
A Logical Theory of Concurrent Objects* 

Jo& Meseguer 
SRI International, Menlo Park, CA 94025, and 

Center for the Study of Language and Information 
Stanford University, Stanford, CA 94305 

Abstract 

A new theory of concurrent objects is presented. The the- 
ory has the important advantage of being based directly 
on a logic called rewriting logic in which concurrent object- 
oriented computation exactly corresponds to logical deduc- 
tion. This deduction is performed by concurrent rewriting 
modulo structural axioms of associativity, commutativity 
and identity that capture abstractly the essential aspects 
of communication in a distributed object-oriented configu- 
ration made up of concurrent objects and messages. Thanks 
to this axiomatization, it becomes possible to study the be- 
havior of concurrent objects by formal methods in a logic 
intrinsic to their computation. The relationship with Ac- 
tors and with other models of concurrent computation is 
also discussed. A direct fruit of this theory is a new lan- 
guage, called Maude, to program concurrent object-oriented 
modules in an entirely declarative way using rewriting logic; 
modules writte:l in this language are used to illustrate the 
main ideas with examples. Maude contains OBJ3 as a func- 
tional sublanguage and provides a simple and semantically 
rigorous integration of functional programming and concur- 
rent object-oriented programming. 

1 Introduction 

The strong historical influence of mathematics on logic dur- 
ing the 19th and 20th centuries, while providing logic with 
high standards of rigor, has had the limiting effect of de- 
veloping logic in a timeless, Platonic, direction that is not 
well suited for the dynamical nature of computation. For 
logic programming languages this is felt as an inadequacy 
to deal, within pure logic, with dynamic aspects of compu- 
tation such as input-output, concurrency, or asserting new 
database facts. This applies to functional languages -based 
on a first order or higher order version of equational logic- 
and also to relational languages such as Prolog. This state 
of affairs poses an unhealthy dualistic dilemma, of a gnostic 
kind, forcing one to choose between a clean, timeless, world 
of logic and the dirty material world of change and chaos. 

This paper proposes a concrete solution to such a dilemma 
in an area where the dynamic aspects of computation are 
paramount, namely concurrent object-oriented program- 
ming. The paper presents a logic, called rewriting logic, that 
is ideally suited for concurrent object-oriented computation, 
in the sense that computation of this kind can be identified 
with deduction in this logic. It also presents a programming 

*Supported b:/ Office of Naval Research Contracts N00014-90- 
C-0086 and N00014-88-C-0618, and NSF Grant CCR-8707155. 
Permission to copy without fee all or part of this material is 

granted provided that the copies are not made or distributed for 

direct commerciill advantage, the ACM copyright notice and the 

title of the publication and its date appear, and notice is given 

that copying is by permission of the Association for Computing 

Machinery. To copy otherwise, or to republish, requires a fee 

end/or specific permission. 

c 1990 ACM 083791-411-2/90/3010-0101...$1.50 

language, called Maude, that is directly based on rewrit- 
ing logic in the sense that a Maude program module is a 
theory in that logic. Maude contains OBJ3 [12] as a func- 
tional sublanguage and supports an entirely declarative style 
of programming concurrent object-oriented systems. This is 
illustrated through a variety of examples presented in the 
paper. 

One of the basic inadequacies of traditional logics for deal- 
ing with change is the so called frame problem, which forces 
such logics to make explicit many contextual aspects not af- 
fected by a change. Because of the local character and flexi- 
bility of its logical axioms, rewriting logic deals with context 
in an implicit way. Such flexibility and freedom from con- 
text is even greater in the case of axioms specifying object- 
oriented systems; this is because in that case the context 
takes the form of a highly unstructured distributed config- 
uration in which objects and messages “float.” Technically, 
this flexible ensemble of objects and messages is held to- 
gether by an associative and commutative union operator; 
communication events occur concurrently in this configura- 
tion, with each such event being a context independent lo- 
calized rewriting of objects and messages by means of an 
axiom. This makes rewriting logic very well suited to pro- 
gram open systems -which can be embedded in a rich and 
open-ended variety of contexts- in a declarative way. 

The paper motivates the basic ideas of concurrent rewrit- 
ing with Maude examples, presents the rules of rewriting 
logic, develops a logical theory of concurrent objects based 
on that logic, discusses Maude’s object-oriented modules and 
a number of issues in concurrent object-oriented program- 
ming, including Actors, and gives a model-theoretic seman- 
tics for Maude based on a model theory for rewriting logic. 
The final section discusses related work and summarizes the 
main points of the paper. 

Acknowledgements. I specially thank Prof. Joseph 
Goguen for our long term collaboration on the OBJ and 
FOOPS languages [12, 141, concurrent rewriting [13] and 
its implementation on the RRM architecture [15, 171, all of 
which have directly influenced this work. I specially thank 
Prof. Ugo Montanari for our collaboration on the semantics 
of Petri nets [27, 281 that has been a source of inspiration for 
the more general ideas presented here. Mr. Narciso Marti- 
Oliet deserves special thanks for our collaboration on the 
semantics of linear logic and its relationship to Petri nets 
[23, ‘221, which is another source of inspiration for this work; 
he also provided very many helpful comments and augges- 
tions for improving the exposition. I also thank all my fel- 
low members of the OBJ and RRM teams, past and present, 
and in particular Mr. Timothy Winkler, who deserves special 
thanks for his many very good comments about the technical 
content as well as for his kind assistance with the pictures. 

2 Concurrent Rewriting 

Concurrent rewriting is motivated with examples of fzrnc- 
tional and system modules in Maude. The system module 

October 21-2!i, 1990 ECOOPIOOPSLA ‘90 Proceedings 101 



Figure 1: Concurrent rewriting of a tree of numbers. 

examples show that the traditional interpretation of rewrite 
rules as equations must be abandoned. 

2.1 Functional Modules 

The idea of concurrent rewriting is very simple. It is the 
idea of equational simplification that we are all familiar with 
from our secondary school days, plus the obvious remark 
that we can do many of those simplifications independently, 
i.e., in pordel. Consider for example the following Maude 
functional modules written in a notation entirely similar to 
that of OBJ3 [12]: 

fmod NAT is 
sort Nat . 
op 0 : -> Nat . 
op s- : Nat -> Nat . 
op -+- : Nat Nat -> Nat [comml . 
vars N M : Nat . 
eq N + 0 = N . 
eq (s N) + (s M) = s s (N + M) . 

endf m 

fmod NAT-REVERSE is 
protecting NAT . 
sort Tree . 
subsorts Nat < Tree . 
op --- : Tree Tree -> Tree . 
op rev : Tree -> Tree . 
var N : Nat . 
van T T’ : Tree . 
eq rev(N) = N . 
eq rev(T ^ T’) = rev(T’) ^ rev(T) . 

endf m 

The first module defines the natural numbers in Peano no- 
tation, and the second defines a function to reverse a binary 
tree whose leaves are natural numbers. Each module begins 
with the keyword fmod followed by the module’s name, and 
ends with the keyword endfm. A module contains sort and 
subsort declarations introduced by the keywords sort and 
subsorts stating the different sorts of data manipulated by 
the module and how those sorts are related. As OBJ3’s, 
Maude’s type structure ?s order-sorted [16]; therefore, it is 
possible to declare one sort as a subsort of another; for ex- 
ample, the declaration Nat < Tree states that every natural 
number is a tree consisting of a single node. It is also possible 
to overload function symbols for operations that are defined 
at several levels of a sort hierarchy and agree on their results 
when restricted to common subsorts; for example, an addi- 
tion operation _ +- may be defined for sorts Nat, Int, and 
Rat of natural, integer, and rational numbers with 

Nat < Int < Rat . 

Each of the functions provided by the module, as well as 
the sorts of their arguments and the sort of their result, 
is introduced using the keyword op. The syntax is user- 
definable, and permits specifying function symbols in “pre- 
fix,” (in the NAT example the function s-), “infix” (-+-) or 
any “mixfix” combination as well as standard parenthesized 
notation (rev). Variables to be used for defining equations 
are declared with their corresponding types, and then equa- 
tions are given; such equations provide the actual “code” of 
the module. The statement protecting NAT imports NAT 
as a submodule of NAT-REVERSE and asserts that the natural 
numbers are not modified in the sense that no new data of 
sort Nat is added and different numbers are not identified by 
the new equations declared in NAT-REVERSE. 

102 ECOOPIOOPSLA ‘90 Proceedings October 21-25, 1990 



To compute with such modules, one performs equa- 
tional simplification by using the equations from left to 
right until no more simplifications are possible. Note 
that this can be done concurrently, i.e., applying sev- 
eral equations at once, as in the example of Figure 1, 
in which the places where the equations have been 
matched at each step are marked. Notice that the func- 
tion symbol -+- was declared to be commutative by the 
attributer [coml. This not only asserts that the equation 
N + M = M + hl is satisfied in the intended semantics, but it 
also means that when doing simplification we are allowed to 
apply the rules for addition not just to terns -in a purely 
syntactic way-- but to equivalence classes of terms module 
the commutativity equation. In the example of Figure 1, 
the equation :Y + 0 = N is applied (modulo commutativ- 
ity) with 0 both on the right andon the left. 

A particularly appealing feature of this style of concurrent 
programming i:s the implicit nature of the parallelism, which 
avoids having to program it explicitly. Since in the two mod- 
ules above the equations are confluent and terminating (see 
[20, 71 for a definition of these notions) the order in which 
the rules are applied does not affect at all the final result. 

As in OBJ3, functional modules can be parameterized. 
For example, w’e can define a parameterized module for lists 
whose element:; belong to a parameter set of elements. In 
such modules, 1 he properties that the parameter must satisfy 
are specified by one or more (functional) parameter theories. 
In this case, the parameter theory is the trivial theory TRIV 

fth TRIV is 
sort Elt . 

en&t 

which only requires a set Elt of elements. We can then define 

fmod LIST[X :: TRW] is 
protecting NAT . 
sort List . 
subsorts Elt < List . 
op _- : List List -> List Cassoc id: nil] . 
op length : List -> Nat . 
op remove-from- : Elt List -> List . 
vars E E’ : Elt . 
var L : List . 
eq length(r.il) = 0 . 
eq length(E: L) = (s 0) + length(L) . 
remove E from nil = nil . 
remove E from (E’ L) = if E == E’ then 

remove E from L else E’ remove E from L f i . 
endf m 

Note that the “empty syntax” operator __ has been declared 
associative and has the constant nil as its identity element. 
Rewriting with this module is performed module associativ- 
ity and identity; this means that we can disregard parenthe- 
ses and that nil can match a List variable. For example, if 
we instantiate i his module to form lists of naturals by means 
of the module expression 

make NAT-LIST is LISTCNAT] endmk . 

then the second equation for length will match the expres- 
sion length{71 modulo associativity and identity by match- 
ing E to 7 and L, to nil. Another example of a parameterized 
module can be obtained by generalizing the NAT-REVERSE 
module to a parameterized REVERSECX : : TRIVI module 

‘In Maude, as in OBJ3, it is possible to declare several at- 
tributes of this kind for an operator, including also associativity 
and ident.ity, and then do rewriting modulo such properties. 

in which the set of data that can be stored in tree leaves is 
a parameter. 

As in OBJ3, the denotational semantics of functional mod- 
ules is given by the initial algebra2 associated to the syntax 
and equations in the module [18, 161, i.e., associated to the 
equational theory that the module represents. Up to now, 
most work on term rewriting has dealt with that case. HOW- 
ever, the true possibilities of the concurrent rewriting model 
are by no means restricted to this case; we consider below a 
very important class of Maude modules, called system mod- 
ules, that cannot be dealt with within the initial algebra 
framework. 

2.2 System Modules 

Maude system modules perform concurrent rewriting com- 
putations in exactly the same way as functional modules; 
however, their behavior is not functional. Consider the 
NAT-CHOICE module below, which adds a nondeterministic 
choice operator to the natural numbers. 

mod NAT-CHOICE is 
extending NAT . 
op -?- : Nat Nat -> Nat . 
vars N M : Nat . 
rl N ? M => N , 
rl N ? M => M . 

endm 

The intuitive operational behavior of this module is quite 
clear. Natural number addition remains unchanged and is 
computed using the two rules in the NAT module. Notice 
that any occurrence of the choice operator in an expression 
can be eliminated by choosing either of the arguments. In 
the end, we can reduce any ground expression to a natu- 
ral number in Peano notation. The mathematical semantics 
of the module is much less clear. If we adopt any seman- 
tics in which the models are algebras satisfying the rules as 
equations -in particular an initial algebra semantics- it 
follows by the rules of equational deduction with the two 
equations in NAT-CHOICE that N = M, i.e., everything col- 
lapses to one point. Therefore, the declaration extending 
NAT, whose meaning is that two distinct natural numbers in 
the submodule NAT are not identified by the new equations 
introduced in the supermodule NAT-CHOICE, is violated in 
the worse possible way by this semantics; yet, the opera- 
tional behavior in fact respects such a declaration. To indi- 
cate that this is not the semantics intended, system modules 
are distinguished from functional modules by means of the 
keyword mod (instead of the previous fmod). Similarly, a new 
keyword r-1 is used for rewrite rules -instead of the usual 
eq before each equation- and the equal sign is replaced 
by the new sign “=>” to suggest that rl declarations must 
be understood as “rules” and not as equations in the usual 
sense. At the operational level the equations introduced by 
the keyword eq in a functional module are also implemented 
as rewrite rules; the difference however lies in the mathemot- 
ical semantics given to the module, which for modules like 
the one above should not be the initial algebra semantics. 
My proposal is to seek a logic and a model theory that are 
the perfect match for this problem. For this solution to be in 
harmony with the old one, the new logic and the new model 
theory should generalize the old ones. 

System modules can also be parameterized. For exam- 
ple, we could have defined a parameterized module with a 
nondeterministic choice operator 

2For example, the initial algebra of the EAT module is of course 
the natural numbers with successor and addit.ion. 

October 21-25 1990 ECOOP!OOPSLA ‘90 Proceedings 103 



mod TICKET is 
sort Place . 

change 

ops $,q,tl,t2 : -> Place . 
op -@- : Place Place -> Place 

[assoc comm id: X1 . 
rl b-t1 : $ => tl@ q @3 q . 
rl b-t2 : $=>t2@ q. 
rl change : s => q @3 q @ q @ q . 
r-1 b’-ti : q@q=>tl. 
r-1 b)-t2 : q @ q @I q => t2 . 

endm 

4 t2 

Figure 2: A Petri net and its code in Maude. 

mod CHOICE[X : : TRIV] is 
op -?- : Elt Elt -> Elt . 
vars A B : Elt . 
rl A ? B => A . 
rl A ? B => B . 

encim 

and could have obtained a module equivalent to NAT-CHOICE 
by means of the module expression 

make NAT-CHOICE is CHOICECNAT] endmk . 

Another interesting example of a system module that il- 
lustrates both Maude’s expressiveness and the generality of 
the concurrent rewriting model is the Petri net in Figure 2, 
which represents a machine to buy subway tickets. With a 
dollar we can buy a ticket 11 by pushing the button b--t1 
and get two quarters back; if we push b-t2 instead, we get a 
longer distance ticket 12 and one quarter back. Similar but- 
tons allow purchasing the tickets with quarters. Finally, with 
one dollar we can get four quarters by pushing change. The 
corresponding system module, TICKET, is given in the same 
figure. Note that the rules in this module are labelled by the 
name of the transition which they represent. A key point 
about this module is that the operator @ -corresponding 
to multiset union- has been declared associative, commu- 
tative, and having an identity element X. Therefore, con- 
current rewriting in this module is performed modulo the 
associativity, commutativity and identity axioms for 8. We 
call such a rewriting ACI-rewriting. In this example, ACI- 
rewriting captures exactly the concurrent computations of 
the Petri net. Suppose, for example, that we begin in a 
state with four quarters and two dollars. Then, by first 
concurrently pushing the buttons b’-tl and b-t2, and then 
concurrently pushing the buttons b’-t2 and b-t2 we end up 
with a ticket for the shorter distance, three tickets for the 
longer distance and a quarter, as shown in the two steps of 
concurrent ACI-rewriting below: 

+ t2@3t l@t2@t2@q. 

As in the NAT-CHOICE example, this example also shows that 
initial algebra semantics is entirely inadequate to handle sys- 
tem modules with a nonfunctional behavior. In this case, in- 
terpreting the rules as equations would force the nonsensical 
identification of the three states above. System modules de- 
note concurrent systems, not algebras, and rewriting logic is 
a logic that expresses directly the concurrent computations 
of such systems. 

3 Rewriting Logic 

Rewriting logic is defined, and concurrent rewriting is for- 
malized as deduction in such a logic. 

3.1 Basic Universal Algebrq 

For the sake of simplifying the exposition, I treat the un- 
sorted case; the many-sorted and order-sorted cases can be 
given a similar treatment. Therefore, a set C of function 
symbols is a ranked alphabet C = {C, 1 n E IN}. A C- 
algebra is then a set A together with an assignment of a 
function fA : A” + A for each f E C,, with n E W. I de- 
note by Tn the C-algebra of ground C-terms, and by TX(X) 
the C-algebra of C-terms with variables in a set X. Similarly, 
given a set E of C-equations, Tn,s denotes the C-algebra of 
equivalence classes of ground C-terms modulo the equations 
E (i.e., modulo provable equality using the equations E); in 
the same way, T~,E(X) d enotes the C-algebra of equivalence 
classes of C-terms with variables in X modulo the equations 
E. We let t =E t’ denote the congruence module E of two 
terms t, t’, and [t]E or just [t] denote the E-equivalence class 
of t. 

Given a term t E T~({zl,.. . ,z~}), and a sequence of 
terms urr...,un, t(ul/xl,. . . , un/zn) denotes the term ob- 
tained from t by simultaneously substituting ui for xi, a’ = 
1 ,“‘, n. To simplify notation, I denote a sequence of objects 

2 +-.’ 

a, by si, or, to emphasize the length of the sequence, 
With this notation, t(ul/xI, . . . , un/zn) is abbrevi- 

ated to t(E/T). 

3.2 Rewriting Logic 

We are now ready to introduce the new logic that we are 
seeking, which I call rewriting logic. A signature in this 
logic is a pair (C, E) with C a ranked alphabet of function 
symbols and E a set of C-equations. Rewriting will oper- 
ate on equivalence classes of terms modulo a given set of 
equations E. In this way, we free rewriting from the syn- 
tactic constraints of a term representation and gain a much 
greater flexibility in deciding what counts as a data struc- 
ture; for example, string rewriting is obtained by imposing 
an associativity axiom, and multiset rewriting by imposing 
associativity and commutativity. Of course, standard term 
rewriting is obtained as the particular case in which the set 
E of equations is empty. The idea of rewriting in equivalence 
classes is well known (see, e.g., [20, 71.) 

Given a signature (C, E), the sentences of the logic are 
sequents of the form [t]E -+ [t’]~ with t, t’ C-terms, where 
t and t’ may possibly involve some variables from the count- 
ably infinite set X = {xl,. . . , znr . . .>. A theory in this 
logic, called a rewrite theory, is a slight generalization of the 

104 ECOOP/OOPSLA ‘90 Proceedings October 21-25, 1990 



usual notion of theory -which is typically defined as a pair 
consisting of a signature and a set of sentences for it- in 
that, in addition, we allow rules to be labelled. This is very 
natural for many applications, and customary for automata 
-viewed as labelled transition systems- and for Petri nets, 
which are both particular instances of our definition. 

Definition 1 A (labelled) rewrite theory3 R is a 4-tuple 
R = (C,E,L,I?) h w ere C is a ranked alphabet of function 
symbols, E is a :let of C-equations, L is a set called the set of 
labels, and R is it set of pairs R C L x (Tc,E(X)~) whose first 
component is a label and whose second component is a pair 
of E-equivalence classes of terms, with X = (21,. . . , zn,. . .} 
a countably infinite set of variables. Elements of R are called 
rewrite rules4. We understand a rule (7, ([i], [t’])) as a la- 
belled sequent a.nd use for it the notation r : [t] --+ [t’]. To 
indicate that { ~1,. . . , zn} is the set of variables occurring in 
either t or t’, we write5 T : [t(zl, . . . , zn)] -----) [t’(zl, . . . , zn)], 
or in abbreviated notation T : [t(F”)] b [t’(p)]. 0 

Given a rewrite theory R, we say that R entails a sequent 
[t] -+ [t’] and write R I- [L] ---+ [t’] if and only if [t] + [t’] 

can be obtained by finite application of the following rules 
of deduction: 

1. Reflexivit:y. For each [t] E Tc,E(X), 

PI - PI 
2. Congruence. For each f E C,, n E IN, 

Pll - PiI . . . [tn] - [cl] 
[f(tl,...,tn)l - [f(G,...,ca)l 

3. Replacement. For each rewrite rule 
r : [t(zl,, , ,z,)] d [t’(zl, . . . , zn)] in R, 

bll - [4] . . [wn] - [&I 
[t (Tr/T)] - [+7/Z)] 

4. Transitivity. 

VII - p21 [tzl - It31 
M - it31 

Equational logic (modulo a set of axioms E) is obtained from 
rewriting logic 1)~ adding the following rule: 

5. Symmetr:/. 
M - bl 
lt21 - Pll 

3 I consciously depart from the standard terminology, that 
would call R a rewrite system. The reason for this departure 
is very specific. I want to keep the term “rewrite system” for the 
models of such a theory, which will be defined in Section 5 and 
which really are systems with a dynamic behavior. Strictly speak- 
ing, 72 is not a s:rstem; it is only a static, linguistic, presentation 
of a class of systems -including the initial and free systems that 
most directly formalize our dynamic intuitions about rewriting. 

4To simplify the exposition the rules of the logic are given for 
the case of unconditional rewrite rules. However, all the ideas and 
results presented here have been extended to conditional rules in 
[25] with very general rules of the form 

This of course increases considerably the expressive power of 
rewrite theories, ,PS illustrated by several of the examples of Maude 
modules presented in this paper. 

‘Note that, in general, the set (21,. . ,z,} will depend on the 
representatives t and t’ chosen; therefore, we allow any possible 
such qualification with explicit variables. 

With this new rule, sequents derivable in equational logic 
are bidirectional; therefore, in this case we can adopt the 
notation [t] CI [t’] throughout and call such bidirectional 
sequents equations. 

In rewriting logic a sequent [t] -+ [t’] should not be read 
as “[t] equals [t’],” but as “[t] becomes [t’].” Therefore, rewrit- 
ing logic is a logic of becoming or change, not a logic of equal- 
ity in a static Platonic sense. Adding the symmetry rule is a 
very strong restriction, namely assuming that all change is 
reversible, thus bringing us into a timeless Platonic realm in 
which “before” and “after” have been identified. A related 
observation is that [t] should not be understood as a term in 
the usual first-order logic sense, but as a proposition -built 
up using the logical connectivea in C- that asserts being 
in a certain state having a certain structure. The rules of 
rewriting logic are therefore rules to reason about change in 
a concurrent system. They allow us to draw valid conclu- 
sions about the evolution of the system from certain basic 
types of change known to be possible thanks to the rules R. 

3.3 Concurrent Rewriting as Deduction 

A nice consequence of having defined rewriting logic is that 
concurrent rewriting, rather than emerging as an operational 
notion, actually coincides with deduction in such a logic. 

Definition 2 Given a rewrite theory 7L = (C, E, L, R), a 
(C, E)-sequent [t] -+ [t’] is called: 

l a O-step concurrent R-rewrite iff it can be derived from 
R by finite application of the rules 1 and 2 of rewriting 
deduction (in which case [t] and [t]’ necessarily coin- 
cide); 

l a one-step concurrent R-rewrite iff it can be derived 
from R by finite application of the rules l-3, with at 
least one application of rule 3; if rule 3 is applied ex- 
actly once, we then say that the sequent is a one-step 
sequential R-rewrite; 

l a concurrent ‘R-rewrite (or just a rewrite) iff it can be 
derived from R by finite application of the rules 1-4. 

We call the rewrite theory R sequential if all one-step ‘?Z- 
rewrites are necessarily sequential. A sequential rewrite 
theory R is in addition called deterministic if for each 
[t] there is at most one one-step (necessarily sequential) 
rewrite [t] d [t’]. The notions of sequential and determin- 
istic rewrite theory can be made relative to a given sub- 
set 5’ c Tc,E(X) by requiring that the corresponding prop- 
erty holds for each [t’] “reachable from S,” i.e., for each [t’] 
such that for some [t] E S there is a concurrent R-rewrite 
[t] ---) Et’]. 0 

The usual notions of confluence, termination, normal 
form, etc., as well as the well known Church-Rosser prop- 
erty of confluent rules remain unchanged when considered 
from the perspective of concurrent rewriting 1251. Indeed, 
concurrent rewriting is a more convenient way of consider- 
ing such notions than the traditional way using sequential 
rewriting. 

4 Concurrent Objects 

We are now ready to present a logical theory of concurrent 
objects based on rewriting logic deduction modulo ACI. The 
key idea is to conceptualize the distributed state of our con- 
current object-oriented system -called a configuration- as 
a multiset of objects and messages that evolves by concur- 
rent ACI-rewriting using rules that describe the effects of 
communication events between some objects and messages. 

October 21-25, 1990 ECOOP/OOPSLA ‘90 Proceedin; s 105 



Therefore, we can view concurrent object-oriented computa- 
tion as deduction in rewriting logic; in this way, the configu- 
rations S that are reachable from a given initial configuration 
5’0 are exactly those such that the sequent SO - S is prov- 
able in rewriting logic using the rewrite rules that specify 
the behavior of the given object-oriented system. 

An object is represented as a term 

(0 : c 1 a1 : q,..., Gl : v*) 

where 0 is the object’s name or identifier, C is its class, the 
a;‘s are the names of the object’s attributes, and the vi’s are 
their corresponding values; in particular, object identifiers 
can be values. The basic syntax for objects, messages and 
configurations is given by the following order-sorted rewrite 
signature, where the sorts OId, CId and AId are those of 
object, class and attribute identifiers respectively, and Msg 
is the sort of messages. 

sorts Object Attribute Attributes Msg 
Configuration Value OId CId AId . 

subsorts OId < Value . 
subsorts Attribute < Attributes . 
subsorts Object Msg < Configuration . 
op <-:-I-> : OId CId Attributes -> Object . 
op c-:-j : AId Value -> Attribute . 
op -,- : Attributes Attributes -> Attributes 

[assoc comm id: nil] . 
op -- : Configuration Configuration 

-> Configuration [assoc comm id: 01 . 

where the operators -, _ and __ are both associative and com- 
mutative with respective identities nil and 0. The type 
structure provided by the above signature is still rather un- 
constrained. For example, the definition of a class C of 
objects introduced in a given object-oriented module (see 
Section 4.1) has the effect of constraining the attributes of 
objects in that class to be in a fixed set {al,. . . , a,,} of at- 
tribute names, and a subclass definition enlarges such a set. 
Similarly, the sort Value is typically the supersort of a pos- 
sibly quite complex collection of (functional) algebraic data 
types, whose computations can also be specified by rewrite 
rules introduced in appropriate functional submodules of the 
system. The values u over which an attribute a ranges are 
typically forced to be in a given subsort of Value. Such 
tightening of the type structure to exactly reflect the type 
requirements of a given object-oriented system is discussed 
in Section 4.2; however, the above signature is sufficient for 
our present discussion. 

As already mentioned, the configuration is the distributed 
state of the given concurrent object-oriented system and is 
represented as a multiset of objects and messages. The sys- 
tem evolves by concurrent rewriting (modulo ACI) of its 
configuration using rewrite rules that are specific to each 
particular system. The lefthand and righthand sides of such 
rules may in general involve patterns for several objects and 
messages. For example, objets in a class Accnt of bank ac- 
counts, each having a baZ(ance) attribute, may receive mes- 
sages for crediting or debiting the account and evolve ac- 
cording to the rules: 

credit(B, M) (B : Accnt 1 bal : N) 

+ (I?: Accnt 1 bal : N + M) 

debit(B, M) (B : Accnt ) Dal : N) 

+ (B : Accnt 1 bal : N - ,l4). 

The general form required of rewrite rules used to specify 

the behavior of an object-oriented system is as follows: 

(t) MI . . . M, (01 : Cl 1 attrsl) . . . (0, : C,,, 1 attrs,) 

--+ (Oi, : C,!, 1 attrs~,) . . . (Oi, : Ci), I attrs:,) 

(QI : D1 1 attrs;‘). . . (Qp : D, 1 attrsi) 

M; . . M; 

where the MS are message expressions and il, . . . , ik are dif- 
ferent numbers among the original 1,. . . , m. A rule of this 
kind expresses a communication event in which n messages 
and m distinct objects participate. The outcome of such an 
event is as follows: 

l the messages MI, . . . , M, disappear; 

l the state and possibly even the class of the objects 
O;, , . . . , Oi, may change; 

l all other objects Oj vanish; 

l new objects Q1,. . . , QP are created; 

l new messages M,‘, . . . , Mi are sent. 

In addition, all rules must satisfy the property that rewrit- 
ing of a configuration without repeated object names leads 
to a configuration without repeated object names6. In other 
words, we are only interested in configurations in which there 
is a set of objects, not a multiset, and we never want to reach 
a configuration in which two objects have the same name; 
however, there is in principle no problem in allowing configu- 
rations in which identical copies of a message have been sent, 
perhaps as the outcome of different communication events. 
A necessary condition required for this property to hold for 
a rule is that if in a ground instance of the rewrite rule the 
instances of the object names 01,. . . , 0, are all different, 
then the instances of the object names f&, . . . , Qm are also 
all different and different from the OS. Sufficient conditions 
to guarantee the uniqueness of objects are discussed in Sec- 
tion 4.3. 

4.1 Object-Oriented Modules 

Taking syntactic advantage of the structural properties com- 
mon to all object-oriented systems, Maude allows the def- 
inition of object-oriented modules in addition to functional 
and system modules. However, the syntax and semantics 
of object-oriented modules can be reduced to that of sys- 
tem modules as explained in Section 4.2. The syntax of 
object-oriented modules is illustrated below by an example 
of a FIFO buffer of bounded size. The data elements to be 
stored in the buffer are a parameter; the other parameter 
is the size of the buffer which is specified by the parameter 
theory 

fth NAT* is 
protecting NAT 
op k : -> Nat . 

endf t 

whose models are choices of a natural number k. The 
bounded buffer module is as follows 

omod BD-BUFF[X : : TRIV, K : : NAT*] is 
protecting LIST[X] . 
class BdBuff . 
att contents : BdBuff -> List [hidden] . 

61n some cases, it may be convenient to think of the object 
name as t,he pair formed by its name and its class name; in this 
way, a greater reuse of object names is possible (see the example 
in Section 4.6.) 

106 ECOOP/OOPSLA ‘90 Proceedings October 21-25, 1990 



msg put-in- : Elt Id.BdBuff -> Msg.BdBuff . 
msg getfrom-replyto- : Id.BdBuff OId 

-> Msg.BdBuff . 
msg elt-in-is-to- : Id.BdBuff Elt OId -> Msg . 
var B : Id. BdBuf f . 
var I : OId . 
var E : Elt . 
var C : List . 
rl (put E i:n B) <B : BdBuff I contents: C> => 

<B : BdBuff I contents: E B> 
if len,gth(q) < k . 

rl (getfrom B replyto I> 
<B : BIiBuff 1 contents: E q> => 
<B : BdBuff 1 contents: Cl> 
(elt-i:n B is E to I) . 

endom 

The only attribute of a buffer is its contents, which is a list 
of elements. Since the contents should not be visible outside 
the buffer, this attribute has been declared [hidden]; this 
means that no other object can send a message requesting 
the entire contents of the buffer because messages of that 
kind are ruled out for hidden attributes (see Section 4.2.) 
The sort Id. BdBuff stands for object identifiers for the class 
BdBuf f; similarly, Msg. BdBuf f denotes messages that will 
participate in communication events involving only objects 
of class BdBuf f. The two types of communication events of 
this kind that are possible are specified by the two rules of 
the module. The sort OId stands for identifiers of objects in 
any class. Thelmefore, if an arbitrary object I possesses the 
name B of a buflrer, then it is possible for that object to send 
a message (get from B replyto I) to B, and the last rule 
specifies that, when B has a nonempty queue, it will send 
the first element of its queue to I by means of the message 
(elt-in B is 1: to I). 

Notice that this definition allows us to embed instances of 
the present moc.ule into much more complex object-oriented 
systems with complete flexibility for specifying a posteri- 
ori and dynamically which objects will communicate with 
buffers. In other words, Maude object modules support 
an “open systems” approach for defining complex object- 
oriented systems out of smaller subsystems. 

The two rules in the bounded buffer module provide a 
simple declarative solution to the problem of specifying the 
appropriate behavior of a bounded buffer that receives a put 
message when it is full or a get message when it is empty; 
the implicit effect of the rules is that the corresponding mes- 
sages “float” in the configuration until the appropriate con- 
ditions obtain for the buffer; if additional error handling is 
desired, this cau be specified by adding more rules. By con- 
trast, a language like ABCL/l [30] requires introducing a 
special “waiting mode” for objects and a corresponding “se- 
lect construct” to reactivate the object appropriately after 
such waiting. 

4.2 Reduction to System Modules 

The syntax and semantics of a Maude object-oriented mod- 
ule are entirely reducible to those of a system module, i.e., 
we can systematically translate an object-oriented mod- 
ule omod 0 endom into a corresponding system module 
mod (3# endm whose semantics7 is the object-oriented mod- 
ule’s intended semantics. 

‘For the moment, consider the semantics of the module in 
terms of concw,-nt rewriting. Section 5 gives a model theoretic 
semantics for Maude modules that makes completely precise their 
intended semantics. 

The translation from a module omod 0 endom to a mod- 
ule mod O# endm is illustrated by the following translated 
version of the bounded buffer module: 

mod BD-BUFF#[X : : TRIV, K : : NAT*] is 
protecting LISTCX] . 
sorts BdBuff Id.BdBuff OId Msg.BdBuff Msg 

Value Configuration . 
subsorts Id.BdBuff < OId < Value . 
subsorts List < Value . 
subsorts Msg.BdBuff < Msg . 
subsorts Msg BdBuff < Configuration . 
op <-: BdBuff 1 contents:-> : Id.BdBuff List 

-> BdBuff . 
op put-in- : Elt Id.BdBuff -> Msg.BdBuff . 
op getfrom-replyto- : Id.BdBuff OId 

-> Msg.BdBuff . 
op elt-in-is-to, : Id.BdBuff Elt OId -> Msg . 
op -- : Configuration Configuration 

-> Configuration [assoc comm id: 01 . 
var B : Id.BdBuff . 
var I : OId . 
var E : Elt . 
var Q : List . 
rl (put E in B) <B : BdBuff I contents: D> => 

<B : BdBuff I contents: E Q> 
if length(Q) < k . 

rl (getfrom B replyto I> 
<B : BdBuff I contents: E D> => 
<B : BdBuff I contents: Q> 
(elt-in B is E to I> . 

en&n 

Note that the rewrite rules are the same and therefore the be- 
havior of the translated module is exactly the one we would 
expect from the original object-oriented module; what has 
been made more explicit is some of the order-sorted type 
structure, for which the conventions of object-oriented mod- 
ules provide a form of syntactic sugar. 

In general, a translation of this kind introduces for each 
visible, i.e., not hidden, attribute a of sort S for objects in a 
class C operators 

op a.- replyto- : 1d.C OId -> Msg.C . 
op a.-is-to- : 1d.C S OId -> Msg . 

to create messages requesting that the value of the attribute 
of the recipient object is sent to another specified object; 
this behavior is specified by introducing the corresponding 
rule 

rl (a. X reply to Y> CX : C 1 ATTS, a: V, ATTS’> => 
cx : C I ATTS, a: V, ATTS’> (a. X is V to Y> , 

The bounded buffer example does not exhibit such operators 
and rules because the only attribute, contents, was declared 
[hidden]. 

Note finally that, for the moment, the identifier sorts have 
not been specified further in order to leave open the issue of 
name conventions, which is touched upon in Section 4.3. 

4.3 Object-Oriented Concurrency 

Object synchronization, object creation, metaclasses and ac- 
tive objects, are discussed. 

Synchrony and Asynchrony 

Given the general form (t) of rewrite rules representing com- 
munication events in an object-oriented system, it is possible 
for one, none or several objects to appear as participants in 

October 21-25, 1990 ECOOFVOOPSLA ‘90 Proceedings 



the lefthand sides of rules. If only one object appears in 
the lefthand side, we call such a communication event asyn- 
chronous, whereas if several objects are involved we call it 
synchronous and say that the objects in question are forced 
to synchronize by the rule. For example, a transfer message 
to transfer funds between accounts could be defined in two 
versions (asynchronous and synchronous) as follows: 

asynch-trunsfer(M, A, B) ---+ debit(A, M) credit(B, M) 

synch-transfer(M, A, B) (A : Accnt 1 bal : N) 
(B : Accnt 1 bal : N’) 
-(A:AccntIbal:N-M)(B:Accnt]baZ:N’+M) 

use of the class Class has also other obvious advantages. For 
example, by iterating on the list of current objects in a class 
it is very easy to broadcast a message to all of them. 

Taking this approach a step further, we could also intro- 
duce a class Mod whose objects are representations of the 
modules in the current system, say 

(M : Mod I kind : J, signature :S, rules :R, submodules :L) 

In the first case, the message will produce two asynchronous 
communication events -namely debiting to A and crediting 
to B the amount of money M- whereas in the second case 
both accounts have to be synchronized for the transaction 
to occur. 

Object Creation and Metaclasses 

Object creation and deletion can be treated in a simple way. 
In its simplest formulation, we can use numbers as object 
identifiers and a fixed Counter object, call it Unique, to- 
gether with “new” messages for object creation and “delete” 
messages for object deletion with corresponding rules: 

in such a way that extending the system with a new module 
definition could be accomplished by sending a new message 
specifying as attributes the kind, signature, rules and sub- 
modules of the module being defined. In case the module’s 
kind is object-oriented, the effect of such a message should 
not only be that the module’s name is appended to the ob- 
jects attribute of the object Mod of class Class and that the 
object representing the new module is created; it should also 
have the subsequent effect of creating new objects of class 
Class for each one of the classes introduced in the mod- 
ule. This opens up interesting possibilities for reflection and 
metaprogramming in Maude. 

new(C 1 attrs) (Unique : Counter 1 vu2 : N) 
-t (N + 1 : C 1 attrs) (Unique : Counter I val : N + 1) 

delete(A : C) (A : C 1 attrs) - 0 

In a sense this makes unnecessary having new objects appear 
explicitly in the righthand sides of rules, since such objects 
can be replaced by corresponding new messages. 

However, the above scheme is too crude, because the 
counter could easily become a bottleneck when many ob- 
jects are being created; therefore, even if we want to use new 
messages to create objects, more flexible schemes should be 
used. The situation can be alleviated by organizing the cre- 
ation of objects as a process that is local to each class. This 
can for example be achieved by introducing a class Class 
whose objects are representations of the existing classes and 
their corresponding objects. For each class C, the role of 
the natural numbers can then be played by a data type Id.C 
having a function next : Id.C --+ Id. C such that for each 
I E Id.C, n > 0, I # nest”(I). The object representing a 
class C can then be of the form 

There may be cases in which even the use of objects for 
representing classes could become a bottleneck for object 
creation. In such cases, one could adopt an entirely dis- 
tributed approach to the creation of objects. A very easy 
expedient is to assume that one of the objects, call it 0, 
matched by the lefthand side of a rule of the form (t) and 
surviving in the righthand side of the rule in question has a 
counter, say with value N. Then, the p new objects created 
by the righthand side are given names O.N.l,. . . , O.N.p, 
and O’s counter is increased; it is even possible to send mes- 
sages notifying the respective Class objects that the new 
objects exist. In summary, there are many ways by which 
the uniqueness of objects can always be guaranteed in an 
object-oriented system so that the requirement that the rules 
preserve this uniqueness is satisfied. The particular choice 
of mechanisms and the corresponding choice of data repre- 
sentations for object identifiers may depend on particular 
characteristics of the given application. 

Active Objects 

Messages, besides modifying one or more objects, can also 
cause other messages to be sent, thus initiating a possibly 
infinite chain reaction of messages. A simple example is 
provided by a Clock object with a tick message: 

tick(C) (C : Clock 1 time : T) 
(C : Class 1 last :I, objects :L) ---+ (C : Clock [ time : T + 1) tick(C). 

where I is the last object identifier that was created and L 
is the list of the identifiers for existing objects of the class 
C. Our previous rules now take the form 

new(C 1 attrs) (C : Class I last : I, objects :L) 
- (nest(I) : C [ attrs) 

(C : Class 1 last : next(I), objects :nezt(I)L) 

deletee(A : C) (C : CZ ass 1 last : I, objects :L) 
- (C : Class I last : I, objects :remove A from L) 

deletel(A : C) 

Since this process never stops, it is reasonable to speak of 
the clock as an “active object.” There is however an even 
more striking mode of activity, namely that of objects that, 
on their own, change their state and/or send messages to 
other objects without any ezternal prompting by messages 
or by other objects. This is exemplified in Section 4.6 by 
philosophers that, all of a sudden, become hungry, try to 
pick up forks, etc. The key pattern permitting this kind 
of autonomous activity is that of rules whose lefthand sides 
involve just one object and no messages. 

deletel(A : C) (A : C [ attrs) --+ 0 

where the deletion process first removes the object’s identi- 
fier from the list of objects in the class and then deletes the 
object itself. A variant of the above scheme can be obtained 
by allowing “user specifiable” identifiers for objects, instead 
of using the function nest, checking whether the name exists 
already and generating an appropriate error message in that 
case; it is even possible to combine both possibilities. The 

Since some of the attributes of an object -as well as the 
parameters of messages- can contain object names, very 
complex communication patterns can be achieved. There- 
fore, objects -besides being “active”- can cooperate in ac- 
complishing very complex tasks. 

4.4 Inheritance 

Class inheritance is directly supported by Maude’s order- 
sorted type structure. Therefore, a subclass declaration 

108 ECOOPIOOPSLA ‘90 Proceediry s October 21-25, 1990 



Acl,ors 
Script 

1 OOP 
Class declaration 

A& Object 
Actor Machine Object State 
Task Message 
Acquaintances Attributes 

Figure 3: A dictionary for Actors. 

oriented system in our sense 
being of the general form (t) 

M (0 : c 1 attrs) 

whose rewrite rules instead of 
are of the special form 

-t (0 : C’ 1 attrs’) 

(Q1 : II1 1 attrs:‘) . . . (Qp : D, 1 attrsi) 

M&M;. 

C < C’ in an okject-oriented module omod 0 endom is inter- 
preted as a subsort declaration C < C’ in its system module 
translation mod U# ends. The effect in the signature of 0# 
is that the attributes of all the superclasses as well as the 
newly defined attributes of a subclass appear in the syntax 
definition of the constructor operator for objects in the sub- 
class. Rules mu:;t also be inherited, unless new rules with a 
different behavior than those in a superclass are introduced 
for the subclass; at the level of the translation O# this can 
be accomplished by introducing new rules that add extra 
attributes to the previous rules. Alternatively, if an ACI 
representation of the set of attributes is used, it is possible 
to turn rules associated with a class C into conditional rules 
that check whe,;her the class identifier C’ of the matched 
object is smaller than C in the subsort ordering. 

4.5 Actors 

Actors [2, l] provide a very rich and interesting style of con- 
current object-oriented programming. However, their math- 
ematical structure, although already described and studied 
by previous researchers [6, 11, has remained somewhat hard 
to understand and, as a consequence, the use of formal meth- 
ods to reason about actor systems has remained limited. The 
present logical theory of concurrent objects sheds new light 
on the mathematical structure of actors and provides a new 
formal basis for the study of this important and interesting 
approach. 

Therefore, the present theory is considerably more general 
than that of actors; the dining philosophers example in Sec- 
tion 4.6 illustrates the advantages of this greater generality. 
In comparison with existing accounts about actors [2, 11 it 
seems also fair to say that our theory is more abstract so 
that some of those accounts can now be regarded as high 
level architectural descriptions of ways in which the abstract 
model can be implemented. In particular, the all-important 
mail system used in those accounts to buffer communication 
is the implementation counterpart of what in our model is 
abstractly achieved by the ACI axioms. A nice feature of 
our approach is that it gives a truly concurrent formulation 
-in terms of concurrent ACI-rewriting (see Section 5 for 
more mathematical details)- of actor computations, which 
seems most natural given their character. By contrast, Agha 
[I] presents an interleaving model of sequentialized transi- 
tions. Agha is keenly aware of the inadequacy of reduc- 
ing the essence of true concurrency to nondeterminism and 
therefore states (pg. 82) that the correspondence between his 
interleaving model and the truly concurrent computation of 
actors is “representationalistic, not metaphysical.” 

Specifically, t:re general logical theory of concurrent ob- 
jects presented in this paper yields directly as a special case 
an entirely declarative approach to the theory and program- 
ming practice of actors. The specialization of our model to 
that of actors can be obtained by first clarifying terminolog- 
ical issues and then studying their definition by Agha and 
Hewitt [2]. 

There is one additional aspect important for actor systems 
and in general for concurrent systems, namely fairness. For 
actors, this takes the form of requiring guarantee of mail de- 
livery. In the concurrent rewriting model it is possible to 
state precisely a variety of fairness conditions and, in par- 
ticular, the guarantee of mail delivery for the special case of 
actors. However, space limitations preclude a treatment of 
fairness issues in this paper. 

Actor theory lias a terminology of its own which, to make 
things clearer, I will attempt to relate to the more standard 
terminology employed in object-oriented programming. To 
the best of my understanding, the table in Figure 3 provides 
a basic terminological correspondence of this kind. 

The essential idea about actors is clearly summarized in 
the words of Agha and Hewitt [z] as follows: 

4.6 A Dining Philosophers Example 

To further illustrate Maude’s programming style, I include 
a dining philosophers example. The number k of philoso- 
phers is equal to the number of forks and is a parameter 
specified by the theory NAT*. I assume that the philosophers 
are seated in a round table, each occupying a fixed position. 
The circular geometry is captured abstractly by the natu- 
ral numbers moduto k, which are defined as a parameterized 
functional module. Such numbers are used as identifiers for 
both philosophers and forks. 

“An actor is a computational agent which carries 
out its acticns in response to processing a commu- 
nication. The actions it may perform are: 

l Send communications to itself or to other ac- 
tors. 

0 Create more actors. 

The code for the example introduces a useful convention 
that avoids making unnecessary mention of object attributes 
which are irrelevant for a given occurrence of an object in 
a rewrite rule. The general convention is that only a subset 
{UI,..., a,+k} of the attributes of (a pattern for) an object 
0 may be mentioned in a righthand occurrence of the object 
in a given rule, and then a lefthand occurrence will mention 
a smaller or equal subset {al,. _ . , a,} of those attributes. 
What this abbreviates is a lefthand side pattern 

l Specify the replacement behavior.” (0 : c 1 ul : VI,. . . ,a,, : un, un+l : xl,. . . , an+k : Zk, attrs) 

The “replacemert behavior” is yet another term to describe 
the new “actor n.achine” produced after processing the com- 
munication, i.e., the new state of the actor. 

where the x3s are new “don’t care” variables, and at&s 
matches the remaining attributes, and a corresponding right.- 
hand side pattern 

We can now put all this informatioil together and sim- 
ply conclude that a logical axiomatieatiou in rewriting logic 
of an actor system -which is of course at t11c same time 
an executable specification of such R systcrn irr Maude-- ex- 
actly correspond:; to the special GM: of a concurrent object- 

(0: C’ 1 ’ al : q,. , un+k : uL+k, attrs). 

The example illustrates the expressive power of the gen- 
eral form (t) of rules allowed in the logical theory of con- 
current objects developed in this paper. Such rules permit 

October 21-25, 1990 ECOOP/OOPSLA ‘90 Proceedings 109 



dealing directly with phenomena that cannot be expressed 
naturally in the actor model due to the requirement that 
actors operate by reacting to messages that they receive. 
In the example, a philosopher can spontaneously pass from 
not being hungry -which we can implicitly interpret as a 
suitable state for thinking- to being hungry, but not yet 
restless. After some time, his hunger will be such that he 
will actually become restless and will attempt picking up the 
two forks adjacent to him. If the philosopher is in possession 
of the two forks for some time, he will satiate his appetite; 
therefore, by another spontaneous reaction, the philosopher 
will leave the two forks on the table. All those behavior 
instances occur autonomously, without the philosopher re- 
ceiving any external communication, although communica- 
tion events do also occur, at times involving receiving more 
than one message. 

Of course, the example allows deadlock configurations. In 
rewriting terms this means configurations that cannot be 
rewritten further and that are undesirable in some intuitive 
or precisely specified sense. In this example, this can happen 
by configurations in which philosophers starve each other 
by keeping one of the forks. Agha [I] points out that one 
of the possibilities offered by the concurrent object-oriented 
programming style is to resolve deadlocks and other such 
conflicts by some kind of cooperation among objects, rather 
than by imposing a more traditional centralized way of re- 
solving the conflict (such as a waiter in this example.) I 
present a particular solution of this kind, namely a com- 
munity of wise philosophers, introduced in the subsequent 
parameterized module WISE-PHILCK : : NAT*]. Each wise 
philosopher exercises enlightened altruism by releasing one 
of the forks when he finds out that the other fork is oc- 
cupied. In this way, under appropriate fairness conditions, 
the philosophers can live peacefully together enjoying each 
other’s company, without any worldly anxiety about their 
nourishment. Of course, other solutions -requiring fewer 
fairness assumptions- are also possible in the same decen- 
tralized style. 

fmod NAT-MODULOCK :: NAT*] is 
sort Nat/k . 
op c-1 : Nat -> Nat/k . 
var N : Nat . 
eq [N] = [N - k] if N >= k . 

endfm 

omod DINING-PHILCK :: NAT*] is 
protecting NAT-MODULO[K] . 
sort Answer . 
ops yes, no : -> Answer . 
classes Phil Fork . 
subsorts Nat/k < Id.Phil Id.Fork . 
atts lfork, rfork : Phil -> Answer . 
atts hungry, restless : Phil -> Answer [hidden] . 
att owner : Fork -> Id.Phil? . 
msg -picksup- : Id.Phil Id.Fork -> Msg.Fork . 
msg -leaves- : Id.Phil Id.Fork -> Msg.Fork . 
msg fork-for-ready- : Id.Fork Id.Phil Answer 

-> Msg.Phil . 
vars N M : Nat . 
var 0 : Id.Phil? . 
rl <[N] : Phil I hungry: no> => 

< I31 : Phil I hungry: yes, restless: no> . 
rl <ENI : Phil I lfork: no, rfork: no, 

hungry: yes, restless: no> => 
<INI : Phil I lfork: no, rfork: no, 

hungry: yes, restless: yes> 
(CNI picksup CNI 1 ([Nl picksup [N + 11) . 

z-1 <Cl?] : Phil 1 lfork: yes, rfork: yes, 
hungry: yes> => 

< ENI : Phil 1 lfork: no, rfork: no, 
hungry: no, restless: no> 

(ENI leaves [NJ> (CNI leaves [N + 11) . 
rl (fork CNI for [Ml ready yes) 

< i31 : Phil I hungry: yes> => 
if [N] == CM] 
then <[MI : Phil I rfork: yes, hungry: yes> 
else 

if [N] == [M + 11 
then <[Ml : Phil I lfork: yes, hungry: yes> 
else <[Ml : Phil I hungry: yes> 
fi 

fi . 
rl (fork [Nl for [Nl ready no) 

(fork CM1 for [NI ready no) 
< [Nl : Phil 1 lfork: no, rfork: no, 

hungry: yes, restless: yes> => 
< CNI : Phil I lfork: no, rfork: no, 

hungry: yes, restless: no> 
if [N + 11 == CM] . 

rl ([N] picksup CM]) <[Ml : Fork I owner: 0> => 
if (0 == null and 

([N] == CM] or [N + 11 =r [Ml) 1 
then <CM1 : Fork I owner: CNl> 

(fork CM1 for CN1 ready yes) 
else <[Ml : Fork I owner: O> 

(fork CM1 for CNI ready no) 
fi . 

rl ([N] leaves [Ml) 

< CM1 : Fork I owner: [Nl> => 
< [Ml : Fork 1 owner: null> 

endom 

omod WISE-PHILCK :: NAT*] is 
extending DINING-PHILCK] . 
vars N M : Nat . 
rl (fork [N] for [N] ready no) 

< CNI : Phil I lfork: yes, rfork: no, 
hungry: yes> => 

<IN] : Phil I lfork: no, rfork: no, 
hungry: yes, restless: no> 

([N] leaves [N + 11) . 
rl (fork [Nl for [Ml ready no) 

< CM] : Phil I lfork: no, rfork: yes, 
hungry: yes> => 

<CM1 : Phil I lfork: no, rfork: no, 
hungry: yes, restless: no> 

([Ml leaves CM + 11) if [Nl == CM + 11 . 
endom 

4.7 Architectural Considerations 

As in any programming language that is truly based onlogic, 
Maude modules have both a declarative and a computational 
reading. Indeed, their declarative reading is precisely a for- 
mal specification of the problem that they solve computa- 
tionally. Since this paper has emphasized the logical and 
declarative reading of Maude programs (for more on this see 
Section 5) some remarks are in order to avoid overlooking 
the significance of their computational meaning for imple- 
mentation purposes. 

I should begin pointing out that my first work on con- 
current rewriting, jointly with Joseph Goguen and Claude 
Kirchner [13], was precisely in the context of parallel archi- 
tecture for the Rewrite Rule Machine [IT], a massively par- 
allel computer that we are building at SRI. The point is that 

ECOOP/OOPSLA ‘90 Proceedin< s October 21-25, 1990 



concurrent rewriting is an ideal model of parallel computa- 
tion that can be used as an abstract interface between very 
high level declarative languages and a parallel architecture 
that realizes physically such model. 

Our original w.ork in [13] concentrated on the case of syn- 
lactic rewriting which is the easiest to realize in hardware 
and directly supports many important computations. How- 
ever, the subsequent paper [15] also gave implementation 
techniques for objects in the context of FOOPS. Such tech- 
niques did not make use of ACI-rewriting ideas; rather, they 
relied on particuar restrictions or extensions of the syntactic 
rewriting model. The next natural step is to develop imple- 
mentation techniques for concurrent object-oriented compu- 
tation by means of ruIes of the general form (t). Notice that 
such rules make a very limited use of ACI-rewriting because 
no variables are ever used to match multisets; only individ- 
ual elements of the configuration multiset are matched by 
each of the terms in the multiset expression making up the 
lefthand side. This suggests implementing directly such re- 
stricted forms of ACI-rewriting by means of communication. 
For example, a ::ule to credit money to an account can be 
implemented by identifying the name of the account with 
a particular address in the machine, and then routing the 
credit message to the location of its addressee so that when 
both become contiguous the rewrite rule for crediting the 
account can be applied. The development of general tech- 
niques of this kind is a very exciting research topic that I 
plan to pursue in the future. 

5 Semantics 

In this section I discuss models for rewriting logic and ex- 
plain how such models are used to give semantics to modules 
in Maude. I focus on the basic ideas and intuitions and leave 
out some of the details, which can be found in [26, 251. 

I first sketch the construction of initial and free models 
for a rewrite theory R = (C, E, L, R). Such models capture 
nicely the intuitive idea of a “rewrite system” in the sense 
that they are systems whose states are E-equivalence classes 
of terms, and whose transitions are concurrent rewritings 
using the rules in R. Such systems have a natural category 
structure [al], with states as objects, transitions as mor- 
phisms, and sequential composition as morphism composi- 
tion, and in them behavior exactly corresponds to deduction. 

Given a rewri,;e theory R = (C, E,L,R), the model that 
we are seeking is a category iTR(X) whose objects are equiv- 
alence classes of terms [t] E T~,E(X) and whose morphisms 
are equivalence classes of “proof terms” representing proofs 
in rewriting dedr ction, i.e., concurrent R-rewrites. The rules 
for generating such proof terms, with the specification of 
their respective domain and codomain, are given below; they 
just “decorate” with proof terms the rules 1-4 of rewriting 
logic. Note that in the rest of this paper I always use “di- 
agrammatic” notation for morphism composition, i.e., o; ,B 
always means the composition of (Y followed by /3. 

1. Identities. For each [t] E Tc,E(X), 

2. C-structure. For each f E C,, 12 E IN, 

CY] : [t1] --‘[t;] . . . cm : [tn] ----t [th] 

f(@l, . . , (Yn) : [f(h, . . . , La)] - [f(G, . . . ,cJl 

3. Replacement. For each rewrite rule 
T : [t(F)] -+ [t’(F)] in R, 

CY] : [Wl] ---+ [w;] . (Yn : [Wn] - [wk] 

,(,!I,..., a,) : [2(G/Z)] -r [t’(7/F)] 

4. Composition. 

a : [t1] ---+ [t2] P : Et23 - [t3] 

a;P : [hl - p31 

Convention and Warning. In the case when the same 
label T appears in two different rules of R, the “proof terms” 
T(F) can sometimes be ambiguous. I will always assume that 
such ambiguity problems have been resolved by disambiguat- 
ing the label T in the proof terms T(F) if necessary. With 
this understanding, I adopt the simpler notation T(E) to ease 
the exposition. 

Each of the above rules of generation defines a different 
operation taking certain proof terms as arguments and re- 
turning a resulting proof term. In other words, proof terms 
form an algebraic structure Px(X) consisting of a graph 
with identity arrows and with operations f (for each f E C), 
r (for each rewrite rule), and _ ; _ (for composing arrows). 
Our desired model OR is the quotient of%(X) modulo 
the following equations8 : 

1. Category. 

(a) Associativity. For all cy,@, y 

(T P); Y = a; (P; 7) 

(b) Identities. For each cy : [i] -----$ [t’] 

a; [t’] = Ly and [t]; (Y = cz 

2. Functoriality of the C-algebraic structure. For 
each f E C,, n E IN, 

(a) Preservation of composition. 
Forallcrr ,..., on,/31 ,..., P,,, 

f(h;Pl,~~.,Qn;Pn)= f(@l,..~,Qn);f(Pl,.~ .,&a) 

(b) Preservation of identities. 

f([tIl,. I., [tnl) = V(b, ‘. , GIN 
3. Axioms in E. For t(zr ,..., zn) = t’(~l,. . . ,rn) an 

axiom in E, for all crl, . . , on, 

t(a1,. ,cY*) = t’((Y1,. . , CY,) 

4. Exchange. 
For each r : [t(rr,. . . ,z,)] - [t’(zr,. . , z,,)] in R, 

a1 : [w1] f [w:] . . . an : [wn] - [d] 
T(z) = T([wl); t’(z) = t(z); T([W’]) 

Note that the set X of variables is actually a parameter of 
these constructions, and we need not assume X to be fixed 
and countable. In particular, for X = 0, I adopt the nota- 
tion 7~. The equations in 1 make 7x(X) a category, the 
equations in 2 make each f E C a functor, and 3 forces the 
axioms E. The exchange law states that any rewriting of the 
form r(??) -which represents the simultaneous rewriting of 
the term at the top using rule r and “below,” i.e., in the sub- 
terms matched by the rule- is equivalent to the sequential - 
composition T([w]); t’(Z) corresponding to first rewriting on 
top with r and then below on the matched subterms. The 
exchange law also states that rewriting at the top by means 
of rule r and rewriting “below” are processes that are inde- 
pendent of each other and therefore can be done in any order. 
Therefore, r(Z) is also equivalent to the sequential composi- 

tion t(z)); r([w’]). Since [t(zr,. . . , rn)] and [t’(rr, . . , xn)] 
can be regarded as functors In(X)” --t 7&(X), the ex- 
change law just asserts that T is a natural transformation 
[21], i.e., 

‘In the expressions appearing in the equations, when composi- 
tions of morphisms are involved, we always implicitly assume that 
the corresponding domains and codomains match. 

October 21-25, 1990 ECOOP/OOPSLA ‘90 Proceedin{ s 111 



Lemma 3 For each r : [t(zr,. . . ,z,)] - [t’(zl,. . . , zn)] in 
R, the family of morphisms 

{da : [emI - [t'(E/T)] 1 [WI E ?-b,E(X)n} 

is a natural transformation 
~i~r(zi,. . . ,x,),1 -*. [t’(zi,. . ,z,)] tetween the functors 

, . . . ,2n)], [t (21, *a., Zn)] : %2(X) - T+..(X). q 

What the exchange law provides in general is a way of 
abstracting a rewriting computation by considering immate- 
rial the order in which rewrites are performed ‘rabove” and 
“below” in the term; further abstraction among proof terms 
is obtained from the functoriality equations. The equations 
l-4 provide in a sense the most abstract “true concurrency” 
view of the computations of the rewrite theory R that can 
reasonably be given. In particular, we can prove that all 
proof terms have an equivalent expression as step sequences 
or as interleaving sequences: 

Lemma 4 For each [a] : [t] ---* Et’] in TR(X), either [t] = 
VI and Cd = [[41, or there is an n E IN and a chain of 
morphisms [oil, 0 5 i 5 n whose terms ai describe one-step 
(concurrent) rewrites 

[t] = [t1] 2 . . . a=1 [tn] 2% [t’] 

such that [a] = [a~;. . . ;a,,]. In addition, we can always 
choose all the ai corresponding to sequential rewrites. 0 

The category ‘&R(X) ’ j t is us one among many models that 
can be assigned to the rewriting theory 2. The general 
notion of model, called an ‘R-system, is defined as follows: 

Definition 5 Given a rewrite theory R = (C, E, L, R), an 
R-system S is a category S together with: 

l a (C, E)-algebra structure, i.e., for each f E C,, n E 
IN, a functor fs : S” -+ S, in such a way that the 
equations E are satisfied, i.e., for any t(zl, . ,zn) = 
t’(21,. . . , z,) in E we have an identity of functors ts = 
tk, where the functor ts is defined inductively from the 
functors fs in the obvious way. 

l for each rewrite rule T : [t(z)] -+ [t’(~)] in R a natural 
transformation rs : ts ==+ tb. 

An R-homomorphism F : S -+ S’ between two R- 
systems is then a functor F : S -3 S’ such that it is a 
C-algebra homomorphism -i.e., fs * F = F” * fsf, for each 
f in C,, n E W- and such that “F preserves R,” i.e., for 
each rewrite rule r : [t(F)] --+ [t’(F)] in R we have the iden- 
tity of natural transformations TS * F = F” + TSI, where n is 
the number of variables appearing in the rule. This defines 
a category R-Sys in the obvious way. •I 

What the above definition captures formally is the idea 
that the models of a rewrite theory ore systems. By a ‘(sys- 
tern” I of course mean a machine-like entity that can be in a 
variety of states, and that can change its state by performing 
certain transitions. Such transitions are of course transitive, 
and it is natural and convenient to view states as “idle” 
transitions that do not change the state. In other words, a 
system can be naturally regarded as a category, whose ob- 
jects are the states of the system and whose morphisms are 
the system’s transitions. 

For sequential systems such as labelled transition systems 
this is in a sense the end of the story; such systems ex- 
hibit nondeterminism, but do not have the required alge- 
braic structure in their states and transitions to exhibit true 
concurrency (see [26, 251.) Indeed, what makes a system 
concurrent is precisely the existence of an additional alge- 
braic structure. Ugo Montanari and I first observed this 

System - Category 
State - Object 
Transition - Morphism 
Procedure - Natural Transformation 
Distributed Structure - Algebraic Structure 

Figure 4: The mathematical structure of concurrent sys- 
tems. 

fact for the particular case of Petri nets for which the al- 
gebraic structure is precisely that of a commutative monoid 
[2’7, 281; this has been illustrated by the TICKET example 
in Section 2.2 where the commutative monoid operation @ 
made possible the concurrent firing of several transitions. 
However, this observation holds in full generality for any 
algebraic structure whatever. What the algebraic structure 
captures is twofold. Firstly, the states themselves m-e dis- 
tributed according to such a structure; for Petri nets the dis- 
tribution takes the form of a multiset that we can visualize 
with tokens and places; for a functional program involving 
just syntactic rewriting, the distribution takes the form of a 
labelled tree structure which can be spatially distributed in 
such a way that many transitions (i.e., rewrites) can happen 
concurrently in a way analogous to the concurrent firing of 
transitions in a Petri net; a concurrent object-oriented sys- 
tem as specified by a Maude module combines in a sense 
aspects of the functional and Petri net examples, because 
its configuration evolves by multiset ACI-rewriting but, un- 
derneath such transitions for objects and messages, arbitrar- 
ily complex concurrent computations of a functional nature 
can take place in order to update the values of object at- 
tributes as specified by appropriate functional submodules. 
Secondly, concurrent transitions are themselves distributed 
according to the same algebraic structure; this is what the 
notion of R-system captures, and is for example manifested 
in the concurrent firing of Petri nets, the evolution of con- 
current object-oriented systems and, more generally, in any 
type of concurrent rewriting. 

The expressive power of rewrite theories to specify concur- 
rent transition systems9 is greatly increased by the possibil- 
ity of having not oniy transitions, but also parameterized 
transitions, i.e., procedures. This is what rewrite rules - 
with variables- provide. The family of states to which the 
procedure applies is given by those states where a compo- 
nent of the (distributed) state is a substitution instance of 
the lefthand side of the rule in question. The rewrite rule 
is then a procedure” which transforms the state locatly, by 
replacing such a substitution instance by the correspond- 
ing substitution instance of the righthand side. The fact 
that this can take place concurrently with other transitions 
“below” is precisely what the concept of a natural transfor- 

mation formalizes, The table of Figure 4 summarizes our 
present discussion. 

A detailed proof of the following theorem on the existence 
of initial and free R-systems for the more general case of con- 
ditional rewrite theories is given in [25], where the soundness 
and completeness of rewriting logic for R-system models is 
also proved. Below, for C a category, O@(C) denotes the set 
of its objects. 

Theorem 6 Ix is an initial object in the category R-Sys. 
More generally, ‘&i(X) has the following universal property: 

‘Such expressive power is further increased by allowing candi- 
lional rewrite rules, a more general case to which all that is said 
in this paper has been extended in [25]. 

loIts actzlal parameters are precisely given by a substitution. 

112 ECOOPlOOPSLA ‘90 Proceedinp October 21-25, 1990 



Given an R-system S, each function F : X + Obj(S) ex- 
tends uniquely to an R-homomorphism Fh : TX(X) -+ S. 
0 

5.1 Preorder, Poset aad Algebra Models 

Since ‘R-systems are an “essentially algebraic” concept”, we 
can consider classes 0 of R-systems defined by the satisfac- 
tion of additional equations. Such classes give rise to full 
subcategory inclusions 0 c-t R-Sys, and by general universal 
algebra results itbout essentially algebraic theories (see, e.g., 
[3]) such inclusions are reflective [al], i.e., for each R-system 
S there is an R-system Ro (S) E 0 and an R-homomorphism 
PO(S) : s -f R@(S) such that for any R-homomorphism 
F : S + 2, with 23 E 0 there is a unique R-homomorphism 
F” : Ro(S) y 2) such that F = p@(S); F”. 

Therefore, WI: can consider subcategories of R-Sys that 
are defined by certain equations and be guaranteed they 
have initial and free objects, that they are closed by subob- 
jects and products, etc. Consider for example the following 
equations: 

Vf,s E Arrow:, f =g if 30(f) = h(g) A al(f) = t%(g) 

Vf,g E Arrows, f =g if 80(f) = h(g) A i%(f) = a,(s) 

Vf E Arrows, a,(f) = a,(f). 

where 6’,(f) and 6’,(f) denote the source and target of an 
arrow f respectively. The first equation forces a category 
to be a preorder, the addition of the second requires this 
preorder to be a poset, and the three equations together force 
the poset to be tliscrete,i.e., just a set. By imposing the first 
one, the first two, or all three, we get full subcategories 

R-Al7 C R-Pos C %Preord C R-Sys. ----- 

A routine inspection of R-Preord for R = (C, E, L, R) re- 
veals that its objects are preordered C-algebras (A, 2) (i.e., 
preordered sets with a C-algebra structure such that all the 
operations in C are monotonic) that satisfy the equations E 
and such that for each rewrite rule T : [t(r)] --+ [t’(~)] in 
R and for each ii E An we have, iA > t;(E). The poset 
case is entirelv analosous. exceot that the relation < is a 

” I I 

partial order im tead of being a preorder. Finally, R-A/g is 
the categorv of ordinarv C-algebras that satisfv the eaua- 
tions E U’&labe,‘(R), where the’unlabelfunction iemoves-the 
labels from the rules and turns the sequent signs “ -+ ” into 
equality signs. 

The reflection functor associated to the inclusion 
R-Preorcl c R-!:ys sends 7~(x) to the familiar R-rewriting --’ 
reEationr2 + x(x) on E-equivalence classes of terms with 
variables in X. Similarly, the reflection associated to the 
inclusion R-Pos C R-Sys maps ‘ZR(X) to the partial order 
> R(x) obtainecl frae preorder --+ R(X) by identifying 
&y two [t], [i’] Isuch that [i] -+ R(X)[t’] and [i’] -+ qX)[t]. 
Finally, the refll:ction functor into ‘R-Alg maps 7&(X) to 
TR(X), the fret: C-algebra on X satisfying the equations 
EU unZabeZ(R); t h erefore, the classical initial algebra seman- 
tics of (functional) equational specifications reappears here 
associated to a very special class of models which -when 
viewed as systems- have only trivial identity transitions. 

5.2 The Semantics of Maude 

This paper has shown that, by generalizing the logic and 
the model theory of equational logic to those of rewriting 

“In the precise: sense of being specifiable by an “essentially 
algebraic theory” or a “sketch” [3]; see [25]. 

r21t is perhaps inore suggestive to call -R(X) the reachability 
.  I  

relation of the system TR(X). 

logic, a much broader field of applications for rewrite rule 
programming is possible -based on the idea of program- 
ming concurrent systems rather than algebras, and includ- 
ing in particular concurrent object-oriented programming. 
The same high standards of mathematical rigor enjoyed by 
equational logic can be maintained in giving semantics to 
a language like Maude in the broader context of rewriting 
logic. I present below a specific proposal for such a seman- 
tics having the advantages of keeping functional modules as 
a sublanguage with a more specialized semantics. Another 
appealing characteristic of the proposed semantics is that 
the operational and mathematical semantics of modules are 
related in a particularly nice way. As already mentioned, all 
the ideas and results in this paper extend without problem13 
to the order-sorted case; the unsorted case has only been 
used for the sake of a simpler exposition. Therefore, all that 
is said below is understood in the context of order-sorted 
rewriting logic. 

We have already seen that object-oriented modules can 
be reduced to equivalent system modules having the same 
behavior but giving a more explicit description of the type 
structure. Therefore, of the three kinds of modules existing 
in Maude, namely functional, system and object-oriented, 
we need only provide a semantics for functional and system 
modules; they are respectively of the form fmod 72. endfm, 
and mod 72.’ endm, for R and R’ rewriting theories14. Their 
semantics is given in terms of an initial machine linking the 
module’s operational semantics with its denotational seman- 
tics. The general notion of a machine is as follows. 

Definition 7 For R a rewrite theory and 0 ~-t R-Sys a 
reflective full subcategory, an R-machirze over 0 is%,- 
homomorphism [-]I : S -+ M -called the machine’s ab- 
straction map- with S an R-system and M E 0. Given 
R-machines over 0, r-1 : S + M and l-1’ : S’ ---+ M’ an 
R-machine homomorphism is a pair of R-homomorphisms 
(F, G), F : S --t S’, G : M ---+ M’, such that [J;G = 
F; l-1’. This defines a category R-Much/O; it is easy to 
check that the initial object in this category is the unique 
R-homomorphism 7~ - Ro(&,) 0 

The intuitive idea behind a machine 1-31 : S - M is that 
we can use a system S to compute a result relevant for a 
model M of interest in a class 0 of models. What we do is 
to perform a certain computation in S, and then output the 
result by means of the abstraction map 1-1. A very good ex- 
ample is an arithmetic machine with S = TNAT, for NAT the 
rewriting theory of the Peano natural numbers correspond- 
ing to the module NAT” in Section 2, with M = IN, and with 
[[-II the unique homomorphism from the initial NAT-system 
INAT; i.e., this is the initial machine in NAT-Mach/NAT-Alg. 
To compute the result of an arithmetic expression t, we per- 
form a terminating rewriting and output the corresponding 
number, which is an element of W. 

Each choice of a reflective full subcategory 0 as a cate- 
gory of models yields a different semantics. As already im- 
plicit in the arithmetic machine example, the semantics of 
a functional module16 fmod IL endfm is the initial machine 
in R-Mach/R-Alg. For the semantics of a system module 

r3Exercising of course the well known precaution of making 
explicit the universal quantification of rules. 

14This is somewhat inaccurate in the case of system modules 
having functional submodules, which is treatedin 1261, because we 
have to “remember” that the submodule in question is functional. 

l5In this case E is the commutativity attribute, and R consists 
of the two rules for addition. 

16For this semantics to behave well, the rules R in the functional 
module 72 should be confEuenl module E. 

October 21-25, 1990 ECOOPlOOPSLA ‘90 Proceedings 113 



7\ 
CR, 
J 

LbdTransSys 
A-l 

FunctlProgr PostSys PetriNets Cham ConcOOP 

/\ 1 

I 

1 /I\ 
LambdaCalc AlgebraicDT’s PhrStrGrammars CCS Actors POP UNITY 

Herbrand-Gbdel-Kleene I 
Turing 

Figure 5: Unification of Concurrency Models. 

mod 7Z endm not having any functional submodules17 I pro- 
pose the initial machine in R-Mach/R-Preord, but other 
choices are also possible. On the one hand, we could choose 
to be as concrete as possible and take 0 = R-Sys in which 
case the abstraction map is the identity homomorphism for 
7~. On the other hand, we could instead be even more ab- 
stract, and choose 0 = R-Pos; however, this would have 
the unfortunate effect of collapsing all the states of a cyclic 
rewriting, which seems undesirable for many “reactive” sys- 
tems. If the machine Tn. -+ M is the semantics of a func- 
tional or system module with rewrite theory R, then we call 
7~ the module’s operational semantics, and M its deno- 
tational semantics. Therefore, the operational and denota- 
tional semantics of a module can be extracted from its initial 
machine semantics by projecting to the domain or codomain 
of the abstraction map. Note that this makes Maude a logic 
programming language in the general axiomatic sense of [24]. 

In Maude a module can have submodules. Functional 
modules can only have functional submodules, system mod- 
ules can have both functional and system submodules”‘. For 
example, NAT was declared a submodule of NAT-CHOICE. The 
meaning of submodule relations in which the submodule and 
the supermodule are both of the same kind is the obvious 
one, I.e., we augment the signature, equations, labels, and 
rules of the submodule by adding to them the correspond- 
ing ones in the supermodule; we then give semantics to the 
module so obtained according to its kind, i.e., functional or 
system. The semantics of a system module having a func- 
tional submodule is somewhat more delicate; this case is 
treated in [26]. 

As OBJ3, Maude has also theories to specify semantic re- 
quirements for interfaces and to make high level assertions 
about modules; they can be functional, system, or object- 
oriented; the examples in this paper have only used func- 
tional theories. Also as OBJ, Maude has parameterized mod- 
ules -again of the three kinds- and views that are theory 
interpretations relating theories to modules or to other the- 
ories. Details regarding the semantics of all these aspects of 
the language wilI appear elsewherel’. 

6 Related Work and Concluding Remarks 

Within the space constraints of this paper it is impossible 
to do justice to the wealth of related literature on concur- 

I7 See below for a discussion of submodule issues. 
I8 Object-oriented modules can have submodules of the three 

kinds, but after reducing object-oriented modules to system mod- 
ules no new issues appear for them. 

lgSome basic resu1t.s about views and parameterization for sys- 
tem modules have already been given in [25]. 

rent object-oriented programming, term rewriting, abstract 
data types, concurrency theory, Petri nets, linear and equa- 
tional logic, ordered, continuous and nondeterministic alge- 
bras, etc. A lengthier report [25] contains 85 such references. 
I would like to discuss the relationships of Maude with the 
FOOPS language that Joseph Goguen and I developed in 
[14], further studied with Ellen Munthe-Kaas (unpublished,) 
and that more recently has been further developed and en- 
riched with new semantic ideas by Joseph Goguen and his 
coworkers at Oxford University [ll, 10, 191. 

Besides having provided a very valuable stimulus for 
Maude, FOOPS has also the nice common feature of in- 
cluding OBJ3 as its functional sublanguage. The main dif- 
ferences are in their semantics -with Maude’s based on 
rewriting logic as explained in this paper, and FOOPS hav- 
ing received a reflective semantics [14], a direct algebraic 
semantics [14, II], and a sheaf semantics [lo]- and also 
in their computational and linguistic primitives -FOOPS 
based on methods and method expressions, Maude based on 
a paradigm of communication by messages- and in their 
different treatment of concurrency that is more limited in 
FOOPS. Regarding operational semantics and implementa- 
tion ideas, there are also commonalities. In fact, the idea 
of transforming objects by rewrite rules goes back to [15], 
although the use of ACI to treat concurrency was not con- 
templated in that work, and inter-object communication and 
object creation and deletion were not explicitly addressed. 

Concurrent rewriting is a very general model of concur- 
rency from which many other models -besides those dis- 
cussed in this paper- can be obtained by specialization. 
Space limitations preclude a detailed discussion, for which 
we refer the reader to [25, 261. However, we can summa- 
rize such specializations using Figure 5, where CR stands 
for concurrent rewriting, the arrows indicate specializations, 
and the subscripts 0, AI, and ACI stand for syntactic 
rewriting, rewriting modulo associativity and identity, and 
ACI-rewriting respectively. Within syntactic rewriting we 
have labelled transitions systems, which are used in inter- 
leaving approaches to concurrency; functional programming 
(in particular Maude’s functional modules) corresponds to 
the case of confluent” rules, and includes the X-calculus 
(in combinator form) and the Herbrand-GGdel-Kleene the- 
ory of recursive functions. Rewriting modulo AI yields Post 
systems and related grammar formalisms, including Turing 
machines. Besides concurrent object-oriented programming, 
rewriting modulo ACI includes Berry and Boudol’s chemical 
abstract machine [4] (which itself specializes to CCS [29]), 

‘“Although not reflected in the picture, rules confluent modzllo 
equations E are also functional. 

114 ECOOPIOOPSLA ‘90 Proceedings October 21-25, 1990 



as well as Unity’s model of computation [5]; another special 
case is Engelfriet et al’s POPS and POTS higher level Petri 
nets for actors [8, 91. 

In summary, we have seen how a logical semantics for 
concurrent obje’zts can be naturally obtained by regarding a 
concurrent objec:t-oriented system as a rewrite theory. Con- 
current object-oriented programming has in this way been 
transformed into a form of logic programming in the general 
axiomatic sense of [24]; this programming style has been il- 
lustrated with e:uamples in Maude, a logic programming lan- 
guage containing OB J3 as a functional sublanguage that uni- 
fies functional programming and concurrent object-oriented 
programming. Besides reducing computation to deduction, 
a model theoretic semantics for Maude has also been given. 

References 

[II 
PI 

131 

[41 

[51 

[61 

171 

PI 

PI 

IlO1 

Pll 

P21 

1131 

[I41 

G. Agha. Actors. MIT Press, 1986. 

G. Agha and C. Hewitt. Concurrent programming using 
actors. In A. Yonezawa and M. Tokoro, editors, Object- 
Oriented Concurrent Programming. MIT Press, 1988. 

M. Barr anal C. Wells. Toposes, Triples and Theories. 
Springer-Verlag, 1985. 

Gerard Berry and Gkrard Boudol. The Chemical Abstract 
Machine. In PTOC. POPL’90, pages 81-94. ACM, 1990. 

K. Many Ch.sndy and Jayadev Misra. Parallel Program De- 
sign: A Foundation. Addison-Wesley, 1988. 

Will Clinger. Foundations of actor semantics. AI-TR-633, 
Massachusetts Institute of Technology, Artificial Intelligence 
Laboratory, 1981. 

N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In 
Handbook of Theoretical Computer Science, Vol. B. North- 
Holland, 1990. 

J. Engelfriet Net-based description of parallel object-based 
systems, or POTS and POPS. Technical report, Noordwijk- 
erhout FOOL Workshop, May 1990. 

3. Engelfriet, G. Leih, and G. Rozenberg. Parallel object- 
based systems and Petri nets, I and II. Technical Report 
90-04-5, Del: t. of Computer Science, University of Leiden, 
February 1990. 

Joseph Goguen. Sheaf semantics for concurrent interacting 
objects. Manuscript, University of Oxford, May 1990; given 
as a tutorial at the REX School on Foundations of Object- 
Oriented Programmi ng, Noorwijkerhout, The Netherlands, 
May 28-June 1, 1990. 

Joseph Goguen. Types as theories. Manuscript, University of 
Oxford, March 1990; to appear in G.M. Reed, A.W. Roscoe 
andR. Wach:er (eds.), Proceedings of the Oxford Symposium 
on Topology in Computer Science, Oxford University Press, 
1990. 

Joseph Goguen, Claude Kirchner, Hklkne Kirchner, Aristide 
MCgrelis, JbsC Meseguer, and Timothy Winkler. An intro- 
duction to OBJ3. In Jean-Pierre Jouannaud and Stephane 
Kaplan, editors, Proceedings, Conference on Conditional 
Term Rewriting, Orsay, France, July S-10, 1987, pages 258- 
263. Springer-Verlag, LectureNotes in Computer Science No. 
308,1988. 

Joseph Goguen, Claude Kirchner, and Josd Meseguer. Con- 
current tern rewriting as a model of computation. In 
R. Keller an1 J. Fasel, editors, Proc. Workshop on Graph 
Redtiction, Santa Fe, New Mexico, pages 53-93. Springer 
LNCS 279, 1’987. 

Joseph Gogren and Jo& Meseguer. Unifying functional, 
object-orientlzd and relational programming with logical se- 
mantics. In Bruce Shriver and Peter Wegner, editors, Re- 
search Direc,iions in Object-Oriented Programming, pages 
417-477. MI’I Press, 1987. Preliminary version in SIG- 
PLAN Noticfzs, Volume 21, Number IO, pages 153-162, Oc- 
tober 1986; zrlso, Technical Report CSLI-87-93, Center for 
the Study of Language and Information, Stanford Univer- 
sitv. March 1387. 

1151 

WI 

[I71 

WI 

I191 

PO1 

WI 

1221 

1231 

[241 

(251 

IW 

PI 

[=I 

P91 

[301 

Joseph Goguen and Jose Meseguer. Software for the rewrite 
rule machine. In Proceedings of the International Conjer- 
ence on Fifth Generation Computer Systems, Tokyo, Japan, 
pages 628-637, ICOT, 1988. 

Joseph Goguen and Jose Meseguer. Order-sorted algebra I: 
Partial and overloaded operations, errors and inheritance. 
Technical Report SRI-CSL-8910, SRI International, Com- 
puter Science Lab, July 1989. Given as lecture at Seminar 
on Types, Carnegie-Mellon University, June 1983. Submitted 
for publication. 

Joseph Goguen, Jo& Meseguer, Sany Leinwand, Timothy 
Winkler, and Hitoshi Aida. The rewrite rule machine. Tech- 
nical Report SRI-CSL-89-6, SRI International, Computer 
Science Lab, March 1989. 

Joseph Goguen, James Thatcher, Eric Wagner, and Jesse 
Wright. Initial algebra semantics and continuous alge- 
bras. JocrnaZ of the Association for Computing Machinery, 
24(1):68-95, January 1977. 

Joseph A. Goguen and David Wolfram. On types and 
FOOPS. Manuscript, University of Oxford, 1990; to appear 
in Proc. IFIP TC-2 Conf. on Object-Oriented Databases, 
Windemere. 

Gerard Huet. Confluent reductions: Abstract properties and 
applications to term rewriting systems. Jozlrnal of the As- 
sociation for Computing Machinery, 27:797-821, 1980. Pre- 
liminary version in 18th Symposium on Mathematical Foun- 
dations of Computer Science, 1977. 

Saunders MacLane. Categories for the working mathemati- 
cian. Springer, 1971. 

Narciso Martf-Oliet and Jose Meseguer. An algebraic axiom- 
atization of linear logic models. Technical Report SRI-CSL- 
89-11, SRI International, Computer Science Lab, December 
1989. To aonearin G.M. Reed. A.W. Roscoe and R. Wachter 
(eds.), Proceedings of the Oxjord Symposium on Topology in 
Computer Science, Oxford University Press, 1990. 

Narciso Marti-Oliet and Jost Meseguer. From Petri nets to 
linear logic. In D.H. Pitt et al., editor, Category Theory and 
Computer Science, pages 313-340. Springer Lecture Notes in 
Computer Science, Vol. 389, 1989. Full version to appear in 
Mathematical StTUCtuTeS in COmputeT Science. 

Jose Meseguer. General logics. In H.-D. Ebbinghaus et al., 
editor, Logic Colloquizm’87, pages 275-329. North-Holland, 
1989. 

Jose Meseguer. Rewriting as a unified model of concurrency. 
Technical Report SRI-CSL-99-02, SRI International, Com- 
puter Science Laboratory, February 1990. Revised June 1990. 

Jose Meseguer. Rewriting as a unified model of concurrency. 
In Proceedings of the Concur’90 Conference, Amsterdam, 
August 1990. Springer LNCS, 1990. 

JosC Meseguer and Ugo Montanari. Petri nets are monoids. 
Technical report, SRI International, Computer Science Lab- 
oratory, January 1988. Revised June 1989; to appear in Zn- 
formation and Computation. 

Jose Meseguer and Ugo Montanari. Petri nets are monoids: 
A new algebraic foundation for net theory. In Proc. LICS’SS, 
pages 155-164. IEEE, 1988. 

Robin Milner. Commzlnication and Concurrency. Prentice 
Hall, 1989. 

A. Yonezawa, J.-P. Briot, and Etsuya Shibayama. Object- 
oriented concurrent programmi ng in ABCL/l. In OOP- 
SLA’86 Conference on Object-Oriented Programming, Port- 
land, Oregon, September-October 1986, pages 258-268. 
ACM, 1986. 

October 21-25, 1990 ECOOP/OOPSLA ‘90 Proceedings 115 


