
A Framework for Performance Management of Component
Based Distributed Applications

Adrian Mos
Performance Engineering Laboratory

Dublin City University, Ireland
+353-1-7007644

mosa@eeng.dcu.ie

ABSTRACT
We propose a framework that can be used during as well as after
development, to identify performance problems, suggest corrections
and predict performance in large-scale component-based distributed
enterprise systems.

1. INTRODUCTION AND PROBLEM
Component Based Middleware platforms such as Enterprise Java
Beans (EJB), Microsoft .NET or Corba Component Model (CCM)
address the needs of large enterprise projects by providing reusable
standardized services and reliable runtime environments which
developers can effortlessly integrate and use in their applications. To
reduce development costs, developers often use Commercial-Off-
The-Shelf (COTS) components or outsource parts of the
development effort to third parties. The downturn is that when the
resulting application is large, it is difficult for architects and
developers to profoundly understand the implications of different
design options over the overall performance of the running system.
They often make functional assumptions (total system workload or
workload distribution), and technological assumptions (best
practices for a particular platform, operating characteristics of an
application server), which may lead to design decisions that cause
severe performance problems after the system has been deployed.

2. PROPOSED SOLUTION
The Component Performance Assurance Solutions (COMPAS)
Framework comprises three modules: monitoring, modelling and
prediction; they can be used in conjunction or separately, depending
on the amount of information available to developers. Developers
would use COMPAS to instrument, model and predict the
performance of a Target Application (TA), which can be a full,
completed enterprise application, or just a functional running
subsystem of the enterprise application. Our approach integrates
well in development environments that adhere to iterative
development processes such as Rational Unified Process or Extreme
Programming. Such processes demand that a running version of the
application exists at the end of every iteration, making monitoring
possible.

The monitoring module extracts run-time information from the TA
without changing the TA's source code or the run-time
infrastructure (i.e. application server's code). Proxy components are
automatically deployed in the run-time environment upon

Copyright is held by the author/owner(s).

OOPSLA '02, November 4-8, 2002, Seattle, Washington, USA.

ACM 1-58113-626-9/02/0011.

introspection of the TA's static deployment structure (e.g. the EAR
file for J2EE applications). One proxy component (PXC) is created
for each original component (ORC) from the TA. In this way, the
TA is completely mirrored by a Proxy Application (PA). Each PXC
in the PA will assume the identity (i.e. the name bound to a
component in the server's naming directory) of its corresponding
ORC from the TA, and at the same time, the ORCs will be given
different identities. This process ensures that any client (external
client or another ORC) call to an ORC will be intercepted by a
corresponding PXC. In addition, container-managed lifecycle events
(e.g. creation, destruction, activation) can be intercepted. Upon any
interception, the PXCs produce time-stamps, compute different
metrics (e.g. method execution response time), notify the monitoring
framework and forward the request to the corresponding ORC. A
history of the performance parameters associated with an ORC is
maintained, which allows the detection of performance degradation
(e.g. a method exhibits 10 times increase in its execution time).
When performance degradation is detected, an alert is attached to
the corresponding PXC, and the monitoring infrastructure is
notified.

The information extracted by the monitoring infrastructure is used in
the modelling module to create UML execution models of the TA.
These models are augmented with performance indicators as
specified by the UML Profile for Schedulability, Performance, and
Time. The model extraction process is based on statistical methods
and uses dynamic information such as time-stamps and method
execution times together with static information from component
deployment descriptors such as inter-component dependencies
(depending on platform specifications). To facilitate the
understanding of the system, the generated models are traversable
both horizontally between transactions at the same abstraction level,
and vertically between different layers of abstraction using the
concepts defined by the Model Driven Architecture [1] (MDA). The
MDA approach is useful for managing the complexity of the
generated models, and allows a faster identification of performance
problems in the TA design.

A logical feedback loop exists between the monitoring module and
the modelling module and its main purpose is to control and focus
the monitoring process by automatically activating and deactivating
PXCs in a way that ensures that only the relevant ORCs are
monitored at any moment in time. This approach reduces the total
overhead of the monitoring infrastructure. After the execution
scenarios (logical paths consisting of chains of components) have
been identified during the modelling phase, the only active PXCs
will be those corresponding to top-level ORCs (the first components
in each scenario). If a performance alert is issued by any of the top-
level PXCs, COMPAS will activate the remaining PXCs in that

14

particular scenario, and the alert can be narrowed down to the ORC
in the logical path that is responsible for the performance loss
perceived in the top-level PXC.

The performance prediction module simulates the generated
models and developers can specify different workload characteristics
such as the number of simultaneous users and their inter-arrival rate.
In addition developers can specify expected performance attributes
for particular ORCs, which are transformed into conditions for
generating alerts during the simulation. We envisage that in the
simulation process, developers will be able to change the generated
models and observe the effects such changes can have on the overall
performance of the application.

In the modelling phase as well as in the prediction phase, developers
will visually browse the generated models using a top-down
approach and will be able to easily switch between Platform
Independent Models (PIMs) and Platform Specific Models (PSMs)
as defined by the MDA specification. PIMs can be represented using
the Enterprise Collaboration Architecture subset from the Enterprise
Distributed Object Computing (EDOC) UML Profile, in order to
benefit from a standardized form of representation for business
modelling concepts. PSMs can be represented using specialized
profiles such as the UML Profile for EJB, which provide means to
illustrate technology specific details. When a performance alert is
detected in a model, developers can control the level of detail that is
presented, and can see if that particular problem is caused by poor
design of the business workflow (i.e. tight coupling between what
should have been loosely coupled components) or by a wrong
technological decision (i.e. in some cases in EJB, implementing a
component as a statefid session bean can lead to lower performance
than if implemented as a stateless session bean).

COMPAS will use different technological profiles corresponding to
particular platforms such as EJB or .NET. Such profiles will contain
known performance issues and patterns such as [2] for the platforms
they represent and will facilitate the detection of wrong
technological decisions or anti-patterns in that context. For example,
an EJB PSM can show a performance alert when an entity bean
finder method returns a large result set. In such a situation, the
COMPAS may suggest a pattern such as Value List Handler [2] to
alleviate the performance problem.

One of the most significant methods for performance modelling and
prediction is presented in [3] reporting significant results in the
improvement of the software development process, specifically the
use of Software Performance Engineering methods aided by related
tools such as SPE-ED. These tools assume that developers can map
application entities such as objects or methods to run-time entities
such as I/O utilization, CPU cycles or network characteristics. It has
been proved that such techniques and tools like SPE-ED help in
achieving performance goals and reducing performance related risks
for general object-oriented systems and even for distributed systems.
However, we argue that middleware such as EJB or other
component-oriented platforms, exhibit an inherent complexity
which developers find hard if not impossible to quantify even in
simple models. Automated services such as caching, pooling,
replication, clustering, persistence or Java Virtual Machine
optimisations, provided by EJB application servers, for example,
contribute to an improved and at the same time highly unpredictable
run-time environment. In contrast, COMPAS extracts simplified

performance information such as method execution times from
rtmning versions of the target application, and creates UML
performance models automatically. This approach eliminates the
need for assumptions and can offer more accurate models and
predictions.

The Form framework [4] automatically generates execution profiles
from Java applications, being partially similar in intent to the
COMPAS Modelling module. Form uses JVM instrumentation to
intercept object level events used to build UML sequence diagrams
showing the captured interactions and is not particularly
performance oriented. COMPAS however, uses a non-intrusive
approach, deploying a parallel PA, and is strongly focused on the
performance of component-based systems, taking into consideration
specific factors such as component types and lifecycle events in
representing the MDA models.

3. STATUS AND FUTURE W O R K
A proof-of-concept monitoring module for the EJB technology has
been implemented which can automatically generate proxy
components for any TA. It uses basic graphical consoles that can
show real-time graphs of performance metrics for such events as
method invocations and creation and destruction of EJBs. Work is
under way to implement the model generator and different UML
model representation alternatives are being considered. The
separation of abstraction levels and the classification of models in
PIMs and PSMs are of particular interest. In addition, we are
considering different alternatives for realising the adaptive
monitoring, such as introducing more logic in the PXCs to facilitate
a certain degree of self-control and automatic organisation. Finally,
we are evaluating visual modelling tools such as ArgnUML, and
simulation packages, in order to be integrated in the framework. The
COMPAS framework is described in more detail and examples of
use are presented in [5].

4. ACKNOWLEDGMENTS
This work is ~nded by Enterprise Ireland Informatics Research
Initiative 2001 under grant ATRP/O1/220, and supported by Iona
Technologies and Sun Microsystems Ireland.

5. REFERENCES
[1] Object Management Group, Model Driven Architecture, OMG

document number ormsc/2001-07-01, OMG, 2001

[2] J. Cmpi, D. Alur, D. Malks. Core J2EE Patterns, Prentice
Hall, 30 September 2001.

[3] C.U. Smith, L.G. Williams. Performance and Scalability of
Distributed Software Architectures: An SPE Approach,
Parallel and Distributed Computing Practices, 2002

[4] T. Souder, S. Mancoridis, M. Salahm. Form: A Framework for
Creating Views of Program Executions. In Proceedings of
IEEE International Conference on Software Maintenance
ICSM'O1, Florence, Italy, November 2001

[5] A. Mos, J. Murphy. Performance Management in Component-
Oriented Systems Using a Model Driven Architecture TM

Approach. In Proceedings of IEEE International Enterprise
Distributed Object Computing Conference EDOC, Lausanne,
Switzerland, September 2002

15

