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Abstract 

The EXODUS database toolkit, and in particular 
the E persistent programming language, have been 
used in two substantial database system implemen- 
tation efforts by the authors (the Ariel database 
rule system and the Triton nested relation DBMS). 
Observed advantages of using a persistent pro- 
gramming language for database system implemen- 
tation include ease of implementation of special- 
purpose persistent objects used by the DBMS such 
as catalogs, data indexes, rule indexes, and nested 
relational structures. Other advantages of using E 
(a persistent version of C++) that are independent 
of the persistence issue are the usefulness of object- 
oriented programming in developing large software 
systems, and the utility of the Collection abstrac- 
tion in E. Observed disadvantages include (1) the 
inability to map the type system of the DBMS to 
the type system of the underlying programming 
language while still retaining good performance for 
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ad-hoc queries, and (2) software engineering diffi- 
culties due to the distinction in E between database 
types and main-memory types. 

1 Introduction 

It is well-known in the database community that 

implementing DBMS code is difficult and time- 

consuming. Recent research on persistent pro- 

gramming languages and other tools to support 

database implementation has given hope that the 

burden of implementing DBMS code could be sub- 

stantially reduced. In an attempt to simplify the 

implementation of two different prototype database 

systems (the Ariel database rule system [13, 141 

and the Triton nested relational database system 

[15, 271) we have used the EXODUS database 

toolkit extensively [7]. In particular, we have made 

significant use of the E programming language of 

EXODUS [24], a version of C++ [32] extended with 

persistent objects. This paper reviews the advan- 

tages and disadvantages of using a database toolkit 

and a persistent programming language (E) that 

we observed while implementing non-trivial DBMS 

soft ware. 

The next section describes the EXODUS toolkit. 

Section 3 discusses the impact of persistence on our 

implementations, as well as issues related to the 

type systems of the DBMS and the underlying pro- 

gramming language. Section 4 discusses the impact 

of features of the language and toolkit unrelated to 

persistence, including the impact of object-oriented 

programming, collections, and the EXODUS opti- 

mizer generator [12]. Section 5 covers issues related 

to performance, Section G briefly reviews related 

research, and Section 7 summarizes and presents 
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conclusions. We now turn to the discussion of EX- 

ODUS. 

2 Overview of EXODUS 

EXODUS provides some powerful tools to help 

automate the generation of application-specific 

database systems, including a storage manager, 

the persistent programming language E, a rule- 

based query optimizer generator and a B+tree class 

generator. One possible architectural framework 

for using EXODUS to build a database system is 

shown in Figure 1. 

The EXODUS storage manager is accessed via 

procedural calls which allow creation and destruc- 

tion of database files containing sets of objects, and 

iteration through the contents of files. Objects can 

be inserted in and deleted from a file at any off- 

set in the file, and explicit clustering of objects on 

disk can be specified. The storage manager pro- 

vides procedures for transaction and version man- 

agement . 

The E programming language provided by the 

EXODUS toolkit is an extension of C++ with per- 

sistent objects. Persistence in E is implemented on 

top of the EXODUS storage manager. E extends 

C++ types and defines a corresponding db type 

(database type) for each C++ and user defined 

type. These db types are used to define objects 

in the database. There are four kinds of db types 

in E: 

l fundamental db types - dbshort, dbint, db- 

long, dbfloat, dbdouble, dbcha.r, and dbvoid 

l dbclass, dbstruct and dbunion (every sub com- 

ponent of a dbclass must be of a db type) 

l pointer to a db type object 

l arrays of db type objects 

If the persistent keyword is used before the dec- 

laration of a db type, EXODUS will map the persis- 

tent db variables to a permanent storage location. 

In E, a collection is an unordered set of objects. 

E also has a feature called generator classes which 

allows defining a generic template for a Q-+-style 

class. Customized classes can then be declared us- 

ing the generator class name plus additional pa- 

rameters for customization. Collections are sup- 

ported in E using a built-in generator class called 

collection, which is invoked by collection [T] where 

T is any db type. A collection must be instantiated 

for a specific type before it can be used to declare 

collection objects. EXODUS provides a generator 

class for B+trees to allow straightforward creation 

of indexes for different data types. A typical way 

to create an indexed data set is to create a collec- 

tion, and then create a B+tree as an index on the 

objects in that collection. 

In E, iterutors are controlled looping functions 

that are used to step through a sequence of values 

such as collections. An iterator is made up of an 

iterator function and an interate loop. The iter- 

ate loop consumes values that the iterator function 

produces. The iterator function yields values to the 

iterate loop. 

The EXODUS optimizer generator takes as in- 

put (1) a set of operators, (2) a set of methods 

that implement the operators, (3) transformation 

rules that describe equivalence-preserving transfor- 

mations of query trees, and (4) implementation 

rules that describe how to replace an operator with 

a specific method. Using these rules, a specific op- 

timizer is generated for the particular application. 

Neither the Ariel nor Triton developers made use 

of the optimizer generator, so we are not able to 

comment extensively on it. The developers of Ariel 

made the decision to implement a custom optimizer 

rather than use the optimizer generator. One rea- 

son for this is that the original optimizer generator 

required use of C functions and structures, and we 

were committed to using object-oriented program- 

ming in C++. The latest version of the optimizer 

generator now also handles C++ and E objects, so 

we would no longer object to using the optimizer 

generator on these grounds. Another reason we 

decided against using the optimizer generator was 

the need to be able to optimize a set of commands 

in the action of an Ariel rule. We felt it might be 

difficult to implement special-purpose optimization 

315 



PARSER 

QUERY E 
+ OPTIMIZER COMPILED 

> 
8.5 COMPILER 

COMPILER 
QUERY 

v 1: 

OPERATOR 
METHODS 

CATALOG 
ACCESS 

MANAGER METHODS 

STORAGE 

f] F 

Figure 1: An architecture for a DBMS based on EXODUS 

routines for rule actions using the optimizer gener- 

ator. The Triton optimizer has not been developed, 

but the intent is to use the optimizer generator. A 

more thorough discussion of the merits of the op- 

timizer generator awaits more experience using it. 

In the next section we comment on the impact 

of persistence in the programming language based 

on our experiences with E. 

3 The Impact of Persistence 

The availability of persistent objects and collec- 

tions in E has definitely proved worthwhile to use, 

significantly simplifying implementation of system 

catalogs, data indexes, rule indexes, and data stor- 

age structures. Having persistent objects in the 

programming language is a convenient interface to 

the storage manager that frees the programmer 

from most of the details of mapping data between 

disk and main-memory data structures. The pri- 

mary disappointment with persistence in E is re- 

lated to issues of interaction between the database 

type system and E language type system, which 

will be discussed later in Section 4. Also, our expe- 

riences reinforce the belief that persistence should 

be a property of data independent of type. This 

property was defined as persistence data type or- 

thogonality, in the design of PS-algol [4], and is also 

sometimes called simply persistence orthogonality. 

3.1 Catalogs 

The catalogs in Ariel have been implemented using 

persistent E objects. The Relation catalog consists 

of a collection of objects of type Relation. The 
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Relation object has methods on it to set and get 

information about attributes, presence of indexes, 

statistics about relation size, number of unique val- 

ues per attribute and so on. Instance variables of 

the Relation object include a list of Attribute ob- 

jects to describe the attribute names, data types, 

and other information about each attribute. Using 

E provided high-performance access to the catalog 

data without the need to implement any code for 

mapping the catalog information into special inter- 

nal data structures. Typically, relational database 

systems store catalog information in relations, and 

map data about a recently-accessed set of relations 

into a main-memory cntulog cache (this is the ap- 

proach used in POSTGRES [31]). Using persistent 

objects for the catalogs freed us from having to im- 

plement a catalog cache. 

The only drawback to our approach was that it 

is not possible to use the query language to query 

our catalogs. Special-purpose commands have been 

provided to get information from the catalogs to 

make up for this, but these commands do not give 

access in as flexible a manner as a general-purpose 

query language. Similar advantages to using per- 

sistent data for the catalogs have been realized in 

the Triton project. 

3.2 Indexes 

Using persistent objects definitely simplifies the im- 

plementation of complex permanent storage struc- 

tures such as data indexes and other special pur- 

pose indexes such as rule indexes. As with the cat- 

alogs, the primary simplification is that the pro- 

grammer does not need to be concerned with map- 

ping data between the disk and main-memory data 

structures. Hence, it becomes essentially no more 

difficult to implement a persistent index structure 

such as a B+-tree than it would be to implement 

a main-memory index structure, except that per- 

formance artifacts such as node size and clustering 

must be addressed more carefully in the persistent 

implementation. 

The amount of code saved by using a persistent 

language to implement indexes depends on a num- 

ber of factors including the complexity of the index 

being implemented, the programming language fea- 

tures available independent of persistence, etc. Re- 

search prototypes using PS-algol have shown that 

code size can be reduced by a factor of 3 in some 

cases [18]. The Ariel implementors are using per- 

sistent objects to implement a fairly complex rule 

index [14]. We believe that this rule index would 

have been infeasible to implement without the aid 

of a persistent programming language. 

3.3 Data Storage Structures and Lan- 
guage and Database Type System 
Issues 

Implementation of data storage structures for rela- 

tions and nested relations was made simpler than 

it would have been otherwise by the availability 

of persistent collections provided in E. There are 

two main approaches to building database stor- 

age structures using E, and using them to process 

database queries (these approaches also apply for 

other persistent programming languages that do 

all type checking at compile time and use conven- 

tional compiler and linker technology). The first 

approach, which we call the compiled approach, is 

to compile database type definitions and object 

(e.g., relation) creation commands into E code, and 

compile this code into object files using the E com- 

piler. To compile a query, the system generates an- 

other file of E code, which is compiled and linked 

with the object files containing the compiled type 

definitions. The resulting executable is then run 

to process the query. This approach has the ap- 

pealing property that database types are mapped 

directly into types in the underlying programming 

language. It can also provide fast query execution 

since queries are compiled directly into machine 

code. Unfortunately, it results in a severe perfor- 

mance problem for query compilation if a conven- 

tional compiler and linker are used by the persis- 

tent programming language, as they are in E (we 

will discuss performance figures later). 

The second approach, which we call the inter- 

preted approach, does not use the persistent pro- 
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gramming language at all for compiling types and 

queries. Instead, type definitions and queries are 

interpreted directly by the DBMS. Data is stored 

in persistent collections of generic storage objects 

(e.g., byte strings) for which one type (e.g., Tu- 

pIeCollection in Ariel) is defined when the database 

system itself is compiled. Implementing code to in- 

terpret the format of these generic objects stored 

in the persistent collections of data is left to the 

DBMS implementor. Execution of queries is done 

by compiling a query into an execution plan, which 

is then interpreted. A drawback of this approach 

is that interpreted queries will run slower than the 

compiled queries in the first approach, given that 

the same query plan is used in both approaches. 

However, response time for any query generated 

in text form and sent to the DBMS for execution 

is dramatically better in the second approach (a 

fraction of a second vs. many seconds). Such long 

response time for ad-hoc queries is not tolerable. 

We chose to implement the interpreted approach 

in Ariel since we felt the response time of the 

compiled approach was unacceptable. Relations in 

Ariel are persistent collections of byte strings. Tu- 

ples are mapped onto these byte strings explicitly. 

A TupleDescriptor object describes how tuple 

fields are arranged in the byte strings in a collec- 

tion representing a relation. An alternative to this 

approach would have been to map a relation defini- 

tion directly into E language constructs, and then 

compile the resulting E code with the E compiler. 

The Ariel type system allows separate commands 

for defining relation types and constructing in- 

stances of relations with those types, similar to 

the mechanism provided in the EXCESS query lan- 

guage [8]. Th e o f 11 owing is an example definition 

of a relation type and a relation in Ariel: 

define relation type 

emp_type(name=c20, age=int, 

salary=float, dept,no= int) 
create relation emp : emp,type 

The E code that would be generated to represent 

the same information is: 

dbclass emp-type 

< 
dbchar name [20] ; 

dbint age; 

dbfloat salary; 

dbint dept,no; 

1; 

dbclass emp,Collection : 

collection[emp,typel ; 

persistent emp_Collection emp; 

Compiling a source file containing the E code 

above into an object file takes 3 seconds on a Sun 

SPARCstation 1 computer. Compiling an E source 

file containing a trivial one-relation selection query 

and linking that file with the appropriate object 

file for the relation and the E library to create an 

executable file takes more than 15 seconds. 

An alternative approach to implementing a per- 

sistent language to support DBMS development 

would be to start with a language supporting in- 

cremental compilation of both types and program 

code, such as Smalltalk [ll] or Lisp and CLOS 

[17]. This would allow direct mapping of database 

types into language types, and fast compilation of 

both types and queries, making the “compiled” ap- 

proach discussed earlier practical. However, this 

approach would bring with it the larger run-time 

overhead associated with Smalltalk or Lisp. 

3.4 Type System Mapping Example 

As another more sophisticated example of a trans- 

lation from a database type to underlying E types, 

in Triton, a nested relation definition is mapped 

directly into a persistent collection of E objects, 

which in turn have fields which contain collections 

of objects. Figure 2 shows a nested relation that 

holds information on VHSIC Hardware Description 

Language (VHDL) systems[3]. Figure 3 gives the 

E code representation of the Systems relation. 

This implementation illustrates the ease with 

which nested relation types can be mapped into 

E and also allows compilation of Triton queries 
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number name 

43191 COUNTER 

14701 FULL-ADDER 

I 

camps ports 

cov# name mode type start-bit stop-bit 

STRT in BIT 0 0 
15899 STROBE in BIT 0 0 

CON in BIT-V 0 1 
30018 DATA-BUS in BIT-V 0 3 

Figure 2: The Systems Relation 

into machine code. However, it suffers from the etc., without modification. It would also be pos- 

performance problem mentioned above for ad hoc sible to build on the PersistentCollection class by 

queries and thus an interpreted implementation of creating subclasses. The E language does not allow 

the Triton type system and query processor is be- subclasses to be derived from the built-in collection 

ing considered for use by Triton application devel- classes of E, although there appears to be noth- 

opers. On the other hand, Since the Triton system ing preventing this. Although object persistence in 

is targeted for use by embedded database appli- E was not especially useful for storing relations in 

cations (such as CAD or CASE tools), extended Ariel, we still believe persistence is worthwhile in 

SQL commands [25] will be embedded in a host a database implementation language because of its 

programming language and compiled as part of the usefulness for implementing indexes, catalogs, and 

application. Thus, ad hoc queries will not normally any other data structures with object types that 

be performed. cannot change at run time. 

It is unfortunate that the difficulty in making use 

of the E compiler to compile database types and 

queries negates some of the advantages of using a 

persistent programming language. Essentially the 

only language feature necessary to support stored 

data using the “interpreted” approach to DBMS 

implementation is the persistent collection of byte 

strings. It would thus be about the same amount of 

work to implement stored relations using a direct 

interface to the storage manager (e.g., a C+ •l- class 

called PersistentCollection with the same meth- 

ods provided by E collections, including get-first, 

getnext, getlast and get-prev). This would not 

require extensions to the C-l-+ compiler on the part 

of the EXODUS implementors. Moreover, it would 

have allowed use of a standard C-l-+ programming 

environment including code inspectors, debuggers, 

Another difficulty we have faced implementing 

Ariel is a distinction in E between database classes 

defined using the dbclass notation, and normal 

classes. There is a slight overhead to accessing a 

dbclass object compared to a normal object since 

dbclass objects reside in the storage manager, and 

a pointer to a dbclass object is a 16-byte record, 

compared to a 4-byte word for a main-memory 

pointer. The designers of E wanted to give the im- 

plementor a choice whether or not to use classes or 

dbclasses to have more control over performance. 

Objects that needed to be persistent would be de- 

fined using dbclasses, and the rest of the objects 

would be defined using classes. 

This design choice in E violates the principle 

of persistence orthogonality, which states that all 

data objects should be allowed the full range of 
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dbstruct port f 

dbchar nameC121; 

dbchar modeC41; 

dbchar typeC61; 

dbint start-bit; 

dbint stop-bit; 

public: 
port (char *, char *, char *, int, int); 

char * get-nameo; 

void change-name (char *I; 

char * get_modeO; 

void change-mode (char *I; 

char * get-typeo; 

void change-type (char *>; 

int get-start-bit0; 

void change-start-bit (int); 

int get-stop-bit0; 

void change-stop-bit (int); 

void print (port *I; 

I; 
dbstruct camp 1 

dbint camp-num; 

public: 

camp (int); 

int get-comp_numO; 

void change,camp-num (int); 

void print (camp *I; 

I; 

dbstruct system c 

dbchar namecl21; 

dbint number; 

dbclass compRVA:collectionCcompl; 

compRVA camps; 

dbclass portRVA:collection[portl; 

portRVA ports; 

public: 

system (char *, int); 

char * get-nameo; 

void change-name (char *I; 

int get-numbero; 

void change-number (int>; 

void print (system 8); 

I; 

dbclass systemRVA:collectionCsystem]; 

persistent systemRVA systems; 

Figure 3: The E Code Representation of the Sys- 

tems Relation 

persistence. Our experience in implementing Ariel 

reveals that the lack of persistence orthogonal- 

ity causes software engineering difficulties since a 

DBMS implementor does not know in advance all 

the types for which he or she would like to cre- 

ate persistent instances. For example, at first we 

did not intend to store query plan operator objects 

in the Ariel database, but now we have decided 

that it would be natural to store compiled queries 

as persistent plan objects. Accomplishing this will 

involve a significant modification to our code. In E 

it is not trivial to simply change all classes to db- 

classes since all subobjects of a db-object must also 

be db-objects, which can cause a single change to 

propagate through many objects. Also, some basic 

library routines such as string manipulation func- 

tions are not the same for db-objects as they are for 

main-memory objects. This mismatch can result in 

the need to extensively modify a class definition in 

order to make it into a dbclass, creating an inor- 

dinate workload on the programmer. This extra 

work inhibits the process of prototyping a complex 

software system. 

In the design of persistent programming lan- 

guages, we thus feel that it is very important to 

make no distinction between database types and 

main-memory types, even if it involves a small sac- 

rifice in performance. It will be a challenge to 

the language implementors to make access to both 

kinds of objects as efficient as possible. Investi- 

gation of efficient ways to implement a persistent 

language in this manner is worthy of continued re- 

search. We are encouraged by recent developments 

in the area of transaction-based virtual memory 

storage systems, including work on Cricket [29], 

ObjectStore [21] and Bubba [6, lo], which poten- 

tially can provide access to persistent objects with 

no overhead beyond that needed for concurrency 

control and recovery. In these systems, once a per- 

sistent object is in memory, it can be accessed at 

the speed of a main-memory object. 

In summary, the main area where we felt that 

the persistent programming language features of 

E were the most useful was in creating special- 

purpose persistent data structures, such as cata- 
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logs, data indexes, and rule indexes. If good ad-hoc 

query response time is required, the persistent fea- 

tures of the language have approximately the same 

utility for actually storing database data as a direct 

interface to a storage manager providing transac- 

tion support would have. Finally, it is best to make 

no distinction between database and main-memory 

types. 

4 The Impact of Object-Oriented 

Programming 

In this section we discuss the impact of the W-t- 

derived features of E that support object-oriented 

programming, as well as E’s extensions to C-l-t 

including generator classes and collections. The 

implementations of Ariel and Triton have derived 

substantial benefits from using the C++ object- 

oriented programming features of E. In Ariel, 

we have implemented a terminal monitor, lexer, 

parser, semantic analyzer, system catalogs, query 

optimizer and query executor, and system utili- 

ties in about 16000 lines of code written using E 

and the Unix compiler generation tools LEX and 

YACC [20, 161. A system of similar, or slightly 

greater complexity is the terminal monitor, front- 

end, query executor, and utilities of the university 

INGRES system [30], which contain approximately 

32000 lines of C code. It is hard to make a pre- 

cise comparison, but it appears that a savings of 

somewhere between 25 to 50% in the amount of 

code written can be achieved using object-oriented 

programming in E (or C++) relative to using C to 

implement a DBMS. Moreover, object-oriented im- 

plementation has provided us with some reusable 

code which will facilitate extensions as Ariel grows. 

Object-oriented programming features including 

classes, polymorphism, and inheritance are used 

throughout Ariel. Use of inheritance and polymor- 

phism has been particularly beneficial in the design 

of the Ariel syntax tree structure generated by the 

parser, the internal representation of built-in data 

types, and the query plan operator tree represen- 

tation. As an example, the class hierarchy for the 

QueryPlaIlOp 
scan 

RelationScan 

SequentialScan 

IndexScan 

StoreTemporary 

Join 

NestedLoopJoin 

NestedLoopJoinIndexInner 

SortMergeJoin 

Project 

Figure 4: Class hierarchy for query plan operators 

in Ariel. 

query plan operators in Ariel is shown in Figure 4. 

Methods on these object types include those 

for accessing result tuples, getting statistics on 

the expected cost of execution, and constructors 

and destructors. Ct-t virtual functions are used 

so that methods are inherited from above unless 

they are reimplemented in a subclass. Polymor- 

phism proved useful - for example, every object in 

the class hierarchy shown responds to the get-next 

method. It is not necessary to know the type of the 

node to get the next tuple from it. A substantial 

number of instance variables and some methods are 

inherited by the subclasses of Scan and Join. 

There is an inherent benefit from the organiza- 

tion enforced on the code by designing the code 

using C-l-+ classes. Subjectively, the code seems 

easier to understand and modify than a C program 

accomplishing a similar task with which the au- 

thors are familiar (e.g., the front-end of university 

INGRES). 

Another object-oriented feature of E is genera- 

tor classes, a mechanism for creating parameterized 

types. For example, EXODUS provides a genera- 

tor class for building B-l--trees for different data 

types [35]. A simplified and shortened version of 
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dbclass BplusTree [ 
// keys for entities stored in the tree 
dbstruct key-type I 
void print(); 1, 

// key comparison function 
int compare(const key-type 8, 

const key-type k), 
// entities to be stored in the tree 
dbstruct entity-type <), 

I< 

// Definitions of instance variables for 
// BplusTree 

. . . 

public: 
// Constructors, destructors, functions for 
// building an index, inserting and deleting 
// records etc. 

Figure 5: Sketch of B+-tree class generator in E. 

the definition of this generator class is shown in 

Figure 5. 

Users of this class generator create a new class by 

specifying parameters for the items in the square 

brackets (key-type, compare, and entity-type). For 

example, this piece of code defines an instance of 

BplusTree for keys of type integer and entities of 

type Tuple (IntKey is a structure type containing 

an integer, and IntKeyCompare is a function that 

takes two IntKeys and compares them): 

dbclass IntBtreeIndex : 

BplusTree LIntKey, IntKeyCompare , Tuple] ; 

The ability to derive classes using a generator 

can be useful, significantly reducing the amount of 

code that needs to be written to implement closely 

related types. However, one difficulty with the E 

implementation of generator classes is that classes 

created with a generator class cannot be made sub- 

types of another type. In Ariel, this made imple- 

menting the IndexScan query plan operator more 

complex than necessary by not allowing use of poly- 

morphism with types derived from BplusTree. 

In object-oriented programming, a commonly 

used, powerful technique is to define a base class B 

and subclasses of B, say 61, bz, . . . , bk. Each of the 

subclasses responds to the same set of messages. 

Then, another class C can be implemented gener- 

ically, storing one of B’s subtypes in a variable of 

type B. Messages can be sent to the object con- 

tained in that variable, and the object will respond 

correctly, regardless of its type. This generic im- 

plementation, which makes use of polymorphism, 

can save a substantial amount of code in the im- 

plementation of C, by letting a single line of the 

form 

object->message(parameters...) 

replace a multi-line SWITCH statement with one 

CASE for each of B’s subclasses bl-bk. We be- 

lieve that an implementation of generator classes 

should provide a way to create a hierarchy of types, 

with virtual (inheritable, polymorphic) methods, 

so that the object-oriented programming technique 

described above can be used when working with 

classes derived from a generator class. The exper- 

imental parameterized class facility for C++ de- 

scribed in [33] appears to support the desired fea- 

tures, although it is not yet part of the C++ stan- 

dard. 

An alternative to using generator classes that 

allows object-oriented implementation style is to 

provide base classes from which sub-classes can be 

derived. This sub-classing approach to generic- 

ity does not require any extensions to an object- 

oriented programming language (no generator class 

facility is needed). For example, the BplusTree 

class in EXODUS could have been implemented 

as a standard E class with virtual functions. A 

guideline could have been written for deriving sub- 

classes from BplusTree by re-implementing a very 

small amount of code in each subclass (e.g., the 

key-comparison function). The vast majority of the 

complex code for implementing BplusTree would 
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be inherited by the subclasses. This approach does 

not completely eliminate the need for a genera- 

tor class facility (e.g., the key-comparison function 

would have to be re-implemented for each type), 

but it provides a workable alternative in many 

cases, and it does not interfere with object-oriented 

programming style. 

The collection generator class available in E 

proved very useful in implementing data storage 

structures. The Triton system is built on the 

nested relational data model, which allows relation- 

valued attributes in relations. The nested rela- 

tional data model is mapped very nicely using E 

collections. Nested relational attributes are rep- 

resented by using collections of collections. The 

EXODUS storage manager automatically uses near 

hints to group collections and sub-collections to- 

gether on disk to increase efficiency. Unfortunately, 

EXODUS only provides the capability for sequen- 

tial scanning of collections, making access via a 

search key slow for large relations. The only way 

around this shortcoming is to build indexes on ev- 

ery frequently accessed or sufficiently large relation. 

One way we feel EXODUS could be improved to 

simplify the programmer’s task would be to pro- 

vide a library of additional types of collections in- 

cluding ordered and hashed collections. This would 

be somewhat simpler to use than a separate index 

mechanism. 

5 Performance Issues 

Obtaining good performance from a DBMS imple- 

mented with a persistent programming language is 

crucial, as it is in any DBMS implementation. We 

currently do not have a great deal of information 

on performance of our database implementations 

based on E - no extensive application benchmarks 

have been done. However, subjectively we feel that 

the speed at which individual persistent objects can 

be accessed using the E language, which has a built- 

in interface to the EXODUS storage system, is ex- 

cellent. For example, access to Ariel catalog infor- 

mation stored in a persistent data structure made 

up of a hash table and linked lists is extremely fast. 

A performance study done on the EXODUS stor- 

age system shows that the overhead for accessing 

an E persistent object that is already in the buffer 

pool is about 47 MIPS RISC architecture machine 

cycles greater than the overhead to access a C-l--i- 

main-memory object [28]. Our experience suggests 

that this level of performance is adequate for im- 

plementing system catalogs without the need for a 

special cache. Performance is also good for scan- 

ning persistent collections of objects or collections 

of collections as in the Triton system. The abil- 

ity to map nested relations directly to nested col- 

lections of tuples in the EXODUS storage system 

allows us to directly benefit from the “nearness” 

of nested tuples to decrease object access time. 

A comparison of a relational and nested relation 

database design for a software engineering CASE 

tool, using the Triton system on a Sun 3 computer, 

showed code generation and compilation times in 

the range of 2 to 3 seconds for relational queries 

and 3 to 7 seconds for more complex nested rela- 

tional queries. Query execution times were about 

0.1 seconds for the relational queries and about 0.5 

seconds for more complex nested relational queries. 

Given an equivalent set of relational queries and 

a single nested relational query, code generation 

and compilation times were 70 to 80% faster and 

query execution times were 10 to 75% faster for 

the nested relational query [15]. In summary, the 

speed of object access in E, or any similarly im- 

plemented persistent language, does not seem to 

be an impediment to implementing a DBMS using 

the language. 

Transaction throughput is another performance 

issue. An important question is whether a 

DBMS implemented with a persistent language can 

achieve high transaction rates (e.g., greater than 

100 transactions per second). Currently, we have 

no data on transaction rates using E since a multi- 

user version of EXODUS is not yet available. How- 

ever, a DBMS implemented using a persistent pro- 

gramming language will clearly be limited to a 

transaction rate no greater than that which can 

be supported by the storage system underlying the 

language. We see no fundamental reason why such 
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a storage system cannot be performance-tuned to 

provide high transaction throughput, using tech- 

niques similar to those used in other DBMS im- 

plementations such as splitting the log tail, group 

commit, etc. [22]. Th us, in the long run, the native 

transaction rate of the persistent language’s stor- 

age system should not hinder DBMS implementors 

using the language. 

Variables related to throughput which the 

DBMS implementor can control include the CPU 

utilization per transaction, and contention for 

system-wide shared resources such as catalogs and 

indexes. The majority of CPU cycles utilized by 

the DBMS will probably be outside the storage 

system of the persistent language, and it is the 

DBMS implementor’s responsibility to keep it to 

a minimum to achieve high transaction rates. As 

in any DBMS implementation, when using a per- 

sistent programming language, care must be taken 

to avoid creating concurrency control bottlenecks 

around hot-spots such as a tuple-count field in the 

system catalogs and other meta-data. If handled 

improperly, hot spot bottlenecks can drastically re- 

duce concurrency and hence transaction through- 

put. For example, having each transaction set a 

write-lock on tuple count and hold it until the end 

of the transaction will severly limit throughput. 

This is exactly what will happen if the tuple count 

is treated as ordinary data by a concurrency con- 

trol system based on two-phase locking. 

In most DBMS implementations, hot-spots such 

as tuple-count are handled as special cases. In the 

case of tuple-count, updates to it are normally not 

logged, and write locks are held only while physi- 

cally updating the tuple count, not until the end of 

the transaction. Given a persistent programming 

language such as E, it would be difficult or impos- 

sible to implement special-case treatment of hot- 

spots in a DBMS based on the language if the hot- 

spot data was implemented using persistent lan- 

guage objects. We feel that persistent program- 

ming language implementors should give more at- 

tention to this issue, perhaps providing an inter- 

face to their storage systems designed to handle 

hot-spots in a way which will allow high transac- 

tion rates to be achieved.7 If they don’t, then 

DBMS implementors using the persistent language 

who want to achieve high transaction throughput 

will have to resort to ad-hoc approaches to storing 

hot-spot data such as using data files directly to 

by-pass the persistent programming language. 

6 Review of Related Research 

In this section we compare and contrast EXODUS 

to three other extensible systems, GENESIS, DAS- 

DBS, and POSTGRES, and discuss the relation- 

ship of E with four other persistent programming 

languages, Ott, Vbase, 02, and Object Design’s 

ObjectStore that are all based on C or C++. Then 

we discuss other efforts to implement database sys- 

tems using database toolkits or persistent program- 

ming languages. 

6.1 Database Toolkits and Extensible 
Databases 

GENESIS [5], like EXODUS, provides a modular 

approach to extensibility. This approach is sup- 

ported by providing a library of modules with com- 

pletely compatible interfaces. GENESIS provides 

a data definition language to define the schema 

of relations, as well as a data manipulation lan- 

guage that provides access to the basic objects in 

the database (which are records, files, and links). 

The lowest layer of GENESIS is the file manage- 

ment system, JUPITER. Like the EXODUS stor- 

age manager, JUPITER provides buffer and re- 

covery management; unlike EXODUS, JUPITER 

is extensible in that different buffer and recovery 

management schemes can be supported by replac- 

ing the appropriate module in JUPITER with a 

new one. JUPITER supports both single-keyed 

and multi-keyed file structures, such as index- 

ing, B+-trees, heap structures, and multi-key hash 

structures. 

The Darmstadt Database System (DAS- 

DBS) [26] supports extensibility through the use 

(IThe need to support special protocols for handling meta- 

data was briefly mentioned in [23]. 

324 



of a kernel storage component that allows flexible, 

application-specific front ends. The DASDBS ker- 

nel provides access (such as reading, insertion, and 

deletion) to sets of complex objects as opposed to a 

one-record-at-a-time interface by fetching or stor- 

ing lists of pages via a variable size buffer. Thus, a 

single scan of a complex object retrieves all of the 

values of its sub-objects, which limits the number 

of disk accesses. This is very similar to the way 

the EXODUS storage manager works. The kernel 

provides operations to read, insert, and delete an 

object. Like the EXODUS storage manager, the 

DASDBS kernel provides concurrency control ca- 

pabilities. Instead of using tuple indices, the kernel 

appends a virtual address attribute to each tuple 

which can be used in the application layers to build 

access paths (e.g., B+-index trees) and provides di- 

rect access to the tuple. To enhance performance, 

the DASDBS kernel attempts to group pages rep- 

resenting a complex object together on disk. 

POSTGRES [31] supports extensibility by al- 

lowing users to define new data types, operators, 

built-in functions, and access methods. Like EXO- 

DUS, built-in types support both scalar type fields 

and variable length records. However, unlike EXO- 

DUS, POSTGRES supports two interesting built- 

in types, which are POSTQUEL and procedure 

types. POSTQUEL types are data manipulation 

commands, while procedure types are program- 

ming language procedures with embedded data ma- 

nipulation commands. POSTGRES provides these 

two types to allow users to represent and manipu- 

late complex objects. 

6.2 Persistent Programming Languages 

Database programming languages are unique in 

that they should not only support strong typing 

of objects, but must allow the specification of per- 

sistent objects that can last beyond the programs 

that created them. These two objectives can ei- 

ther be met by providing a single language that 

does both ( d as oes the E programming language of 

EXODUS), or providing a separate data definition 

language and data manipulation language. 

Ott [l] is implemented as an extension of C++ 

with persistent objects, and is thus closely related 

to E. In addition, O-t-t also provides additional 

language statements for defining queries. The main 

difference between 0+-l- and E is that in O++ 

there is no distinction between database classes 

and in-memory classes, but there is a distinction 

between database pointers and in-memory point- 

ers (there is also a third pointer type called a dual 

pointer that can point to a persistent of volatile 

object). The O++ approach to persistence is es- 

sentially the dual of the E approach. Neither O-t-t 

nor E completely separates the issue of persistence 

from the definition of types. 

Vbase [2] and 02 [19] are database systems that 

support a separate data definition language and 

data manipulation language. In both systems, the 

data manipulation language is based on an exten- 

sion of C. In Vbase, the data definition language, 

called TDL, allows strong typing and inheritance. 

All objects are persistent until they are explic- 

itly deleted, which is good in that persistent and 

volatile object interaction is not an issue. However, 

explicit deletion of objects can be tedious. 

The Data Definition Language of 02 is also 

strongly typed and supports inheritance. Persis- 

tent objects are declared from a persistent super 

object called tuple. All objects of type tuple or de- 

clared from a subtype of tuple are persistent, and 

sets of tuple objects can be identified. Methods for 

types are specified when the type is declared, and 

types are inherited down the type hierarchy unless 

they are redefined for a specific subtype. Methods 

are first order functions and are implemented in C. 

The ObjectStore system [21] treats persistent 

data and persistent data access the same way as 

conventional virtual memory access. “During Ob- 

jectstore application sessions, referenced persistent 

data is dynamically mapped into the workstation’s 

virtual address space.” If persistent data is called 

for and it not in memory, a “memory fault” occurs 

and the missing data is retrieved from the database. 

ObjectStore also supports data caching, concur- 

rency control and restart/recovery. The program- 

mer can create persistent data via several methods: 
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a variant of the C-i-+ new operator which also al- 

lows clustering hints, use of a persistent keyword, 

or use of a library call. Any C or C++ type can be 

made persistent; in addition, ObjectStore includes 

a collection class, and the Set, Bag, and List sub- 

class of collection, and iterator functions over these 

classes. 

6.3 Use of Database Toolkits and Per- 
sistent Languages 

Relatively little has been published on experiences 

using database toolkits to implement a DBMS. 

Cooper et al. [9] discuss three systems imple- 

mented using PS-algol [4], a persistent version of 

Algol with the property of persistence orthogonal- 

ity. One of the systems covered used PS-algol to 

implement a DBMS based on an extended func- 

tional data model (EFDM) [18]. The benefits of 

using PS-algol cited in the EFDM implementation 

were (1) automatic movement of persistent data 

to/from memory, (2) reduction in misuse of data 

due to strong typing, (3) usefulness of a universal 

pointer type, (4) fast access to persistent language 

objects. Our findings corroborate theirs, particu- 

larly (1) and (4) above. 

7 Conclusions 

The EXODUS system has proven to be a powerful 

tool for implementing a database system, although 

it is by no means an antidote for the all the com- 

plexities of DBMS implementation. At a minimum, 

DBMS designers still have to specify a data model, 

query language parser, catalogs, index and data 

storage structures, a query optimization strategy 

(with or without using the optimizer generator), 

and a query execution strategy. 

Using a persistent programming language to im- 

plement a DBMS has proven very useful for imple- 

menting special-purpose persistent structures such 

as catalogs, data indexes, and rule indexes, and 

somewhat less useful for storing the data itself. The 

problem with using persistent collections in E to 

store data is due to the fact that one must resort to 

using persistent collections of generic objects (byte 

strings) to hold data in order to get adequate re- 

sponse time for ad hoc queries. In systems where 

ad hoc query capability is not necessary (as in Tri- 

ton), or where all persistent types can be specified 

at compile time (e.g., in a computer-aided design 

database) this is not a major problem. A diffi- 

culty we experienced with the E implementation of 

persistence is the lack of persistence orthogonality 

in E, which led to software engineering problems 

in the implementation of Ariel. We assert that it 

is impossible for the designer of complex software 

system to know at the outset what data types will 

need to be persistent. Research on virtual-memory 

based storage systems (e.g., Cricket) may eliminate 

the incentive to distinguish between database and 

main-memory types. We highly encourage this and 

other research on ways to improve the speed of stor- 

age systems for persistent languages. 

Language features of E independent of persis- 

tence, especially object-oriented programming ca- 

pability, clearly helped simplify our systems. Ariel 

shows a significant reduction in code size relative to 

parts of university INGRES with comparable com- 

plexity. E generator classes were useful, but the in- 

ability to use polymorphism and inheritance with 

generated classes is a problem. Generator class fa- 

cilities in an object-oriented language need to allow 

use of object-oriented style with generated classes. 

We were not able to adequately evaluate the useful- 

ness of the optimizer generator. A useful evaluation 

of the optimizer generator would be to implement 

an optimizer with the generator and also code the 

optimizer by hand, and compare the resulting op- 

timizers. 

In terms of performance, we are pleased with the 

speed of access to persistent objects in E. Perfor- 

mance seems adequate for catalogs, indexes, and 

data storage structures. Any improvements in 

speed of persistent object access would, however, 

be welcome. The speed of the underlying stor- 

age system does not appear to stand in the way 

of achieving high transaction throughput. How- 

ever, we are concerned about having the persistent 

language storage system handle meta-data such as 
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catalogs and indexes. Since the storage system will 

use a standard two-phase locking, write-ahead log 

strategy for all data, it almost certainly will cause a 

transaction throughput bottleneck around the sys- 

tem catalogs. Database toolkit designers need to 

provide some sort of support for meta-data to avoid 

the creation of a transaction bottleneck. 

Using EXODUS has been a worthwhile experi- 

ence for us. We encourage continued research on 

ways to improve database toolkits and persistent 

programming languages so that the job of DBMS 

implementors who follow in our footsteps might be 

simpler. 
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