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Abstract 

This paper describes an approach to object-oriented interface design that 
goes beyond mere object decomposition. In our user interface management sys- 
tern we use logic and filters to declaratively specify and control a space of ways 
that objects may be composed to create interfaces. A filter is a package of con- 
straints and associated typed objects that express the relationship of data and 
representation objects. 

Conceptually our system is completely based on constraints. Filters pro- 
vide the high bandwidth constraints to maintain the components of the direct- 
manipulation interface while the logic forms the low bandwidth constraints to 
combine and provide communication between these components. The use of 
Horn-clause logic to compose separate interface objects facilitates both the dis- 
tribution of computation onto multiple processors and the generation of multi- 
ple views of data. Intelligent backtracking implemented in the logic allows for 
user- and system-initiated undo operations to correct errors and/or try alterna- 
tive approaches to a problem. We illustrate the power and flexibility of this 
approach by describing a floor layout and design system. 

1. Motivation 

How can people and machines best solve problems 
is the focus of our research. Computer Science has 
made great progress in providing algorithms to help the 
machine solve its problems. The cost of hardware and 
software no longer justify the restrictions computer sys- 
tems place on the way people solve problems. We seek 
to provide a user-oriented system that will encourage 
people to use their creativity and imagination to find 
better solutions. 

How do people go about solving a real-world prob- 
lem? The most natural methods are reflected in the 
structure of our organizations. Typically, a manager is 
assigned overall responsibility for a problem. Most 
managers decompose a complex problem into subtasks 

which he or she then delegates to other personnel. 
These people go off and work on their assigned area of 
the problem, Some subtasks affect and/or are affected 
by other subtasks thus, a person might need to commun- 
icate with other people working on different aspects of 
the overall problem. Solutions to subproblems are sent 
back up the hierarchy. The resulting answer consists of 
a select subset of all the information generated. A 
difficult problem, because of the complex inter- 
relationships between its subproblems, often will require 
an iterative approach to generate a satisfactory solution. 
Therefore, a person evaluates the result and decides 
whether to accept it or generate another solution. Our 
proposed system is oriented toward these human ways of 
problem-solving. 
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1.1. Introduction 

This paper describes an approach to object-oriented 
problem-solving that goes beyond mere object decompo 
sition. Our approach uses a constraint-based paradigm 
to compose a specific interface and adds a logical com- 
ponent to specify and manage relations between 
different interfaces. The result is a flexible user- 
interface management system that is purely declarative. 

We will illustrate the features of our system with 
the following floor layout, construct, example. In this 
example the task of designing a Aoor within a house is 
decomposed into subtasks solved by one or more persons 
using graphical workstations. An architect creates the 
structure of the floor by inserting walls, doors and win- 
dows into the layout. An interior designer populates 
that structure, the rooms, with furniture such as desks, 
chairs, and closets. A list of all furniture must be gen- 
erated and the price of the overall building calculated. 
In addition, checks are to be made to ensure that mani- 
pulating the wall structure or adding furniture does not 
degrade the overall stability of the structure. It is not 
necessary, or even desirable, to have either the work of 
the architect or the designer completely precede the 
other. The designer may wish to start before the floor 
layout is completed, and the architect could benefit by 
taking furniture, included by the designer, into con- 
sideration when she draws a wall. The architect and 
the designer require different interfaces to a common 
data structure that will allow them to work in parallel. 
If more than one architect or designer is working on the 
same floor plan then the system should a.ccommodate 
them on additional workstations. If the floor layout 
problem can be handled by one person then the system 
should provide an alternative approach that incor- 
porates the functions of architect and designer on a sin- 
gle workstation. Figure 1 illustrates this example, the 
conslruct problem. It shows two different workstation 
screens. The upper screen lets the architect manipulate 
the physical structure of the floor plan while the 
designer may add and move furniture within the walls, 
via the lower screen. 

A system like this is feasible using todays technol- 
ogy of user-interfaces and distributed systems. But it 
would take great programming effort to build this spe- 
cial system. As Winograd [Wmograd 791 and Cox 
[Cox 861 have pointed out, the problem lies in the 
difficulties of organizing a complex system. It is hard to 
achieve a system incorporating the functionality of the 
above construct example, and almost impossible to 
create this system in a way that is easy to change or 
modify: adding workstations, moving displays from one 
workstation to another, combining functionality of inter- 
faces. We propose an object-oriented system that 
separates the interface and the logical cant rol 
components. Object-oriented programming is aug- 
mented with constraints to provide flexible and user- 
oriented systems. 

Our interface components are built from constraints 
following the Filter Paradigm for constructing interfaces. 

Figure 1: The co~~lruct problem. 

A filter is a package of constraints and associated typed 
objects that expresses the relationship between data and 
the data’s representation objects. For example, the 
relationship of a rectangle on a display screen and a 
piece of memory, both representing a wall, is modelled 
by a filter. A constraint-satisfaction system maintains 
the constraints that are expressed within the filter. If a 
user moves the rectangle on the screen, she directly 
manipulates the wall object in memory. 

The logic part of our system views these interface 
components as special evaluable predicates that are 
implemented as independent processes. Logic resolution, 
is used to control the execution and enables processes to 
interact. When satisfied with the wall’s position the 
user can cause a logical variable to be instantiated with 
the wall object’s data. Other interfaces that are logi- 
cally constrained to this variable have access to this 

information and can thus, make the wall visible on their 
screens. The non-deterministic flow of control within 
the logic evaluation provides for different approaches to 
solving a problem within our user-interface management 
system. For example, the configuration of the interfaces 
could be chosen based upon the number of workstations 
that are available at run-time, Intelligent backtracking 
implemented in the logic allows for user- and system- 
initiated undo operations to correct errors and/or try 
alternative approaches to solving a problem. 

1.2. Overview of the paper 

Our system consists of a Task Interaction and Con- 
trol System (TICS) that is used to logically compose 
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processes. TICS is further described in the next section. 
Special processes called filters, implement the different 
user-interfaces. The user-interfaces, are specified 
declaratively and draw their procedurality from a 
constraint-satisfaction system. Filters are discussed in 
Section three. How filters and TICS communicate is 
explained in Section four. We conclude by describing a 
solution for the construct problem that illustrates the 
features of our system. 

2. Logical Composition 

We will utilize the Task Interaction and Control 
System (TICS) to model problem-solving as the decom- 
position of a problem into subtasks. TICS provides a 
declarative and executable specification of a such a 
model through the use of Horn clause logic. The logic 
clearly expresses assumptions and rules that control the 
composition and interaction of the procedures that solve 
the subtasks. The power of logic programming to 
represent a hierarchical search for task solutions is aug- 
mented in TICS by evaluable predicates. Evaluable 
predicates are solved by external procedures whose 
internals are hidden from TICS. TICS’ And-parallel 
resolution engine allows these procedures to execute con- 
currently and thus, interact with each other to solve 
their subtasks. From the bottom up a solution can be 
viewed as a composition of facts that are either initially 
assumed, asserted by procedures or logically inferred. In 
this paper we only describe those aspects of TICS 
relevant to the solution of the problem. For a more 
detailed description the reader is referred to [Gross- 
man 871. 

2.1. What Makes TICS Tick 

The key to a TICS implementation is its database 
that incorporates special-purpose functionality. The 
database is the conductor of a TICS symphony. It 
directs and controls the flow of music (data) that is 
being created and read by the instrumental players 
(evaluable predicates’ external processes) according to 
the composition (Horn clause specification). The data- 
base contains the system’s specification, provides 
dynamic working storage and implements a flexible 
deduction engine. Everything in TICS, except the exter- 
nal processes for evaluable predicates, is contained 
within the database process. 

Subtasks specified by evaluable predicates are 
solved by external .procedures that are implemented as 
separate processes. These concurrent processes com- 
municate and synchronize via messages to and from the 
database access manager (DAM). The filter-based inter- 
face components for the architect and designer are 
implemented as such processes. Figure 2 is an overview 
of how our construct example can be solved in an 
environment that supports multi-tasking and interprc+ 
cess communication. 

2.1.1. Deduction Engine 

The deduction engine is based upon a method of 
resolution called plan-based deduction [Cox and Pietrzy- 

wat,**tioil : : j : wort,,*,ioa : ._ 

Figure 2: TICS Construct Overview. 

kowski 811 [Forsythe and Matwin 841 [Matwin and 
Pietrzykowski 851. Plan-based deduction differs from 
Prolog and other stack-based logic programming 
schemes by allowing unresolved goals to be solved in any 
order and by tracking actual data unification dependen- 
cies to implement intelligent versus blind backtracking. 

TICS extends plan-based deduction by incorporating 
And-parallel resolution. All unsolved goals of a clause 
can be solved concurrently. Synchronization and com- 
munication are provided via logical variables. TICS pro- 
vides an executing process with the ability to dynami- 
cally examine the evolving environments of other 
processes with which it shares common variables, i.e., 

the ability to interact. In our example the architect and 
interface processes are specified as evaluable predicates 
that share variables. TICS provides storage and access 
to these variables via its database and DAM. Each pre 
cess can read and write these variables via messages to 
TICS and thus, information about walls and furniture 
objects can be shared. 

3. Interfaces from Constraints 

Interface processes are specified as evaluable predi- 
cates in TICS. This section presents a new approach to 
building these interfaces in an object-oriented environ- 
ment. In such an environment, all entities of interest 
are represented as objects, so all aspects of the user 
interface are modelled as objects. In the Smalltalk 
model-view-controller (MVC) Paradigm [Goldberg and 
Robson 831, for example, the interface consists of model, 
view and controller objects. The model and view are 
basically two different representations of the same con- 
ceptual entity [Deutsch 861. In Smalltalk’s MVC para- 
digm, the model and view have procedural components 
that allow the controller to manage the interface 
correctly. 

3.1. The Filter Paradigm 

Our approach is to abandon procedural 
specification of user interfaces and relate the model 
(source) and view with a declarative interface 
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specification. The idea is to use constraints to specify 
the conceptual equivalence between the s~zlrce and view 
objects. For example, the relationship between an 
employee object and a bitmap object on a screen can be 
represented by constraints. The constraints state that 
the bitmap object always displays the employee object. 
The constraints hide the procedurality of the interface. 
If the bitmap object on t,he screen is changed, then the 
constraint-satisfaction will ensure that the employee 
object is changed accordingly. If the employee object 
changes. then that change is reflected on the screen. 

,I filfer is an object that describes and maintains 
these special constraints between objects in an interface. 
For esampl~, consider our construct problem. The 
designer can select furniture items and place them on 
the floor plan. Let’s say she has selected a desk and 
wan& to move it. using a mouse locator device, to a 
location lvithin the floor plan. The desk can be placed 
anJ-where except on top of walls, windows, doors or 
other furniture. This sub-problem can be expressed with 
constraints: First, the location of the desk is constrained 
by the location of the mouse. Second, the desk is con- 
strained not to overlap with any of the existing struc- 
tures. 

Figure 3: Manipulating a desk object. 

Figure 3 shows a diagram of how this subpart of 
the designer interface can be modelled with filters. The 
figure contains three types of filters (shown as ellipses). 
The -Sensor filter” connects the mouse to a desk object 
and represents the constraint that the desk object stores 
the location of the mouse. The “Renderer filter” con- 
nects a desk object to the display and represents the 
constraint that the desk is displayed at the given loca- 
tion. The “No Conflict” filter connects the desk object 
with all the existing wails and represents the constraint 
that the desk does not overlap with any of the walls in 
the floor plan. All three types of constraints have to be 
maintained. If the mouse is moved, then the desk object 
changes its location value, thus changing its location on 
the display. If the mouse is moved on top of an existing 
wall, then the “No Conflict” constraint will prohibit that 
move. As more walls are added to the floor plan more 
such “No Conflict” filters are added dynamically. Of 
course, Figure 3 only shows a small subpart of our con- 
struct example. Some details are missing in order to 
keep the figure simple, e.g. the walls would also be 
shown on the same display as the desk using similar 
“Renderer filters”. 

The definition of what types of source and view 
objects are allowed for the filter and how the subfilters 
are connected to them is given by the filter type. Filter 

types specify how filters are built from atomic filters 
using set, iteration and condition constructors. A filter 
is instantiated from its filter type definition. Atomic 
filters, like sensors or renderers, are provided by the 
implementation. The filter and object types are 
described by a filter specification kuW.WZe (FiSPeL) 

{Ege 881. FiSpeL is a theoretical tool to compose filters, 
a compiler and optimizer for it are planned. The Filter 
Browser is a tool to construct filters graphically. The 
Filter Browser lets the interface designer create filters by 
defining and manipulating filter types. Subfilters are 
added interactively by connecting them with the various 
constructors to the object types that are displayed in 
the browser. The Filter Browser also allows the designer 
to instantiate a filter with sample objects to test the 
constructed interface. For a more detailed discussion 
see [Ege, Maier and Borning 871. 
4. Objects 

The logic and interface components of our’ system 
communicate via objects. The logical component (TICS) 
views these objects as logical variables. The interface 
component (filters) views them as instances of constraint 
object types. 
4.1. Logical Variables as Objects 

External processes, e.g. filter-based interface com- 
ponents, are started by TICS’ deduction engine to solve 
evaluable predicates. These processes are invoked with 
the database identifiers of the logical variables they can 
access. These variables are accessed only via database 
read and write messages sent to and received from the 
DAM in a manner similar to that used in the Humanizer 

framework [Maier, Nordquist and Grossman 861. 

When an external process issues a read command 
for a variable in its environment the DAh4 responds with 
the data type and value derived by unifying the 
variable’s constraint graph, i.e., the current value of the 
variable. If the value is unacceptable to the process 
then the process can invoke system backtracking by ter- 
minating with a failure status. 

When a process sends a write command, the 
database’s DAM enters that value into the constraint 
graph bf the variable to be written. If the database 
can’t unify all variables in the constraint graph intelli- 
gent backtracking is invoked. Unifiability is restored by 
selecting a set of predicates to be undone. 

Each process is responsible for acquiring any data it 
needs. When a process requires data from a logical vari- 
able that is not yet instantiated, the process can issue a 
request to be notified when that variable changes and 
then suspend i&if. This mechanism permits external 
processes to be started even if the data they require is 
not currently available. Mode declarations and other 
annotations to provide data synchronization are neither 
permitted nor required in the logic. Logical variables 
need never be fully instantiated nor even accessible, as 
in the case of infinite structures and non-terminating 
computations, if they are not accessed by a procedure. 

Type checking of its parameters is the responsibility 
of the individual external process. Data types can be 
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protected from TICS’ type-free logic by being specified 
as being of type private. This technique is used in “Per- 
sistent Prolog” [Gray, Moffat and Boulay 851 [MofIat and 
Gray 861. Private variables can not be examined by 
TICS’ logic because such a variable can only be unified 
with another term of that type or with a free variable. 
All access to the internals of this type of variable must 
be done by external procedures. TICS’ logic can only be 
used to pass private variables from one predicate to 
another or to create compound variables, e.g., lists, 
made up of private types. 

A data record can be represented by a logical term. 
In the construct example, the frame can be specified by: 

frame( origin (Xl, Yl) , corner (X2, Y2) ) 
In this record ~1 and Yl represent the x and y position 
of the origin of the floor’s frame while X2 and YZ 
represent the far corner. The variables in this term can 
be written and read by all the evaluable predicates, e.g. 
filter-based interfaces, that contain the frame record in 
their environment. 

The filter-based process that provides the 
architect’s interface, when invoked will read the value of 
the frame record to determine the initial values, if any, 
of the frames origin and corner points. The archi- 
tect will, via the interface, directly manipulate the 
frame until satisfied. When he commits, the process will 
send a write message to instantiate the appropriate vari- 
ables. Should he later change his mind, the process can 
cause backtracking to occur. Backtracking will undo 
the bindings of the variables and thus, allow the 
architect to respecify the frame. 

4.2. Instances of Object Types: Objects 

The logical terms with variables are viewed as 
instances of object types in the interface component of 
our system. If we want to build interfaces by composing 
filters from subfilters, connecting objects of different 
kinds, it is necessary to type the objects. All entities in 
our filter paradigm are ultimately implemented by 
objects, so we put much effort in providing a comprehen- 
sive type system. 

4.2.1. Object Types 

The object type system supports the notions of 
aggregation and specialization. With aggregation we 
can build structured objects from components. Speciali- 
zation allows us to refine existing objects via a hierarchy 
of object types and inheritance. We view object types 
as records. A record is a collection of typed fields. The 
fields have names called addresses. There are constant 
fields, which are constant for all instances of a type, and 
there are data fields that are local to an instance of an 
object. Fields can be iterated by specifying an iteration 
factor; fields can be conditional by specifying a condition 
that must be true for the field to exist; and fields can 
specify its type recursively. In addition, an object type 
can inherit fields from other object types and can place 
constraints on all fields. 

Figure 4 shows the Frame object type as defined in 
FiSpeL. It names two fields with addresses, origin 

and corner, of type Point. The object type Point. 
has two addresses, x and y, of type Integer. The 
logical term 

frame ( origin (Xl, Yl) , corner (X2, Y2) ) 

would be represented as an instance of type Frame 
holding two instances of type Point with the coordi- 
nates, x and y, not yet instantiated. 

Objects are used in the filter type definition to 
describe source, view and variables that are needed to 
connect subfilters. The filter specification language 
(F&j’p,&) provides mechanisms to initialize and reference 
instances of object types- 

Object Type Frame Object Type Point 
origin + Point x + Integer 
corner - Point y 4 Integer 

end end 

Figure 4: Frame object type. 

4.2.2. Filter Types 

The filter type system defines the structure of 
filters. Filters represent constraints between two 
objects. The filter type defines the types of the source 
and view objects it relates. The filter type also declares 
the subfilters that compose the filter. In addition, the 
filter type can define variables to be used as intermedi- 
ate objects when subfilters are combined. A filter that 
is not further decomposed is. called a filter atom and is 
provided by the implementation. For example, filter 
atoms are used for low-level input/output, data conver- 
sion or error handling, and to handle primitive user com- 
mands, such as commit, undo or fail. A filter that has 
subfilters is called a filter pack. Subfilter constructors 
are: sequence, iteration and condition. The sequence 
constructor (set of) declares several subfilters of possi- 
bly different types; the iteration constructor (itera- 
tion n times i) declares a certain number of filters of 
the same type; the condition constructor (condition) 
declares a subfilter only if a’given condition is true. It is 
possible to declare a filter with a subfilter of the same 
kind as the one being defined, much like a recursive pro 
cedure call in a conventional programming language. 

Figure 5 shows the PlaceUnits filter type. Pla- 
ceUnits is used by the Architect filter. Instances of 
it allows the user to constrain source objects of type 
Floor to view objects of type Workstation. Pla- 
ceUnits composes the subfilters PopUpMenu, GetOb- 
ject and AddToList. The PopUpMenu subfilter 

manipulates a selection variable to indicate the type 
of furniture to be added to the floor plan. GetOb ject 
instantiates an appropriate fpo object of type rec- 
tangle to be added to the floor plan with the AddToL- 
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ist subfilter, Condition constructors are used to select 
the correct list for the new furniture item. A more 
detailed description of our construct problem can be 
found in the appendix. 

Filter l'Y'pe PlaceUnits(source: Floor, view: Workstation) 
Va 

selection + string 
fpo --, Rectangle 

make 
PopUpMenu((selection, 'Wall/Door/window'), 

(view, redButton)) 
GetObject( (floor. fpo), view) 
condition selection = 'Wall' 

AddToList(source.floorPlan.ualls. fpo) 
condition selection = 'Door' 

AddToList(source.floorPlan.doors. fpo) 

condition selection = 'Window' 
AddToList(source.floorPlan.windows, fpo) 

end 

Figure 5: Sample filter type. 

4.2.3. Commit and FJndo 

When a filter is invoked it receives the identifiers of 
the variables in its environment. Filters write and read 
these variable objects via messages to and from TICS’ 
database a.ccess manager. A filter commits information, 
i.e. makes local data available to the rest of the system, 
by writing to variables. A filter can undo this informa- 
tion by sending a fail message that initiates TICS’ back- 
tracking mechanism. Backtracking by TICS results in 
selected predicates receiving an abort/suspend message. 

The bindings of these predicate’s variables are undone. 
A filter, while suspended, can preserve its local state so 
that if TICS later reactivates that filter to generate 
another solution the 6lter can examine its past! 

5. Illustrative Solution 

The logical component of our system uses Horn 
clause logic to specify and execute the composition of 
processes and provides a powerful and understandable 
model for both the system designer and end-user, The 
reader is referred to Clocksin and Mellish [Clocksin and 
Mellish 841 for the syntactic conventions used and for a 
detailed technical description of Horn clauses and their 
relationship to logic in general. (Variables begin with 
uppercase letters while constants and structure names 
begin with lowercase.) Horn clauses allow us to declara- 
tively specify the facts and rules of a system that suc- 
cinctly describe what constitutes a solution. The 
problem-reduction strategy for Horn clauses is identical 
with the the procedural interpretation of Horn clauses 
and naturally represents the decomposition of a task 
into subtasks, The procedural interpretation is described 
by Kowalski [Kowalski 821. In our example an implica- 
tion of the form 

construct(Frama, Limit, WArch. WDesign) :- 
archltect(source(Frame, FloorPlan, 

FloorObjects), view(WArch)). 
designer(source(Frame. FloorPlan. 

FloorObjecrs). view (WDesign) 1, 

parts-list(FloorObjects. WDeslgn). 
feasi,,le(Frame, FloorPlan. FloorObjects. 

Limit. WArch) . 

is interpreted as reducing the task construct to sub- 
tasks, i.e. logical predicates, architect, designer, 
parts-list and feasible. Each of the subtasks is 
in turn reduced by other implications, or solved by facts 
or external processes. An external process can be viewed 
as a dynamic generator of fact(s). 

To apply a clause to a predicate, i.e. subtask, 
unification may require the instantiation of variables. 
Instantiating variables in the clause can be regarded as 
transmitting input information from the predicate to the 
clause. Instantiating variables in the predicate can be 
viewed as transmitting output information from the 

clause to the predicate (and thereby to other predicates 
which shares variables). For example if we use the above 
clause to satisfy the following initial request, i.e. query: 

?- construct(F, L, ttyl, tty2). 

we would be providing ttyl and tty2 as input for the 
values of the architect and designer workstations respec- 
tively. 

Each subtask has a local binding environment, 
specified by Horn clause logical variables. The local 
environment contains a subset of the data that defines 
the overall state of the system. The parts-list 
environment contains information about the floor objects 
used in the construction and the workstation to display 
its results on. 

Each subtask can view and modify its local binding 
environment and thus, examine and change its specified 
part of the system’s state. Subtasks can exchange infor- 
mation with each other through communication chan- 
nels, i.e., variables in each of their local environments 
that are constrained to contain the same value. If 
designer writes a value to its variable Erame then 
both architect and feasible can examine their 
Frame variable to read this value. 

Non-determinism allows more than one clause, i.e., 
method of solution, to be applicable to a given subtask. 
We could also include the following clause to provide an 
alternate solution to the construct problem that uses 
only a single process on one workstation to perform both 
the architect and design functions. 

construct(Erame, Limit. W, W) :- 
archliect_designer(source(Frame, FloorPlan, 

FloorObjects), view(W)), 
parts-list(FloorObjects,W), 
feasible(Frame, FloorPlan. FloorObjects* 

Limit. W). 
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Most people approach a task by decomposing the 
problem into a limited number of subtasks that are 
solved by powerful, sometimes cooperating, processes. 
The internals of the process is not part of the decompo- 
sition of the problem and is therefore, not of interest to 
the problem solver. In addition, logic is not idea1 for 
handling numeric Computation and manipulating 
complex data objects. Thus, TICS extends the power of 
logic programming to represent a hierarchical search for 
task solutions by incorporating filters and other external 
processes. The internals of these processes and their 
parameters can be be hidden and isolated from the logic. 
Therefore, these processes can be implemented in any 
language and in any operating environment capable of 
interfacing to a TICS system. 

Artificial constraints are not imposed by the logic. 
Solving the construct problem does not inherently 
require that any one subtask be started before the other. 
It is not necessary for the architect to install all the 
walls and fixtures that define the floor plan before the 
designer starts including floor objects. In fact the archi- 
tect might want to use some of this information about 
floor objects before finalizing the floor plan. It is impor- 
tant to note that different people may prefer to reach an 
overall solution via different strategies. 

Logic variables can allow indeterminism in which 
subtask supplies a value for a variable. We could start 
the constrzlct problem with the following query that pro- 
vides a value for the frame record. 

?- construct (frame (origin (0.0) , corner (ioo,ioo) ) , 
L, tty1, ttyl). 

Alternatively, we could use the query 

?- construct(P, L, ttyl, ttyl). 

and leave it up to the either the architect or 
designer filter to instantiate the value. 

There are many reasons a person may want to undo 
and change previous actions. To remove a constraint 
violation a person can choose between possible changes 
that will resolve the problem. For example, if the 
feasible subtask cannot succeed because of the com- 
bination of floor objects and floor plan then the user(s) 
may want to change either the floor objects or floor plan 
or both. A user cannot be expected to have complete 
knowledge of the interrelationships of a complex system 
and thus, may require an iterative approach. The abil- 
ity to change answers provides a person with the capa- 
bility to solve a task by trying out different choices and 
exploring different solutions. An architect might want to 
experiment with the location of a wall and thus learn 
about situations that cause feasible to fail. In 
addition, individuals sometimes prefer to start with 
existing prototypical solutions and modify them rather 
than starting from scratch. 

As Donald Norman said, “Error is the natural result 
of a person attempting to do a task”. Therefore, it 
should be as easy as possible to undo previous actions. 
Work done to solve parts of a problem that are indepen- 
dent of a modification should not be lost. If we are 

forced to undo the results of the architect filter we 
should not need to redo the parts-list process. 

Logic is a good framework for tracking dependen- 
cies. The reading of a value by a subtask makes that 
subtask causally dependent upon the subtask that 
instantiated that value. If the instantiating subtask 
later fails then the reading subtask must be undone. 
The writer has, in effect, caused a change in the reader’s 
environment. TICS’ database tracks these causality 
dependencies. For example, if the feasible process 
read the value for FloorPlan that was instantiated by 
the architect filter, then if we fail architect we 
must fail feasible. However, if feasible has not 
gotten around to reading the value of FloorPlan then 
there is no reason to fail it. We would want feasible 
to be able to read the most current unified value of 
FloorPlan because it can use that knowledge to notify 
the user of any violations as soon as they occur. TICS 
extended version of plan-based deduction maintains 
information about the history of the resolution, the 
unification constraints between variables, and the 
causality relationships between binding environments. 
With this information TICS is able to provide user- and 
system-initiated inteltigent dependency-directed back- 
tracking. Intelligent backtracking detects and acts upon 
the exact source of failure as opposed to exhaustive 
blind backtracking which treats all the subtasks as 
equally probable sources of failure. TICS allows aiterna- 
tive solution paths to be tried and errors corrected with 
only those solutions affected by the change needing to be 
redone. 

Logical variables are used by TICS to handle the 
communication between different subtasks. Unification 
and intelligent backtracking are a way of implementing 
the basic equality constraints that are nresent if the 
same variables are mentioned in more than one subtask. 
The interface component of our system uses constraints 
also. Constraints have been proven to be very useful for 
graphical applications [Van Wyk 811. 

The interfaces in our construct problem are built 
from constraints. These special constraints are called 
filters and have been described earlier in this paper. 
The interface that presents the layout of a floor to a 
designer is represented by a filter from an object of type 
Floor to an object of type Workstation. This giant 
constraint is decomposed into subfilters using the filter 
constructors of the Filter Paradigm [Ege 861. 

As an example, consider again the subfilter to posi- 
tion a desk on the floor layout as shown in Figure 3. 
Figure 6 shows the designer interface with the designer 
about to position a desk on the floor plan. The con- 
straints ensure that the desk display follows the mouse 
cursor and that the desk does not conflict, i.e. overlap, 
with any existing structures. If the designer likes the 
location of the desk she clicks a mouse button and con- 
tinues by selecting other furniture items to be included 
into the floor plan. 
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Figure 6: Manipulating a desk object. 

If the user is satisfied with her work she can com- 
mit, thus triggering the transmission of the changed 
objects through logical variables to other tasks or inter- 
faces. This communication only takes place if a user 
commits her choices. After a commit the logical com- 
ponent of our system checks for conflicts within the vari- 
ables and may initiate backtracking. For example, the 
designer may place a desk on the floor plan and then 
commit her choice. The desk is then included in the list 
of furniture items that is also shared by the “partsJist” 
subtask. This task may determine that the price limit 
has been exceeded and therefore fail causing backtrack- 
ing. Note that before the user commits, violations of the 
constraints represented by the logical variables are pos- 
sible. 

After a commit, if the user does not like her choice 
she can fail the subtask, thus causing all changes to the 
logical variables to be undone via backtracking. The 
filter subtasks maintain local information even if they 
are aborted/suspended by backtracking. This allows 
the filter to reduce the amount of work the user has to 
redo if the same filter subtask is re-invoked. For exam- 
ple, if the architect decides to remove a wall after he 
has committed this information he can cause the 
architect filter to fail. Backtracking is invoked and 
the variable FloorPlan containing the wall informa- 
tion is unbound. When the architect filter is re- 
invoked to generate another solution the filter uses local 
information so that the architect need not re-enter ail 
previous FloorPlan data. 

Our framework encourages and provides for user- 
oriented problem solving. The user interfaces, imple- 
mented by filter processes, are separate from the appli- 
cation processes. Isolating interface functionahty facili- 
tates’ the development of different versions of an inter- 
face to accommodate diverse users with varying 
proficiency levels and tastes. In addition modularization 
also allows interface programmers to implement the 
interactive displays iteratively and in parallel with the 
development of the rest of the program, a goal espoused 
by Norman and Draper [Draper and Norman 841. 

6. Implementation 

We have completed separate prototype implementa- 
tion for both the TICS and the filter system. The next 
step is to implement the communication between the 
two systems as described in section 4. 

The TICS system uses C++ and is running under 
the Berkeley UNIX’ operating system on a VAX.2 The 
prototype incorporates extended Plan-based deduction 
with intelligent backtracking. The UNIX signal and fork 
facility are used to execute and control concurrent 
processes that implement external procedures for evalu- 
able predicates. Processes communicate with TICS by 
sending messages that read, write or request notification 
of changes in logical variables in their environment via 
UNIX soeke ts. 

The filter system, together with the Filter Browser 

is written in Smalltalk-803 and runs on a Tektronix 4400 
machine. The constraint satisfaction is performed using 
ThingLab [Borning 791. ThingLab (and therefore 
Smalltalk) has been extended to handle the types for 
objects and filters. Dynamic constraints for conditions 
and iterations were added to ThingLab’s constraint- 
satisfaction mechanism. The operating system used on 
the 4400 machine is Uniflex. The UNIX and Uniflex sys- 
tems are connected via Ethernet. 

7. Related Research 

In the area of User Interface Management Systems 
(UIMS), dialogue management systems have been 
developed to coordinate the interaction between 
modules. Non-declarative approaches have included ver- 
sions of state transition diagrams and event language. 
Examples of these techniques are in Wasserman 
[Wasserman 851 and Green [Green 851 respectively. We 
feel that there is no reason for the problem solver to 
anticipate or have knowledge of all possible event order- 
ings. This detailed information will only confuse. We 
believe that to understand a complex concurrent pro- 
gram it is better to simply know what must be done. 
The step-by-step details of all the possible ways of how 
to achieve a goal are better ignored, i.e., abstracted 
away. Logic provides an effective w’ay to declaratively 
describe the solution space of a problem. Logic was 
used by Roach and Nickson [Roach and Nickson 831 for 
their air traffic control system’s dialogue specification. 
However, their choice of Prolog, with its depth-first stra- 
tegy and naive backtracking unnecessarily constrains 
the user. 

The problem of task definition and support in the 
office environment is addressed in both the POISE [Croft 
and Lefkowitz $41 [B roverman and Croft 85) and HIG- 
GENS [Hudson and King SG] systems. Unlike these sys- 
tems, we use Horn clause logic to specify the task and 
theorem proving with intelligent backtracking to control 
its resolution. We feel our techniques provide a clear 
and robust declarative model of complex problem 

‘UNIX is a trademark of Bell Laboratories 

Wfi is a trademark ot Digital Equipment Corporation 

%mal[talk-80 is B trademark of Xerox Inc. 
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environments that can be directly executed in a user- 
oriented manner. 

Our approach to the interface component was 
guided by experience with the Smalltalk MVC paradigm 
[Goldberg and Robson 831. Programming experience has 
shown that this paradigm is hard to follow. The 
Smalltalk Interaction Generator (SIG) tried to add a 
declarative interface on top of the MVC mechanism 
[Maier, Nordquist and Grossman 86, Nordquist 851. One 
conclusion of SIG is that display procedures need type 
information about the objects they display. Constraints 
are used to specify relations and dependencies in 
Morgenstern’s active database interface system [Morgen- 
stern 831. Other systems use constraints as their major 
construct, such as ThingLab [Borning 791, which allows 
constraints to be expressed in a graphical manner. The 
Animus system [Duisberg 861, an extension to ThingLab, 
provides constraints that involve time. An early system 
that employed constraints to express graphical relations 
was Sketchpad [Sutherland G3]. The language Ideal 
[Van Wyk 811, used in typesetting graphical pictures, is 
based on constraints and demonstrates their power and 
usefulness. Bertrand [Leler 861 is a term rewriting 
language that can specify constraint satisfaction sys- 
tems. In its current implementation, however, it is not 
interactive and therefore not well suited for our prob- 
lem. Constraints have also been used in the layout, 
mechanism of a window management system [Cohen, 
Smith and Iverson 861. 

8. Conclusions 

We have given an example to illustrate the power 
of our problem-solving environment that, incorporates a 
direct manipulation style of interface. Constraints are 
used as the basic building block for interfaces. Low- 
bandwidth constraints are handled in the logic; high- 
bandwidth constraints are handled in the interface 
filters. 

In summary, our system provides the following 
user-oriented features: Horn clause logic provides a clear 
and concise way to decompose a task. Logic allows sub- 
tasks to be solved in any order consistent with the 
inherent nature of the task. Backtracking provides an 
intelligent user- and system-undo facility. The non- 
determinism of the logic provides alternate ways to solve 
a subtask. The filter paradigm provides a declarative 
approach to providing direct manipulation interfaces in 
an object-oriented environment. 

In addition, the following designer-oriented features 
are provided: The ability to separate the user-interface 
filters from application processes and to logically com- 
pose them into an integrated system. Evaluable predi- 
cates provide the designer the flexibility to incorporate a 
wide variety of tools, languages and environments and 
the potential to distribute the solving of subtasks to 
multiple processors. 
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APPENDIX 

/’ TICS’ executable specification of the construct problem '/ 

/" method to provide a" interface for one person to solve the architect and 
designer subtasks on a single workstation. l / 

construct(Frame, Limit, W, W) :- 
architect_designer(source(Frame, EloorPlan, FloorObjects), view(W)), 
parts~llst(Flaar0bjecta.W). 
feasible(Frame, FloorPlan, FloorObjects, Limit, W). 

/* method to provide a" interface for two persons to solve the srshltoot and 
designer subtasks on separate vorkstations. '/ 

construct(Frame. Limit, WArch, WDesign) :- 
archltoct(source(Frama. FloorPlan, FloorObjects), visv(WArch)). 
designer(sourae(Frama, FloorPlan, FloorObjects). view(WDesig")). 
parts-list(FloorObjects, WDmslgn), 
feaslble(Frame, FloorPlan, FloorObjects, Limit, WArch) 

/* Note: architect, designer, parts-list and fossibls predlc8tas arm spocifiod 
as being *valuable via the $prod system predicate which is further described 
1" [Crosrma" 871. '/ 

/* FiSpeL [Ego 661 speclficrtlon of thm construct problem l / 

/+ object types for Floor, PlanUnits, ObjectUnits and Worstation l / 

Objeot Type Floor Objeot Typo PlanUnits 
frame 4 Rectangle If8118 4 R*ctmgle 
floorPlan + PlanUnits doors -, Rectangle 
floorObjects - ObjectUnits vlndovs + Rectangl. 

and ana 

Objmot 'Pyp. ObjectUnits 
desks - DeskForm 
chairs -+ ChairForm 
clostes - ClosetForm 

mid 

Objoot Typo Workstation 
input -+ I"putt4edium 
output -e OutputMedium 

or&d 

/* filter type for Architect. displays the floorplan on the workstation l / 
/' and allows the user to modify it l i 
Iilter Type Architect (source: Floor, viev: Workstatlo"# 
v*r 

temp + Floor 
ask. 

abndition sourca.frrma = nil 
R~ctangl~FromUsor(temp.fram~. vlw) 

oondition sourco.frrmo + nil 
PlaceU"lts(tenp, view) 
DlsplayFloor(temp, view.output) 

PopUpMenu((selection,'Refr~sh/Commlt/~ndo/Closa'). 
aonditlon selection z 'class' 

Equality(sourc0, tsmp) 
condition selection = 'close' 

Succeed 
aondition selection = 'commit' 

Transmit 
oondition selection = 'undo' 

Fall 
end 

(view, blueButton)) 
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/* filter type for Placeunits, units can be selected with a popup men" '/ 
/* and are then added to the appropriate list '/ 

HItOr Typo PlaceIJnlts(source: Floor, view: Workstation) 
var 

selection - string 
fpo - Ractangla 

make 
PopUpMenu((selection, 'Wall/Door/Window'), (view, redButton)) 
CetObject((floor, fpo), view) 
condition selection = 'Wall' 

AddToList(source.floorPlan.valls. fpo) 
oondition selection = 'Door' 

AddToList(source.floorPlan.doors. fpo) 
aonditioa selection = ‘Window’ 

AddToList(sourca.floorPlan.Ylnd~ws, fpo) 
end 

/* filter type for DisplayFloor, all units are rendered onto the display '/ 

liltSr TypS DiSplayFloor (source: Floor, view: OutputMedium) 
ma&k* 

Render(source.frama, view) 
iteration s0urce.floorPlan.valIs.size tin** 1 

Render(source.floorPlan.walls[i], view) 
iteration source.floorPlan.doors.size timam 1 

Render(Source. f loorPlSn.doors[i], view) 
iixr~tion source.floorPlan.vindovs.slre tiMaS 1 

Render(source. floorPlan.windows[i], view) 
iteration soutce.floorObjects.desks.size tin.8 I 

Render(source. floorObjects.deskS[i]. View) 
iteration source.floorObjacts.chSlrs.size tilaSS i 

Render(Source.floorObjects.chalrs[i]. vlew) 
itmtaticn sourco.floorObjacte.closets.si2g timem 1 

Rsnder(source.floorObjects.closets[il. View) 
end 

/* filter typos for CetObjrcts. AddToLlst and DSr1gn.r Sr. included '/ 
/' here to show their respective source and VSiV types l / 

riltar Typ. GetObject (source: (Floor, Rectangle) view: Workstation) 
rake 

. . . get rectangle from user that doss not overlap existing Structure 

l nd 

YiltSr TYPO AddToList (source: List, view: Element) 
8ako 

. . . adds l lemant to list 
OrId 
lilt*= %'R. Designer (Source: Floor, view: Workstation) 
mkm 

. . . Snalagous to Architect 
uld 

/' other filter types and filter Stems that arm not mon+ioned hero me l / 
/' provided by th. implsmmtrtian. l / 
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