsystem];

persistent systemRVA systems;

Figure 3: The E Code Representation of the Sys-

tems Relation

persistence. Our experience in implementing Ariel

reveals that the lack of persistence orthogonal-

ity causes software engineering difficulties since a

DBMS implementor does not know in advance all

the types for which he or she would like to cre-

ate persistent instances. For example, at first we

did not intend to store query plan operator objects

in the Ariel database, but now we have decided

that it would be natural to store compiled queries

as persistent plan objects. Accomplishing this will

involve a significant modification to our code. In E

it is not trivial to simply change all classes to db-

classes since all subobjects of a db-object must also

be db-objects, which can cause a single change to

propagate through many objects. Also, some basic

library routines such as string manipulation func-

tions are not the same for db-objects as they are for

main-memory objects. This mismatch can result in

the need to extensively modify a class definition in

order to make it into a dbclass, creating an inor-

dinate workload on the programmer. This extra

work inhibits the process of prototyping a complex

software system.

In the design of persistent programming lan-

guages, we thus feel that it is very important to

make no distinction between database types and

main-memory types, even if it involves a small sac-

rifice in performance. It will be a challenge to

the language implementors to make access to both

kinds of objects as efficient as possible. Investi-

gation of efficient ways to implement a persistent

language in this manner is worthy of continued re-

search. We are encouraged by recent developments

in the area of transaction-based virtual memory

storage systems, including work on Cricket [29],

ObjectStore [21] and Bubba [6, lo], which poten-

tially can provide access to persistent objects with

no overhead beyond that needed for concurrency

control and recovery. In these systems, once a per-

sistent object is in memory, it can be accessed at

the speed of a main-memory object.

In summary, the main area where we felt that

the persistent programming language features of

E were the most useful was in creating special-

purpose persistent data structures, such as cata-

320

logs, data indexes, and rule indexes. If good ad-hoc

query response time is required, the persistent fea-

tures of the language have approximately the same

utility for actually storing database data as a direct

interface to a storage manager providing transac-

tion support would have. Finally, it is best to make

no distinction between database and main-memory

types.

4 The Impact of Object-Oriented

Programming

In this section we discuss the impact of the W-t-

derived features of E that support object-oriented

programming, as well as E’s extensions to C-l-t

including generator classes and collections. The

implementations of Ariel and Triton have derived

substantial benefits from using the C++ object-

oriented programming features of E. In Ariel,

we have implemented a terminal monitor, lexer,

parser, semantic analyzer, system catalogs, query

optimizer and query executor, and system utili-

ties in about 16000 lines of code written using E

and the Unix compiler generation tools LEX and

YACC [20, 161. A system of similar, or slightly

greater complexity is the terminal monitor, front-

end, query executor, and utilities of the university

INGRES system [30], which contain approximately

32000 lines of C code. It is hard to make a pre-

cise comparison, but it appears that a savings of

somewhere between 25 to 50% in the amount of

code written can be achieved using object-oriented

programming in E (or C++) relative to using C to

implement a DBMS. Moreover, object-oriented im-

plementation has provided us with some reusable

code which will facilitate extensions as Ariel grows.

Object-oriented programming features including

classes, polymorphism, and inheritance are used

throughout Ariel. Use of inheritance and polymor-

phism has been particularly beneficial in the design

of the Ariel syntax tree structure generated by the

parser, the internal representation of built-in data

types, and the query plan operator tree represen-

tation. As an example, the class hierarchy for the

QueryPlaIlOp
scan

RelationScan

SequentialScan

IndexScan

StoreTemporary

Join

NestedLoopJoin

NestedLoopJoinIndexInner

SortMergeJoin

Project

Figure 4: Class hierarchy for query plan operators

in Ariel.

query plan operators in Ariel is shown in Figure 4.

Methods on these object types include those

for accessing result tuples, getting statistics on

the expected cost of execution, and constructors

and destructors. Ct-t virtual functions are used

so that methods are inherited from above unless

they are reimplemented in a subclass. Polymor-

phism proved useful - for example, every object in

the class hierarchy shown responds to the get-next

method. It is not necessary to know the type of the

node to get the next tuple from it. A substantial

number of instance variables and some methods are

inherited by the subclasses of Scan and Join.

There is an inherent benefit from the organiza-

tion enforced on the code by designing the code

using C-l-+ classes. Subjectively, the code seems

easier to understand and modify than a C program

accomplishing a similar task with which the au-

thors are familiar (e.g., the front-end of university

INGRES).

Another object-oriented feature of E is genera-

tor classes, a mechanism for creating parameterized

types. For example, EXODUS provides a genera-

tor class for building B-l--trees for different data

types [35]. A simplified and shortened version of

321

dbclass BplusTree [
// keys for entities stored in the tree
dbstruct key-type I
void print(); 1,

// key comparison function
int compare(const key-type 8,

const key-type k),
// entities to be stored in the tree
dbstruct entity-type <),

I<

// Definitions of instance variables for
// BplusTree

. . .

public:
// Constructors, destructors, functions for
// building an index, inserting and deleting
// records etc.

Figure 5: Sketch of B+-tree class generator in E.

the definition of this generator class is shown in

Figure 5.

Users of this class generator create a new class by

specifying parameters for the items in the square

brackets (key-type, compare, and entity-type). For

example, this piece of code defines an instance of

BplusTree for keys of type integer and entities of

type Tuple (IntKey is a structure type containing

an integer, and IntKeyCompare is a function that

takes two IntKeys and compares them):

dbclass IntBtreeIndex :

BplusTree LIntKey, IntKeyCompare , Tuple] ;

The ability to derive classes using a generator

can be useful, significantly reducing the amount of

code that needs to be written to implement closely

related types. However, one difficulty with the E

implementation of generator classes is that classes

created with a generator class cannot be made sub-

types of another type. In Ariel, this made imple-

menting the IndexScan query plan operator more

complex than necessary by not allowing use of poly-

morphism with types derived from BplusTree.

In object-oriented programming, a commonly

used, powerful technique is to define a base class B

and subclasses of B, say 61, bz, . . . , bk. Each of the

subclasses responds to the same set of messages.

Then, another class C can be implemented gener-

ically, storing one of B’s subtypes in a variable of

type B. Messages can be sent to the object con-

tained in that variable, and the object will respond

correctly, regardless of its type. This generic im-

plementation, which makes use of polymorphism,

can save a substantial amount of code in the im-

plementation of C, by letting a single line of the

form

object->message(parameters...)

replace a multi-line SWITCH statement with one

CASE for each of B’s subclasses bl-bk. We be-

lieve that an implementation of generator classes

should provide a way to create a hierarchy of types,

with virtual (inheritable, polymorphic) methods,

so that the object-oriented programming technique

described above can be used when working with

classes derived from a generator class. The exper-

imental parameterized class facility for C++ de-

scribed in [33] appears to support the desired fea-

tures, although it is not yet part of the C++ stan-

dard.

An alternative to using generator classes that

allows object-oriented implementation style is to

provide base classes from which sub-classes can be

derived. This sub-classing approach to generic-

ity does not require any extensions to an object-

oriented programming language (no generator class

facility is needed). For example, the BplusTree

class in EXODUS could have been implemented

as a standard E class with virtual functions. A

guideline could have been written for deriving sub-

classes from BplusTree by re-implementing a very

small amount of code in each subclass (e.g., the

key-comparison function). The vast majority of the

complex code for implementing BplusTree would

322

be inherited by the subclasses. This approach does

not completely eliminate the need for a genera-

tor class facility (e.g., the key-comparison function

would have to be re-implemented for each type),

but it provides a workable alternative in many

cases, and it does not interfere with object-oriented

programming style.

The collection generator class available in E

proved very useful in implementing data storage

structures. The Triton system is built on the

nested relational data model, which allows relation-

valued attributes in relations. The nested rela-

tional data model is mapped very nicely using E

collections. Nested relational attributes are rep-

resented by using collections of collections. The

EXODUS storage manager automatically uses near

hints to group collections and sub-collections to-

gether on disk to increase efficiency. Unfortunately,

EXODUS only provides the capability for sequen-

tial scanning of collections, making access via a

search key slow for large relations. The only way

around this shortcoming is to build indexes on ev-

ery frequently accessed or sufficiently large relation.

One way we feel EXODUS could be improved to

simplify the programmer’s task would be to pro-

vide a library of additional types of collections in-

cluding ordered and hashed collections. This would

be somewhat simpler to use than a separate index

mechanism.

5 Performance Issues

Obtaining good performance from a DBMS imple-

mented with a persistent programming language is

crucial, as it is in any DBMS implementation. We

currently do not have a great deal of information

on performance of our database implementations

based on E - no extensive application benchmarks

have been done. However, subjectively we feel that

the speed at which individual persistent objects can

be accessed using the E language, which has a built-

in interface to the EXODUS storage system, is ex-

cellent. For example, access to Ariel catalog infor-

mation stored in a persistent data structure made

up of a hash table and linked lists is extremely fast.

A performance study done on the EXODUS stor-

age system shows that the overhead for accessing

an E persistent object that is already in the buffer

pool is about 47 MIPS RISC architecture machine

cycles greater than the overhead to access a C-l--i-

main-memory object [28]. Our experience suggests

that this level of performance is adequate for im-

plementing system catalogs without the need for a

special cache. Performance is also good for scan-

ning persistent collections of objects or collections

of collections as in the Triton system. The abil-

ity to map nested relations directly to nested col-

lections of tuples in the EXODUS storage system

allows us to directly benefit from the “nearness”

of nested tuples to decrease object access time.

A comparison of a relational and nested relation

database design for a software engineering CASE

tool, using the Triton system on a Sun 3 computer,

showed code generation and compilation times in

the range of 2 to 3 seconds for relational queries

and 3 to 7 seconds for more complex nested rela-

tional queries. Query execution times were about

0.1 seconds for the relational queries and about 0.5

seconds for more complex nested relational queries.

Given an equivalent set of relational queries and

a single nested relational query, code generation

and compilation times were 70 to 80% faster and

query execution times were 10 to 75% faster for

the nested relational query [15]. In summary, the

speed of object access in E, or any similarly im-

plemented persistent language, does not seem to

be an impediment to implementing a DBMS using

the language.

Transaction throughput is another performance

issue. An important question is whether a

DBMS implemented with a persistent language can

achieve high transaction rates (e.g., greater than

100 transactions per second). Currently, we have

no data on transaction rates using E since a multi-

user version of EXODUS is not yet available. How-

ever, a DBMS implemented using a persistent pro-

gramming language will clearly be limited to a

transaction rate no greater than that which can

be supported by the storage system underlying the

language. We see no fundamental reason why such

323

a storage system cannot be performance-tuned to

provide high transaction throughput, using tech-

niques similar to those used in other DBMS im-

plementations such as splitting the log tail, group

commit, etc. [22]. Th us, in the long run, the native

transaction rate of the persistent language’s stor-

age system should not hinder DBMS implementors

using the language.

Variables related to throughput which the

DBMS implementor can control include the CPU

utilization per transaction, and contention for

system-wide shared resources such as catalogs and

indexes. The majority of CPU cycles utilized by

the DBMS will probably be outside the storage

system of the persistent language, and it is the

DBMS implementor’s responsibility to keep it to

a minimum to achieve high transaction rates. As

in any DBMS implementation, when using a per-

sistent programming language, care must be taken

to avoid creating concurrency control bottlenecks

around hot-spots such as a tuple-count field in the

system catalogs and other meta-data. If handled

improperly, hot spot bottlenecks can drastically re-

duce concurrency and hence transaction through-

put. For example, having each transaction set a

write-lock on tuple count and hold it until the end

of the transaction will severly limit throughput.

This is exactly what will happen if the tuple count

is treated as ordinary data by a concurrency con-

trol system based on two-phase locking.

In most DBMS implementations, hot-spots such

as tuple-count are handled as special cases. In the

case of tuple-count, updates to it are normally not

logged, and write locks are held only while physi-

cally updating the tuple count, not until the end of

the transaction. Given a persistent programming

language such as E, it would be difficult or impos-

sible to implement special-case treatment of hot-

spots in a DBMS based on the language if the hot-

spot data was implemented using persistent lan-

guage objects. We feel that persistent program-

ming language implementors should give more at-

tention to this issue, perhaps providing an inter-

face to their storage systems designed to handle

hot-spots in a way which will allow high transac-

tion rates to be achieved.7 If they don’t, then

DBMS implementors using the persistent language

who want to achieve high transaction throughput

will have to resort to ad-hoc approaches to storing

hot-spot data such as using data files directly to

by-pass the persistent programming language.

6 Review of Related Research

In this section we compare and contrast EXODUS

to three other extensible systems, GENESIS, DAS-

DBS, and POSTGRES, and discuss the relation-

ship of E with four other persistent programming

languages, Ott, Vbase, 02, and Object Design’s

ObjectStore that are all based on C or C++. Then

we discuss other efforts to implement database sys-

tems using database toolkits or persistent program-

ming languages.

6.1 Database Toolkits and Extensible
Databases

GENESIS [5], like EXODUS, provides a modular

approach to extensibility. This approach is sup-

ported by providing a library of modules with com-

pletely compatible interfaces. GENESIS provides

a data definition language to define the schema

of relations, as well as a data manipulation lan-

guage that provides access to the basic objects in

the database (which are records, files, and links).

The lowest layer of GENESIS is the file manage-

ment system, JUPITER. Like the EXODUS stor-

age manager, JUPITER provides buffer and re-

covery management; unlike EXODUS, JUPITER

is extensible in that different buffer and recovery

management schemes can be supported by replac-

ing the appropriate module in JUPITER with a

new one. JUPITER supports both single-keyed

and multi-keyed file structures, such as index-

ing, B+-trees, heap structures, and multi-key hash

structures.

The Darmstadt Database System (DAS-

DBS) [26] supports extensibility through the use

(IThe need to support special protocols for handling meta-

data was briefly mentioned in [23].

324

of a kernel storage component that allows flexible,

application-specific front ends. The DASDBS ker-

nel provides access (such as reading, insertion, and

deletion) to sets of complex objects as opposed to a

one-record-at-a-time interface by fetching or stor-

ing lists of pages via a variable size buffer. Thus, a

single scan of a complex object retrieves all of the

values of its sub-objects, which limits the number

of disk accesses. This is very similar to the way

the EXODUS storage manager works. The kernel

provides operations to read, insert, and delete an

object. Like the EXODUS storage manager, the

DASDBS kernel provides concurrency control ca-

pabilities. Instead of using tuple indices, the kernel

appends a virtual address attribute to each tuple

which can be used in the application layers to build

access paths (e.g., B+-index trees) and provides di-

rect access to the tuple. To enhance performance,

the DASDBS kernel attempts to group pages rep-

resenting a complex object together on disk.

POSTGRES [31] supports extensibility by al-

lowing users to define new data types, operators,

built-in functions, and access methods. Like EXO-

DUS, built-in types support both scalar type fields

and variable length records. However, unlike EXO-

DUS, POSTGRES supports two interesting built-

in types, which are POSTQUEL and procedure

types. POSTQUEL types are data manipulation

commands, while procedure types are program-

ming language procedures with embedded data ma-

nipulation commands. POSTGRES provides these

two types to allow users to represent and manipu-

late complex objects.

6.2 Persistent Programming Languages

Database programming languages are unique in

that they should not only support strong typing

of objects, but must allow the specification of per-

sistent objects that can last beyond the programs

that created them. These two objectives can ei-

ther be met by providing a single language that

does both (d as oes the E programming language of

EXODUS), or providing a separate data definition

language and data manipulation language.

Ott [l] is implemented as an extension of C++

with persistent objects, and is thus closely related

to E. In addition, O-t-t also provides additional

language statements for defining queries. The main

difference between 0+-l- and E is that in O++

there is no distinction between database classes

and in-memory classes, but there is a distinction

between database pointers and in-memory point-

ers (there is also a third pointer type called a dual

pointer that can point to a persistent of volatile

object). The O++ approach to persistence is es-

sentially the dual of the E approach. Neither O-t-t

nor E completely separates the issue of persistence

from the definition of types.

Vbase [2] and 02 [19] are database systems that

support a separate data definition language and

data manipulation language. In both systems, the

data manipulation language is based on an exten-

sion of C. In Vbase, the data definition language,

called TDL, allows strong typing and inheritance.

All objects are persistent until they are explic-

itly deleted, which is good in that persistent and

volatile object interaction is not an issue. However,

explicit deletion of objects can be tedious.

The Data Definition Language of 02 is also

strongly typed and supports inheritance. Persis-

tent objects are declared from a persistent super

object called tuple. All objects of type tuple or de-

clared from a subtype of tuple are persistent, and

sets of tuple objects can be identified. Methods for

types are specified when the type is declared, and

types are inherited down the type hierarchy unless

they are redefined for a specific subtype. Methods

are first order functions and are implemented in C.

The ObjectStore system [21] treats persistent

data and persistent data access the same way as

conventional virtual memory access. “During Ob-

jectstore application sessions, referenced persistent

data is dynamically mapped into the workstation’s

virtual address space.” If persistent data is called

for and it not in memory, a “memory fault” occurs

and the missing data is retrieved from the database.

ObjectStore also supports data caching, concur-

rency control and restart/recovery. The program-

mer can create persistent data via several methods:

325

a variant of the C-i-+ new operator which also al-

lows clustering hints, use of a persistent keyword,

or use of a library call. Any C or C++ type can be

made persistent; in addition, ObjectStore includes

a collection class, and the Set, Bag, and List sub-

class of collection, and iterator functions over these

classes.

6.3 Use of Database Toolkits and Per-
sistent Languages

Relatively little has been published on experiences

using database toolkits to implement a DBMS.

Cooper et al. [9] discuss three systems imple-

mented using PS-algol [4], a persistent version of

Algol with the property of persistence orthogonal-

ity. One of the systems covered used PS-algol to

implement a DBMS based on an extended func-

tional data model (EFDM) [18]. The benefits of

using PS-algol cited in the EFDM implementation

were (1) automatic movement of persistent data

to/from memory, (2) reduction in misuse of data

due to strong typing, (3) usefulness of a universal

pointer type, (4) fast access to persistent language

objects. Our findings corroborate theirs, particu-

larly (1) and (4) above.

7 Conclusions

The EXODUS system has proven to be a powerful

tool for implementing a database system, although

it is by no means an antidote for the all the com-

plexities of DBMS implementation. At a minimum,

DBMS designers still have to specify a data model,

query language parser, catalogs, index and data

storage structures, a query optimization strategy

(with or without using the optimizer generator),

and a query execution strategy.

Using a persistent programming language to im-

plement a DBMS has proven very useful for imple-

menting special-purpose persistent structures such

as catalogs, data indexes, and rule indexes, and

somewhat less useful for storing the data itself. The

problem with using persistent collections in E to

store data is due to the fact that one must resort to

using persistent collections of generic objects (byte

strings) to hold data in order to get adequate re-

sponse time for ad hoc queries. In systems where

ad hoc query capability is not necessary (as in Tri-

ton), or where all persistent types can be specified

at compile time (e.g., in a computer-aided design

database) this is not a major problem. A diffi-

culty we experienced with the E implementation of

persistence is the lack of persistence orthogonality

in E, which led to software engineering problems

in the implementation of Ariel. We assert that it

is impossible for the designer of complex software

system to know at the outset what data types will

need to be persistent. Research on virtual-memory

based storage systems (e.g., Cricket) may eliminate

the incentive to distinguish between database and

main-memory types. We highly encourage this and

other research on ways to improve the speed of stor-

age systems for persistent languages.

Language features of E independent of persis-

tence, especially object-oriented programming ca-

pability, clearly helped simplify our systems. Ariel

shows a significant reduction in code size relative to

parts of university INGRES with comparable com-

plexity. E generator classes were useful, but the in-

ability to use polymorphism and inheritance with

generated classes is a problem. Generator class fa-

cilities in an object-oriented language need to allow

use of object-oriented style with generated classes.

We were not able to adequately evaluate the useful-

ness of the optimizer generator. A useful evaluation

of the optimizer generator would be to implement

an optimizer with the generator and also code the

optimizer by hand, and compare the resulting op-

timizers.

In terms of performance, we are pleased with the

speed of access to persistent objects in E. Perfor-

mance seems adequate for catalogs, indexes, and

data storage structures. Any improvements in

speed of persistent object access would, however,

be welcome. The speed of the underlying stor-

age system does not appear to stand in the way

of achieving high transaction throughput. How-

ever, we are concerned about having the persistent

language storage system handle meta-data such as

326

catalogs and indexes. Since the storage system will

use a standard two-phase locking, write-ahead log

strategy for all data, it almost certainly will cause a

transaction throughput bottleneck around the sys-

tem catalogs. Database toolkit designers need to

provide some sort of support for meta-data to avoid

the creation of a transaction bottleneck.

Using EXODUS has been a worthwhile experi-

ence for us. We encourage continued research on

ways to improve database toolkits and persistent

programming languages so that the job of DBMS

implementors who follow in our footsteps might be

simpler.

References

Ill

PI

PI

PI

PI

R. Agrawal and N. H. Gehani. Rationale for

the design of persistence and query process-

ing facilities in the database programming lan-

guage, Ott. In Richard Hull, Ron Morrison,

and David Stemple, editors, Proceedings of the

Second International Workshop on Database

Programming Languages, pages 25-40, Glene-
den Beach, Oregon, June 1989.

Timothy Andrews. The Vbase object

database environment. In Alfonso F. Car-

denas and Dennis McLeod, editors, Research

Foundations in Object-Oriented and Semantic

Database Systems, pages 221-240. Prentice-

Hall, Englewood Cliffs, NJ, 1990.

James R. Armstrong. Chip-Level Modeling
with VBDL. Prentice-Hall, Englewood Cliffs,

NJ, 1989.

M. P. Atkinson, P. J. Bailey, K. J. Chisholm,

P. W. Cockshott, and R. Morrison. An ap-

proach to persistent programming. The Com-

puter Journal, 26(4), 1983. (reprinted in [34]).

D. S. Batory, J. R. Barnett, J. F. Garza,

K.P. Smith, K. Tsukuda, B. C. Twichell, and
T. E. Wise. GENESIS: An extensible database

management system. In Stanley B. Zdonik

PI

PI

PI

PI

PO1

IllI

WI

Ml

PI

327

and David Maier, editors, Readings in Object-

Oriented Database Systems, pages 500-518.

Morgan Kaufmann, San Mateo, CA, 1990.

H. Boral. Prototyping Bubba, a higly parrallel

database system. IEEE Transactions on Data

and Knowledge Engineering, 2(l), May 1990.

M. Carey, D. Dewitt, D. Frank, G. Graefe,
J. Richardson, E. Shekita, and M. Muralikr-

ishna. The architecture of the EXODUS ex-

tensible DBMS. In Procedings of the Interna-

tional Workshop on Object-Oriented Database
Systems, September 1986.

M. J. Carey, D. J. Dewitt, and Scott L. Van-

denberg. A data model and query language for

EXODUS. In Proceedings of the 1988 ACM
SIGMOD InternationaE Conference on Man-
agement of Data, June 1988.

R. L. Cooper, M. P. Atkinson, A. Dearle, and

D. Abderrahmane. Constructing database sys-

tems in a persistent environment. In Proceed-

ings of the 19th VLDB Conference, 1987.

G. Copeland. Uniform object management.

In Proceedings of the Intl. Conf. on Extending

Database Technology, March 1990.

Adele Goldberg and David Robson. Smalltalk-
80: The Language. Addison Wesley, 1989.

G. Graefe and D. J. Dewitt. The EXO-

DUS optimizer generator. In Proceedings of

the 1987 ACM SIGMOD International Con-
ference on Management of Data, May 1987.

Eric N. Hanson. An initial report on the de-

sign of Ariel: a DBMS with an integrated pro-
duction rule system. SIGMOD Record, 18(3),

September 1989.

Eric N. Hanson, Moez Chaabouni, Chang-ho

Kim, and Yu-Wang Wang. A predicate match-

ing algorithm for database rule systems. In

Proceedings of the 1990 ACM SIGMOD Inter-
national Conference on Management of Data,

May 1990.

WI

PI

WI

WI

WY

WI

WI

PI

WI

WI

Capt Tina M. Harvey. Access and opera-
tor methods for the Triton nested relational

database system. Master’s thesis, School of

Engineering, Air Force Institute of Technology

(AU), Wright-Patterson AFB, OH, December

1990.

S. C. Johnson. YACC - yet another compiler

compiler. Technical Report CSTR-32, Bell

Laboratories, Murray Hill, NJ, 1975.

Sonya E. Keene. Object-Oriented Program-
ming in Common Lisp. Addision- Wesley,

1989.

K. G. Kulkarni and M. P. Atkinson. Imple-
menting an extended functional data model

using PS-algol. Software Practice and Expe-
rience, 17(3):171-185, Marche 1987.

Christophe Lkcluse, Philippe Richard, and

Fernando Velez. 02, an object-oriented data
model. In Stanley B. Zdonik and David Maier,

editors, Readings in Object-Oriented Database

Systems, pages 227-241. Morgan Kaufmann,

San Mateo, CA, 1990.

M. E. Lesk. LEX - a lexical analyzer genera-

tor. Technical Report CSTR-39, Bell Labora-

tories, Murray Hill, NJ, 1975.

Object Design, Inc. ObjectStore technical

overview, release 1.0, August 1990.

Andreas Reuters, editor. Proceedings of the

2nd International Workshop on High Perfor-
mance Transaction Systems. Springer Verlag,

1987.

Joel E. Richardson and Michael J. Carey. Pro-
gramming constructs for database system im-

plementation in EXODUS. In Proceedings of

the 1987 ACM SZGMOD International Con-
ference on Management of Data, May 1987.

Joel E. Richardson, Michael J. Carey, and

Daniel T. Schuh. The design of the E program-

ming language. Technical report, University of

Wisconsin, 1989.

P51

P61

PI

WI

PI

WI

WI

WI

WI

WI

WI

Mark A. Roth, Henry F. Korth, and Don S.

Batory. SQL/NF: A query language for 11NF

relational databases. Information Systems,

12(1):99-114,1987.

Hans-Jeorg Schek et al. The DASDBS project:

Objectives, experiences, and future prospects.

IEEE Transactions on Knowledge and Data

Engineering, 2(7):25-43, March 1990.

Capt Craig W. Schnepf. SQL/NF transla-

tor for the Triton nested relational database

system. Master’s thesis, School of Engineer-

ing, Air Force Institute of Technology (AU),
Wright-Patterson AFB, OH, December 1990.

Dan Schuh, Michael Carey, and David Dewitt.

Persistence in E revisited - implementation

experiences. In Proceedings of the 1990 Per-

sistent Object Systems Workshop, Fall 1990.

Eugene Shekita and Michael Zwilling. Cricket:

A mapped, persistent object store. Technical
report, University of Wisconsin, Fall 1990.

M. Stonebraker, E. Wong, P. Kreps, and

G. Held. The design and implementation of

INGRES. ACM Transactions on Database

Systems, 1976.

Michael Stonebraker, Lawrence Rowe, and

Michael Hirohama. The implementation of

POSTGRES. IEEE Transactions on Knowl-

edge and Data Engineering, 2(7):125-142,

March 1990.

Bjarne Stroustrup. The C++ Programming

Language. Addision Wesley, 1986.

Bjarne Stroustrup. Parameterized types for

Ct t. In Proceedings of the Usenix C++ Con-
ference, 1988.

Stanley B. Zdonik and David Maier, editors.

Readings in Object-Oriented Databases. Mor-

gan Kaufmann, 1990.

Michael Zwilling. B-l--tree external documen-

tation, 1989. EXODUS Project Documenta-
tion.

328

