
Logical Composition of Object-Oriented Interfaces

Mark Grossman Raimund I<. Ege

University of Hawaii at Hilo
Hilo, Hawaii 96720

Florida International University
Miami, Florida 33199

Abstract

This paper describes an approach to object-oriented interface design that
goes beyond mere object decomposition. In our user interface management sys-
tern we use logic and filters to declaratively specify and control a space of ways
that objects may be composed to create interfaces. A filter is a package of con-
straints and associated typed objects that express the relationship of data and
representation objects.

Conceptually our system is completely based on constraints. Filters pro-
vide the high bandwidth constraints to maintain the components of the direct-
manipulation interface while the logic forms the low bandwidth constraints to
combine and provide communication between these components. The use of
Horn-clause logic to compose separate interface objects facilitates both the dis-
tribution of computation onto multiple processors and the generation of multi-
ple views of data. Intelligent backtracking implemented in the logic allows for
user- and system-initiated undo operations to correct errors and/or try alterna-
tive approaches to a problem. We illustrate the power and flexibility of this
approach by describing a floor layout and design system.

1. Motivation

How can people and machines best solve problems
is the focus of our research. Computer Science has
made great progress in providing algorithms to help the
machine solve its problems. The cost of hardware and
software no longer justify the restrictions computer sys-
tems place on the way people solve problems. We seek
to provide a user-oriented system that will encourage
people to use their creativity and imagination to find
better solutions.

How do people go about solving a real-world prob-
lem? The most natural methods are reflected in the
structure of our organizations. Typically, a manager is
assigned overall responsibility for a problem. Most
managers decompose a complex problem into subtasks

which he or she then delegates to other personnel.
These people go off and work on their assigned area of
the problem, Some subtasks affect and/or are affected
by other subtasks thus, a person might need to commun-
icate with other people working on different aspects of
the overall problem. Solutions to subproblems are sent
back up the hierarchy. The resulting answer consists of
a select subset of all the information generated. A
difficult problem, because of the complex inter-
relationships between its subproblems, often will require
an iterative approach to generate a satisfactory solution.
Therefore, a person evaluates the result and decides
whether to accept it or generate another solution. Our
proposed system is oriented toward these human ways of
problem-solving.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commerical advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

0 1987 ACM 0-89791-247-O/87/0010-0295 $1.50

Work done while both authors were at the
Oregon Graduate Center; Beaverton, Oregon
97006.
Work supported by NSF grants IST-83-51730
and RI-86-04977, cosponsored by Tektronix
Foundation, Intel, Mentor Graphics, DEC,
Servio Logic Corp., IBM, Xerox and Beaver-
ton Chamber of Commerce.

October 4-a, 1987 OOPSLA ‘87 Proceedings

1.1. Introduction

This paper describes an approach to object-oriented
problem-solving that goes beyond mere object decompo
sition. Our approach uses a constraint-based paradigm
to compose a specific interface and adds a logical com-
ponent to specify and manage relations between
different interfaces. The result is a flexible user-
interface management system that is purely declarative.

We will illustrate the features of our system with
the following floor layout, construct, example. In this
example the task of designing a Aoor within a house is
decomposed into subtasks solved by one or more persons
using graphical workstations. An architect creates the
structure of the floor by inserting walls, doors and win-
dows into the layout. An interior designer populates
that structure, the rooms, with furniture such as desks,
chairs, and closets. A list of all furniture must be gen-
erated and the price of the overall building calculated.
In addition, checks are to be made to ensure that mani-
pulating the wall structure or adding furniture does not
degrade the overall stability of the structure. It is not
necessary, or even desirable, to have either the work of
the architect or the designer completely precede the
other. The designer may wish to start before the floor
layout is completed, and the architect could benefit by
taking furniture, included by the designer, into con-
sideration when she draws a wall. The architect and
the designer require different interfaces to a common
data structure that will allow them to work in parallel.
If more than one architect or designer is working on the
same floor plan then the system should a.ccommodate
them on additional workstations. If the floor layout
problem can be handled by one person then the system
should provide an alternative approach that incor-
porates the functions of architect and designer on a sin-
gle workstation. Figure 1 illustrates this example, the
conslruct problem. It shows two different workstation
screens. The upper screen lets the architect manipulate
the physical structure of the floor plan while the
designer may add and move furniture within the walls,
via the lower screen.

A system like this is feasible using todays technol-
ogy of user-interfaces and distributed systems. But it
would take great programming effort to build this spe-
cial system. As Winograd [Wmograd 791 and Cox
[Cox 861 have pointed out, the problem lies in the
difficulties of organizing a complex system. It is hard to
achieve a system incorporating the functionality of the
above construct example, and almost impossible to
create this system in a way that is easy to change or
modify: adding workstations, moving displays from one
workstation to another, combining functionality of inter-
faces. We propose an object-oriented system that
separates the interface and the logical cant rol
components. Object-oriented programming is aug-
mented with constraints to provide flexible and user-
oriented systems.

Our interface components are built from constraints
following the Filter Paradigm for constructing interfaces.

Figure 1: The co~~lruct problem.

A filter is a package of constraints and associated typed
objects that expresses the relationship between data and
the data’s representation objects. For example, the
relationship of a rectangle on a display screen and a
piece of memory, both representing a wall, is modelled
by a filter. A constraint-satisfaction system maintains
the constraints that are expressed within the filter. If a
user moves the rectangle on the screen, she directly
manipulates the wall object in memory.

The logic part of our system views these interface
components as special evaluable predicates that are
implemented as independent processes. Logic resolution,
is used to control the execution and enables processes to
interact. When satisfied with the wall’s position the
user can cause a logical variable to be instantiated with
the wall object’s data. Other interfaces that are logi-
cally constrained to this variable have access to this

information and can thus, make the wall visible on their
screens. The non-deterministic flow of control within
the logic evaluation provides for different approaches to
solving a problem within our user-interface management
system. For example, the configuration of the interfaces
could be chosen based upon the number of workstations
that are available at run-time, Intelligent backtracking
implemented in the logic allows for user- and system-
initiated undo operations to correct errors and/or try
alternative approaches to solving a problem.

1.2. Overview of the paper

Our system consists of a Task Interaction and Con-
trol System (TICS) that is used to logically compose

2% OOPSIA ‘87 Proceedings October 4-8, 1987

processes. TICS is further described in the next section.
Special processes called filters, implement the different
user-interfaces. The user-interfaces, are specified
declaratively and draw their procedurality from a
constraint-satisfaction system. Filters are discussed in
Section three. How filters and TICS communicate is
explained in Section four. We conclude by describing a
solution for the construct problem that illustrates the
features of our system.

2. Logical Composition

We will utilize the Task Interaction and Control
System (TICS) to model problem-solving as the decom-
position of a problem into subtasks. TICS provides a
declarative and executable specification of a such a
model through the use of Horn clause logic. The logic
clearly expresses assumptions and rules that control the
composition and interaction of the procedures that solve
the subtasks. The power of logic programming to
represent a hierarchical search for task solutions is aug-
mented in TICS by evaluable predicates. Evaluable
predicates are solved by external procedures whose
internals are hidden from TICS. TICS’ And-parallel
resolution engine allows these procedures to execute con-
currently and thus, interact with each other to solve
their subtasks. From the bottom up a solution can be
viewed as a composition of facts that are either initially
assumed, asserted by procedures or logically inferred. In
this paper we only describe those aspects of TICS
relevant to the solution of the problem. For a more
detailed description the reader is referred to [Gross-
man 871.

2.1. What Makes TICS Tick

The key to a TICS implementation is its database
that incorporates special-purpose functionality. The
database is the conductor of a TICS symphony. It
directs and controls the flow of music (data) that is
being created and read by the instrumental players
(evaluable predicates’ external processes) according to
the composition (Horn clause specification). The data-
base contains the system’s specification, provides
dynamic working storage and implements a flexible
deduction engine. Everything in TICS, except the exter-
nal processes for evaluable predicates, is contained
within the database process.

Subtasks specified by evaluable predicates are
solved by external .procedures that are implemented as
separate processes. These concurrent processes com-
municate and synchronize via messages to and from the
database access manager (DAM). The filter-based inter-
face components for the architect and designer are
implemented as such processes. Figure 2 is an overview
of how our construct example can be solved in an
environment that supports multi-tasking and interprc+
cess communication.

2.1.1. Deduction Engine

The deduction engine is based upon a method of
resolution called plan-based deduction [Cox and Pietrzy-

wat,**tioil : : j : wort,,*,ioa : ._

Figure 2: TICS Construct Overview.

kowski 811 [Forsythe and Matwin 841 [Matwin and
Pietrzykowski 851. Plan-based deduction differs from
Prolog and other stack-based logic programming
schemes by allowing unresolved goals to be solved in any
order and by tracking actual data unification dependen-
cies to implement intelligent versus blind backtracking.

TICS extends plan-based deduction by incorporating
And-parallel resolution. All unsolved goals of a clause
can be solved concurrently. Synchronization and com-
munication are provided via logical variables. TICS pro-
vides an executing process with the ability to dynami-
cally examine the evolving environments of other
processes with which it shares common variables, i.e.,

the ability to interact. In our example the architect and
interface processes are specified as evaluable predicates
that share variables. TICS provides storage and access
to these variables via its database and DAM. Each pre
cess can read and write these variables via messages to
TICS and thus, information about walls and furniture
objects can be shared.

3. Interfaces from Constraints

Interface processes are specified as evaluable predi-
cates in TICS. This section presents a new approach to
building these interfaces in an object-oriented environ-
ment. In such an environment, all entities of interest
are represented as objects, so all aspects of the user
interface are modelled as objects. In the Smalltalk
model-view-controller (MVC) Paradigm [Goldberg and
Robson 831, for example, the interface consists of model,
view and controller objects. The model and view are
basically two different representations of the same con-
ceptual entity [Deutsch 861. In Smalltalk’s MVC para-
digm, the model and view have procedural components
that allow the controller to manage the interface
correctly.

3.1. The Filter Paradigm

Our approach is to abandon procedural
specification of user interfaces and relate the model
(source) and view with a declarative interface

October 48.1987 OOPSIA ‘87 Proceedings 297

specification. The idea is to use constraints to specify
the conceptual equivalence between the s~zlrce and view
objects. For example, the relationship between an
employee object and a bitmap object on a screen can be
represented by constraints. The constraints state that
the bitmap object always displays the employee object.
The constraints hide the procedurality of the interface.
If the bitmap object on t,he screen is changed, then the
constraint-satisfaction will ensure that the employee
object is changed accordingly. If the employee object
changes. then that change is reflected on the screen.

,I filfer is an object that describes and maintains
these special constraints between objects in an interface.
For esampl~, consider our construct problem. The
designer can select furniture items and place them on
the floor plan. Let’s say she has selected a desk and
wan& to move it. using a mouse locator device, to a
location lvithin the floor plan. The desk can be placed
anJ-where except on top of walls, windows, doors or
other furniture. This sub-problem can be expressed with
constraints: First, the location of the desk is constrained
by the location of the mouse. Second, the desk is con-
strained not to overlap with any of the existing struc-
tures.

Figure 3: Manipulating a desk object.

Figure 3 shows a diagram of how this subpart of
the designer interface can be modelled with filters. The
figure contains three types of filters (shown as ellipses).
The -Sensor filter” connects the mouse to a desk object
and represents the constraint that the desk object stores
the location of the mouse. The “Renderer filter” con-
nects a desk object to the display and represents the
constraint that the desk is displayed at the given loca-
tion. The “No Conflict” filter connects the desk object
with all the existing wails and represents the constraint
that the desk does not overlap with any of the walls in
the floor plan. All three types of constraints have to be
maintained. If the mouse is moved, then the desk object
changes its location value, thus changing its location on
the display. If the mouse is moved on top of an existing
wall, then the “No Conflict” constraint will prohibit that
move. As more walls are added to the floor plan more
such “No Conflict” filters are added dynamically. Of
course, Figure 3 only shows a small subpart of our con-
struct example. Some details are missing in order to
keep the figure simple, e.g. the walls would also be
shown on the same display as the desk using similar
“Renderer filters”.

The definition of what types of source and view
objects are allowed for the filter and how the subfilters
are connected to them is given by the filter type. Filter

types specify how filters are built from atomic filters
using set, iteration and condition constructors. A filter
is instantiated from its filter type definition. Atomic
filters, like sensors or renderers, are provided by the
implementation. The filter and object types are
described by a filter specification kuW.WZe (FiSPeL)

{Ege 881. FiSpeL is a theoretical tool to compose filters,
a compiler and optimizer for it are planned. The Filter
Browser is a tool to construct filters graphically. The
Filter Browser lets the interface designer create filters by
defining and manipulating filter types. Subfilters are
added interactively by connecting them with the various
constructors to the object types that are displayed in
the browser. The Filter Browser also allows the designer
to instantiate a filter with sample objects to test the
constructed interface. For a more detailed discussion
see [Ege, Maier and Borning 871.
4. Objects

The logic and interface components of our’ system
communicate via objects. The logical component (TICS)
views these objects as logical variables. The interface
component (filters) views them as instances of constraint
object types.
4.1. Logical Variables as Objects

External processes, e.g. filter-based interface com-
ponents, are started by TICS’ deduction engine to solve
evaluable predicates. These processes are invoked with
the database identifiers of the logical variables they can
access. These variables are accessed only via database
read and write messages sent to and received from the
DAM in a manner similar to that used in the Humanizer

framework [Maier, Nordquist and Grossman 861.

When an external process issues a read command
for a variable in its environment the DAh4 responds with
the data type and value derived by unifying the
variable’s constraint graph, i.e., the current value of the
variable. If the value is unacceptable to the process
then the process can invoke system backtracking by ter-
minating with a failure status.

When a process sends a write command, the
database’s DAM enters that value into the constraint
graph bf the variable to be written. If the database
can’t unify all variables in the constraint graph intelli-
gent backtracking is invoked. Unifiability is restored by
selecting a set of predicates to be undone.

Each process is responsible for acquiring any data it
needs. When a process requires data from a logical vari-
able that is not yet instantiated, the process can issue a
request to be notified when that variable changes and
then suspend i&if. This mechanism permits external
processes to be started even if the data they require is
not currently available. Mode declarations and other
annotations to provide data synchronization are neither
permitted nor required in the logic. Logical variables
need never be fully instantiated nor even accessible, as
in the case of infinite structures and non-terminating
computations, if they are not accessed by a procedure.

Type checking of its parameters is the responsibility
of the individual external process. Data types can be

298 OOPSlA 87 Proceedings October 4-8, 1987

protected from TICS’ type-free logic by being specified
as being of type private. This technique is used in “Per-
sistent Prolog” [Gray, Moffat and Boulay 851 [MofIat and
Gray 861. Private variables can not be examined by
TICS’ logic because such a variable can only be unified
with another term of that type or with a free variable.
All access to the internals of this type of variable must
be done by external procedures. TICS’ logic can only be
used to pass private variables from one predicate to
another or to create compound variables, e.g., lists,
made up of private types.

A data record can be represented by a logical term.
In the construct example, the frame can be specified by:

frame(origin (Xl, Yl) , corner (X2, Y2))
In this record ~1 and Yl represent the x and y position
of the origin of the floor’s frame while X2 and YZ
represent the far corner. The variables in this term can
be written and read by all the evaluable predicates, e.g.
filter-based interfaces, that contain the frame record in
their environment.

The filter-based process that provides the
architect’s interface, when invoked will read the value of
the frame record to determine the initial values, if any,
of the frames origin and corner points. The archi-
tect will, via the interface, directly manipulate the
frame until satisfied. When he commits, the process will
send a write message to instantiate the appropriate vari-
ables. Should he later change his mind, the process can
cause backtracking to occur. Backtracking will undo
the bindings of the variables and thus, allow the
architect to respecify the frame.

4.2. Instances of Object Types: Objects

The logical terms with variables are viewed as
instances of object types in the interface component of
our system. If we want to build interfaces by composing
filters from subfilters, connecting objects of different
kinds, it is necessary to type the objects. All entities in
our filter paradigm are ultimately implemented by
objects, so we put much effort in providing a comprehen-
sive type system.

4.2.1. Object Types

The object type system supports the notions of
aggregation and specialization. With aggregation we
can build structured objects from components. Speciali-
zation allows us to refine existing objects via a hierarchy
of object types and inheritance. We view object types
as records. A record is a collection of typed fields. The
fields have names called addresses. There are constant
fields, which are constant for all instances of a type, and
there are data fields that are local to an instance of an
object. Fields can be iterated by specifying an iteration
factor; fields can be conditional by specifying a condition
that must be true for the field to exist; and fields can
specify its type recursively. In addition, an object type
can inherit fields from other object types and can place
constraints on all fields.

Figure 4 shows the Frame object type as defined in
FiSpeL. It names two fields with addresses, origin

and corner, of type Point. The object type Point.
has two addresses, x and y, of type Integer. The
logical term

frame (origin (Xl, Yl) , corner (X2, Y2))

would be represented as an instance of type Frame
holding two instances of type Point with the coordi-
nates, x and y, not yet instantiated.

Objects are used in the filter type definition to
describe source, view and variables that are needed to
connect subfilters. The filter specification language
(F&j’p,&) provides mechanisms to initialize and reference
instances of object types-

Object Type Frame Object Type Point
origin + Point x + Integer
corner - Point y 4 Integer

end end

Figure 4: Frame object type.

4.2.2. Filter Types

The filter type system defines the structure of
filters. Filters represent constraints between two
objects. The filter type defines the types of the source
and view objects it relates. The filter type also declares
the subfilters that compose the filter. In addition, the
filter type can define variables to be used as intermedi-
ate objects when subfilters are combined. A filter that
is not further decomposed is. called a filter atom and is
provided by the implementation. For example, filter
atoms are used for low-level input/output, data conver-
sion or error handling, and to handle primitive user com-
mands, such as commit, undo or fail. A filter that has
subfilters is called a filter pack. Subfilter constructors
are: sequence, iteration and condition. The sequence
constructor (set of) declares several subfilters of possi-
bly different types; the iteration constructor (itera-
tion n times i) declares a certain number of filters of
the same type; the condition constructor (condition)
declares a subfilter only if a’given condition is true. It is
possible to declare a filter with a subfilter of the same
kind as the one being defined, much like a recursive pro
cedure call in a conventional programming language.

Figure 5 shows the PlaceUnits filter type. Pla-
ceUnits is used by the Architect filter. Instances of
it allows the user to constrain source objects of type
Floor to view objects of type Workstation. Pla-
ceUnits composes the subfilters PopUpMenu, GetOb-
ject and AddToList. The PopUpMenu subfilter

manipulates a selection variable to indicate the type
of furniture to be added to the floor plan. GetOb ject
instantiates an appropriate fpo object of type rec-
tangle to be added to the floor plan with the AddToL-

October 4-8,1987 OOPSLA ‘87 Proceedings 299

ist subfilter, Condition constructors are used to select
the correct list for the new furniture item. A more
detailed description of our construct problem can be
found in the appendix.

Filter l'Y'pe PlaceUnits(source: Floor, view: Workstation)
Va

selection + string
fpo --, Rectangle

make
PopUpMenu((selection, 'Wall/Door/window'),

(view, redButton))
GetObject((floor. fpo), view)
condition selection = 'Wall'

AddToList(source.floorPlan.ualls. fpo)
condition selection = 'Door'

AddToList(source.floorPlan.doors. fpo)

condition selection = 'Window'
AddToList(source.floorPlan.windows, fpo)

end

Figure 5: Sample filter type.

4.2.3. Commit and FJndo

When a filter is invoked it receives the identifiers of
the variables in its environment. Filters write and read
these variable objects via messages to and from TICS’
database a.ccess manager. A filter commits information,
i.e. makes local data available to the rest of the system,
by writing to variables. A filter can undo this informa-
tion by sending a fail message that initiates TICS’ back-
tracking mechanism. Backtracking by TICS results in
selected predicates receiving an abort/suspend message.

The bindings of these predicate’s variables are undone.
A filter, while suspended, can preserve its local state so
that if TICS later reactivates that filter to generate
another solution the 6lter can examine its past!

5. Illustrative Solution

The logical component of our system uses Horn
clause logic to specify and execute the composition of
processes and provides a powerful and understandable
model for both the system designer and end-user, The
reader is referred to Clocksin and Mellish [Clocksin and
Mellish 841 for the syntactic conventions used and for a
detailed technical description of Horn clauses and their
relationship to logic in general. (Variables begin with
uppercase letters while constants and structure names
begin with lowercase.) Horn clauses allow us to declara-
tively specify the facts and rules of a system that suc-
cinctly describe what constitutes a solution. The
problem-reduction strategy for Horn clauses is identical
with the the procedural interpretation of Horn clauses
and naturally represents the decomposition of a task
into subtasks, The procedural interpretation is described
by Kowalski [Kowalski 821. In our example an implica-
tion of the form

construct(Frama, Limit, WArch. WDesign) :-
archltect(source(Frame, FloorPlan,

FloorObjects), view(WArch)).
designer(source(Frame. FloorPlan.

FloorObjecrs). view (WDesign) 1,

parts-list(FloorObjects. WDeslgn).
feasi,,le(Frame, FloorPlan. FloorObjects.

Limit. WArch) .

is interpreted as reducing the task construct to sub-
tasks, i.e. logical predicates, architect, designer,
parts-list and feasible. Each of the subtasks is
in turn reduced by other implications, or solved by facts
or external processes. An external process can be viewed
as a dynamic generator of fact(s).

To apply a clause to a predicate, i.e. subtask,
unification may require the instantiation of variables.
Instantiating variables in the clause can be regarded as
transmitting input information from the predicate to the
clause. Instantiating variables in the predicate can be
viewed as transmitting output information from the

clause to the predicate (and thereby to other predicates
which shares variables). For example if we use the above
clause to satisfy the following initial request, i.e. query:

?- construct(F, L, ttyl, tty2).

we would be providing ttyl and tty2 as input for the
values of the architect and designer workstations respec-
tively.

Each subtask has a local binding environment,
specified by Horn clause logical variables. The local
environment contains a subset of the data that defines
the overall state of the system. The parts-list
environment contains information about the floor objects
used in the construction and the workstation to display
its results on.

Each subtask can view and modify its local binding
environment and thus, examine and change its specified
part of the system’s state. Subtasks can exchange infor-
mation with each other through communication chan-
nels, i.e., variables in each of their local environments
that are constrained to contain the same value. If
designer writes a value to its variable Erame then
both architect and feasible can examine their
Frame variable to read this value.

Non-determinism allows more than one clause, i.e.,
method of solution, to be applicable to a given subtask.
We could also include the following clause to provide an
alternate solution to the construct problem that uses
only a single process on one workstation to perform both
the architect and design functions.

construct(Erame, Limit. W, W) :-
archliect_designer(source(Frame, FloorPlan,

FloorObjects), view(W)),
parts-list(FloorObjects,W),
feasible(Frame, FloorPlan. FloorObjects*

Limit. W).

300 OOPSLA ‘87 Proceedings October 4-&I987

Most people approach a task by decomposing the
problem into a limited number of subtasks that are
solved by powerful, sometimes cooperating, processes.
The internals of the process is not part of the decompo-
sition of the problem and is therefore, not of interest to
the problem solver. In addition, logic is not idea1 for
handling numeric Computation and manipulating
complex data objects. Thus, TICS extends the power of
logic programming to represent a hierarchical search for
task solutions by incorporating filters and other external
processes. The internals of these processes and their
parameters can be be hidden and isolated from the logic.
Therefore, these processes can be implemented in any
language and in any operating environment capable of
interfacing to a TICS system.

Artificial constraints are not imposed by the logic.
Solving the construct problem does not inherently
require that any one subtask be started before the other.
It is not necessary for the architect to install all the
walls and fixtures that define the floor plan before the
designer starts including floor objects. In fact the archi-
tect might want to use some of this information about
floor objects before finalizing the floor plan. It is impor-
tant to note that different people may prefer to reach an
overall solution via different strategies.

Logic variables can allow indeterminism in which
subtask supplies a value for a variable. We could start
the constrzlct problem with the following query that pro-
vides a value for the frame record.

?- construct (frame (origin (0.0) , corner (ioo,ioo)) ,
L, tty1, ttyl).

Alternatively, we could use the query

?- construct(P, L, ttyl, ttyl).

and leave it up to the either the architect or
designer filter to instantiate the value.

There are many reasons a person may want to undo
and change previous actions. To remove a constraint
violation a person can choose between possible changes
that will resolve the problem. For example, if the
feasible subtask cannot succeed because of the com-
bination of floor objects and floor plan then the user(s)
may want to change either the floor objects or floor plan
or both. A user cannot be expected to have complete
knowledge of the interrelationships of a complex system
and thus, may require an iterative approach. The abil-
ity to change answers provides a person with the capa-
bility to solve a task by trying out different choices and
exploring different solutions. An architect might want to
experiment with the location of a wall and thus learn
about situations that cause feasible to fail. In
addition, individuals sometimes prefer to start with
existing prototypical solutions and modify them rather
than starting from scratch.

As Donald Norman said, “Error is the natural result
of a person attempting to do a task”. Therefore, it
should be as easy as possible to undo previous actions.
Work done to solve parts of a problem that are indepen-
dent of a modification should not be lost. If we are

forced to undo the results of the architect filter we
should not need to redo the parts-list process.

Logic is a good framework for tracking dependen-
cies. The reading of a value by a subtask makes that
subtask causally dependent upon the subtask that
instantiated that value. If the instantiating subtask
later fails then the reading subtask must be undone.
The writer has, in effect, caused a change in the reader’s
environment. TICS’ database tracks these causality
dependencies. For example, if the feasible process
read the value for FloorPlan that was instantiated by
the architect filter, then if we fail architect we
must fail feasible. However, if feasible has not
gotten around to reading the value of FloorPlan then
there is no reason to fail it. We would want feasible
to be able to read the most current unified value of
FloorPlan because it can use that knowledge to notify
the user of any violations as soon as they occur. TICS
extended version of plan-based deduction maintains
information about the history of the resolution, the
unification constraints between variables, and the
causality relationships between binding environments.
With this information TICS is able to provide user- and
system-initiated inteltigent dependency-directed back-
tracking. Intelligent backtracking detects and acts upon
the exact source of failure as opposed to exhaustive
blind backtracking which treats all the subtasks as
equally probable sources of failure. TICS allows aiterna-
tive solution paths to be tried and errors corrected with
only those solutions affected by the change needing to be
redone.

Logical variables are used by TICS to handle the
communication between different subtasks. Unification
and intelligent backtracking are a way of implementing
the basic equality constraints that are nresent if the
same variables are mentioned in more than one subtask.
The interface component of our system uses constraints
also. Constraints have been proven to be very useful for
graphical applications [Van Wyk 811.

The interfaces in our construct problem are built
from constraints. These special constraints are called
filters and have been described earlier in this paper.
The interface that presents the layout of a floor to a
designer is represented by a filter from an object of type
Floor to an object of type Workstation. This giant
constraint is decomposed into subfilters using the filter
constructors of the Filter Paradigm [Ege 861.

As an example, consider again the subfilter to posi-
tion a desk on the floor layout as shown in Figure 3.
Figure 6 shows the designer interface with the designer
about to position a desk on the floor plan. The con-
straints ensure that the desk display follows the mouse
cursor and that the desk does not conflict, i.e. overlap,
with any existing structures. If the designer likes the
location of the desk she clicks a mouse button and con-
tinues by selecting other furniture items to be included
into the floor plan.

October 4-8,1987 OOPSLA ‘87 Proceedings 301

Figure 6: Manipulating a desk object.

If the user is satisfied with her work she can com-
mit, thus triggering the transmission of the changed
objects through logical variables to other tasks or inter-
faces. This communication only takes place if a user
commits her choices. After a commit the logical com-
ponent of our system checks for conflicts within the vari-
ables and may initiate backtracking. For example, the
designer may place a desk on the floor plan and then
commit her choice. The desk is then included in the list
of furniture items that is also shared by the “partsJist”
subtask. This task may determine that the price limit
has been exceeded and therefore fail causing backtrack-
ing. Note that before the user commits, violations of the
constraints represented by the logical variables are pos-
sible.

After a commit, if the user does not like her choice
she can fail the subtask, thus causing all changes to the
logical variables to be undone via backtracking. The
filter subtasks maintain local information even if they
are aborted/suspended by backtracking. This allows
the filter to reduce the amount of work the user has to
redo if the same filter subtask is re-invoked. For exam-
ple, if the architect decides to remove a wall after he
has committed this information he can cause the
architect filter to fail. Backtracking is invoked and
the variable FloorPlan containing the wall informa-
tion is unbound. When the architect filter is re-
invoked to generate another solution the filter uses local
information so that the architect need not re-enter ail
previous FloorPlan data.

Our framework encourages and provides for user-
oriented problem solving. The user interfaces, imple-
mented by filter processes, are separate from the appli-
cation processes. Isolating interface functionahty facili-
tates’ the development of different versions of an inter-
face to accommodate diverse users with varying
proficiency levels and tastes. In addition modularization
also allows interface programmers to implement the
interactive displays iteratively and in parallel with the
development of the rest of the program, a goal espoused
by Norman and Draper [Draper and Norman 841.

6. Implementation

We have completed separate prototype implementa-
tion for both the TICS and the filter system. The next
step is to implement the communication between the
two systems as described in section 4.

The TICS system uses C++ and is running under
the Berkeley UNIX’ operating system on a VAX.2 The
prototype incorporates extended Plan-based deduction
with intelligent backtracking. The UNIX signal and fork
facility are used to execute and control concurrent
processes that implement external procedures for evalu-
able predicates. Processes communicate with TICS by
sending messages that read, write or request notification
of changes in logical variables in their environment via
UNIX soeke ts.

The filter system, together with the Filter Browser

is written in Smalltalk-803 and runs on a Tektronix 4400
machine. The constraint satisfaction is performed using
ThingLab [Borning 791. ThingLab (and therefore
Smalltalk) has been extended to handle the types for
objects and filters. Dynamic constraints for conditions
and iterations were added to ThingLab’s constraint-
satisfaction mechanism. The operating system used on
the 4400 machine is Uniflex. The UNIX and Uniflex sys-
tems are connected via Ethernet.

7. Related Research

In the area of User Interface Management Systems
(UIMS), dialogue management systems have been
developed to coordinate the interaction between
modules. Non-declarative approaches have included ver-
sions of state transition diagrams and event language.
Examples of these techniques are in Wasserman
[Wasserman 851 and Green [Green 851 respectively. We
feel that there is no reason for the problem solver to
anticipate or have knowledge of all possible event order-
ings. This detailed information will only confuse. We
believe that to understand a complex concurrent pro-
gram it is better to simply know what must be done.
The step-by-step details of all the possible ways of how
to achieve a goal are better ignored, i.e., abstracted
away. Logic provides an effective w’ay to declaratively
describe the solution space of a problem. Logic was
used by Roach and Nickson [Roach and Nickson 831 for
their air traffic control system’s dialogue specification.
However, their choice of Prolog, with its depth-first stra-
tegy and naive backtracking unnecessarily constrains
the user.

The problem of task definition and support in the
office environment is addressed in both the POISE [Croft
and Lefkowitz $41 [B roverman and Croft 85) and HIG-
GENS [Hudson and King SG] systems. Unlike these sys-
tems, we use Horn clause logic to specify the task and
theorem proving with intelligent backtracking to control
its resolution. We feel our techniques provide a clear
and robust declarative model of complex problem

‘UNIX is a trademark of Bell Laboratories

Wfi is a trademark ot Digital Equipment Corporation

%mal[talk-80 is B trademark of Xerox Inc.

302 OOPSLA ‘87 Proceedings October 4-8, 1987

environments that can be directly executed in a user-
oriented manner.

Our approach to the interface component was
guided by experience with the Smalltalk MVC paradigm
[Goldberg and Robson 831. Programming experience has
shown that this paradigm is hard to follow. The
Smalltalk Interaction Generator (SIG) tried to add a
declarative interface on top of the MVC mechanism
[Maier, Nordquist and Grossman 86, Nordquist 851. One
conclusion of SIG is that display procedures need type
information about the objects they display. Constraints
are used to specify relations and dependencies in
Morgenstern’s active database interface system [Morgen-
stern 831. Other systems use constraints as their major
construct, such as ThingLab [Borning 791, which allows
constraints to be expressed in a graphical manner. The
Animus system [Duisberg 861, an extension to ThingLab,
provides constraints that involve time. An early system
that employed constraints to express graphical relations
was Sketchpad [Sutherland G3]. The language Ideal
[Van Wyk 811, used in typesetting graphical pictures, is
based on constraints and demonstrates their power and
usefulness. Bertrand [Leler 861 is a term rewriting
language that can specify constraint satisfaction sys-
tems. In its current implementation, however, it is not
interactive and therefore not well suited for our prob-
lem. Constraints have also been used in the layout,
mechanism of a window management system [Cohen,
Smith and Iverson 861.

8. Conclusions

We have given an example to illustrate the power
of our problem-solving environment that, incorporates a
direct manipulation style of interface. Constraints are
used as the basic building block for interfaces. Low-
bandwidth constraints are handled in the logic; high-
bandwidth constraints are handled in the interface
filters.

In summary, our system provides the following
user-oriented features: Horn clause logic provides a clear
and concise way to decompose a task. Logic allows sub-
tasks to be solved in any order consistent with the
inherent nature of the task. Backtracking provides an
intelligent user- and system-undo facility. The non-
determinism of the logic provides alternate ways to solve
a subtask. The filter paradigm provides a declarative
approach to providing direct manipulation interfaces in
an object-oriented environment.

In addition, the following designer-oriented features
are provided: The ability to separate the user-interface
filters from application processes and to logically com-
pose them into an integrated system. Evaluable predi-
cates provide the designer the flexibility to incorporate a
wide variety of tools, languages and environments and
the potential to distribute the solving of subtasks to
multiple processors.

Bibliography

[Borning 791
Borning, Alan, ThingLab - A Constraint-Oriented
Simulation Laboratory, PhD Thesis, Stanford
University, 1979.

[Broverman and Croft 851
Broverman, C. A. and W. B. Croft, A Knowledge-
Based Approach To Data Management For Intelli-
gent User Interfaces, Proceedings of VLDB 85,
Stockholm, 1985, pp. 96-104.

[Clocksin and Mellish 841
Ciocksin, W.F. and C.S. Mellish, second edition,
Springer-Verlag, Berlin, 1984.

[Cohen, Smith and Iverson 861
Cohen, Ellis S., Edward T. Smith and Lee A. Iver-
son, Constraint-Based Tiled Windows, IEEE Com-
puter Graphics and Applications, May 1986.

[Cox and Pietrzykowski 811
Cox, Philip T. and Tomasz Pietrzykowski, Deduc-
tion Plans: A Basis for Intelligent Backtracking,
IEEE Transactions on Pattern Analysis and Machine
Inteffigence Vol. PAMI-S(January 1981), pp. 52-65.

[Cox 861
Cox, Brad J., Object Oriented Programming - An
Evolutionary Approach, Addison Wesley, Reading,
Mass., 1986.

[Croft and Lefkowitz 841
Croft, W. B. and L. S. Lefkowitz, Task Support. in
an Office System, ACM Transactions on O&e
Information Systems Vol. 2 , No. 3 (July 1984), pp.
197-212.

[Deutsch 861
Deutsch, L. Peter, Panel: User Interface Frame-
works, OOPSLA ‘86 Conf. Proc., Portland, OR, Sep-
tember 1986.

[Draper and Norman 841
Draper, Stephen W. and Donald A. Norman,
Software Engineering For User Interfaces, Proceed-
ings of the Seventh International Conference on
Software Engineering, Orlando, Florida, March
1984.

[Duisberg 861
D&berg, Robert A., Animus: A Constraint Based
Animation System, Proc. of the Conf. on Human
Factors in Computing Systems, 1986.

Pge 861
Ege, Raimund K., The Filter - A Paradigm for
Interfaces, Technical Report No. CSE-86-011, Ore-
gon Graduate Center, Beaverton, OR, September
1986.

[Ege, Maier and Borning 871
Ege, Raimund K., David Maier and Alan Borning,

The Filter Browser: Defining Interfakes Graphically,
Proc. European Conf. on Object Oriented Program-
ming, Paris, France, June 1987.

October 4-8,1987 OOPSLA $7 Proceedings 303

[Forsythe and Matwin 841
Forsythe, Kenneth and Stanislaw Matwin, Imple-
mentation Strategies For Plan-Based Deduction, in
International conference on automated deduction.
Proceedings of the 7th conference (Napa, 1984) [Lec-
ture notes in computer science; n.1701, R.E. Shostak
(ed.), Springer-Verlag, New York, 1984.

[Goldberg and Robson 831
Goldberg, Adele and D. Robson, Smalltalk-80: The
Language and its Implementation, Addison Wesley,
Reading, Mass., 1983.

[Gray, Moffat and Boulay 85)
Gray, P.M.D., D.S. Moffat and J.B.H. du Boulay,
Persistent Prolog: A Secondary Storage Manager for
Prolog, Persistence and Data Types Papers for the
Appin Workshop, University of Glasgow, Glasgow,
August 1985, pp. 353 - 368.

[Green 851
Green, Mark, The University of Alberta User Inter-
face Management System, ACM SIGGRAPH’85 San
Francisco Vol. IS, No. 3 (July 1985), pp. 205-213.

[Grossman 871
Grossman, Mark, Task Interaction and Control Sys-

tern (TICS), PhD Thesis, Oregon Graduate Center,
1987.

[Hudson and King 861
Hudson, Scott E. and Roger King, A Generator of
Direct Manipulation Office Systems, ACM Transac-
tions on Ofice Injormation Systems Vol. 4, NO. 2
(April 1986), pp. 132-163.

[Kow alski 821
Kowalski, R.A., Logic As A Computer Language, in
Logic Programming, K.L. Clark and S.A. Tarnlund
(ed.), Academic Press, London, 1982, pp. 3-16.

[Leler 861
Leler, Wm, SpeciJication and Generation of Con-
straint Satisfaction Systems using Augmented Term
Rewriting, PhD Thesis, The University of North
Carolina at Chapel Hill, 1986.

[Maier, Nopdquist and Grossman 861
Maier, David, Peter Nordquist and Mark Grossman,
Displaying Database Objects, Proc. First Int. Conj.
on Expert Database Systems, Charleston, South
Carolina, April 1986.

[Matwin and Pietrzykowski 851
Matwin, Stanislaw and Tomasz Pietrzykowski,
Intelligent Backtracking in Plan-Based Deduction,
IEEE Transactions on Pattern Analysis and Machine
Intelligence Vol. PAMI-7(November 1985), pp. 682-
692.

[Moffat and Gray 861
Moffat, D.S. and P.M.D. Gray, Interfacing Prolog to
a Persistent Data Store, 3rd International Conjer-
ence on Logic Programming [to be published by
Springer Verlaq, editor E. Shapiro], London, July
1986.

[Morgenstern 831
Morgenstern, M., Active Databases as a Paradigm
for Enhanced Computing Environments, Proc. 9th
ht. Con/. on Very Large Data Bases, Florence,
Italy, October 1983.

[Nordquist 851
Nordquist, Peter, Interactive Display Generation in
Smalltalk, Master’s thesis, Technical Report CS/E
85-009, Oregon Graduate Center, March 1985.

[Roach and Nickson 83)
Roach, J. W. and M. Nickson, Formal Specifications
For Modeling And Developing Human/Computer
Interfaces, Proceedings oj the CHI 1985 Conference
on Human Factors in Computer Systems, December
1983, pp. 35-39.

[Sutherland 631
Sutherland, I., Sketchpad: A Man-Machine Graphi-
cal Communication System, PhD Thesis, MIT, 1963.

[Van Wyk 811
Van Wyk, C., IDEAL User’s Manual, Computing
Science Technical Report, No. 103, Bell Labora-
tories, Murray Hill, 1981.

[Wasserman 851
Wasserman, A., Extending State Transition
Diagrams for the Specification of Human-Computer
Interaction, Transactions On Software Engineering
Vol. SE-II, No. 8 (August 1985), pp. 699-713.

IWinograd 79)
Winograh Terry Be ond Programming Languages,
Comm. AbM %?,‘7 (J%y 1979), pp.391-401.

304 OOPSLA ‘87 Proceedings October 4-8, 1987

APPENDIX

/’ TICS’ executable specification of the construct problem '/

/" method to provide a" interface for one person to solve the architect and
designer subtasks on a single workstation. l /

construct(Frame, Limit, W, W) :-
architect_designer(source(Frame, EloorPlan, FloorObjects), view(W)),
parts~llst(Flaar0bjecta.W).
feasible(Frame, FloorPlan, FloorObjects, Limit, W).

/* method to provide a" interface for two persons to solve the srshltoot and
designer subtasks on separate vorkstations. '/

construct(Frame. Limit, WArch, WDesign) :-
archltoct(source(Frama. FloorPlan, FloorObjects), visv(WArch)).
designer(sourae(Frama, FloorPlan, FloorObjects). view(WDesig")).
parts-list(FloorObjects, WDmslgn),
feaslble(Frame, FloorPlan, FloorObjects, Limit, WArch)

/* Note: architect, designer, parts-list and fossibls predlc8tas arm spocifiod
as being *valuable via the $prod system predicate which is further described
1" [Crosrma" 871. '/

/* FiSpeL [Ego 661 speclficrtlon of thm construct problem l /

/+ object types for Floor, PlanUnits, ObjectUnits and Worstation l /

Objeot Type Floor Objeot Typo PlanUnits
frame 4 Rectangle If8118 4 R*ctmgle
floorPlan + PlanUnits doors -, Rectangle
floorObjects - ObjectUnits vlndovs + Rectangl.

and ana

Objmot 'Pyp. ObjectUnits
desks - DeskForm
chairs -+ ChairForm
clostes - ClosetForm

mid

Objoot Typo Workstation
input -+ I"putt4edium
output -e OutputMedium

or&d

/* filter type for Architect. displays the floorplan on the workstation l /
/' and allows the user to modify it l i
Iilter Type Architect (source: Floor, viev: Workstatlo"#
v*r

temp + Floor
ask.

abndition sourca.frrma = nil
R~ctangl~FromUsor(temp.fram~. vlw)

oondition sourco.frrmo + nil
PlaceU"lts(tenp, view)
DlsplayFloor(temp, view.output)

PopUpMenu((selection,'Refr~sh/Commlt/~ndo/Closa').
aonditlon selection z 'class'

Equality(sourc0, tsmp)
condition selection = 'close'

Succeed
aondition selection = 'commit'

Transmit
oondition selection = 'undo'

Fall
end

(view, blueButton))

October 4-8.1987 OOPSIA ‘87 Proceedings 305

/* filter type for Placeunits, units can be selected with a popup men" '/
/* and are then added to the appropriate list '/

HItOr Typo PlaceIJnlts(source: Floor, view: Workstation)
var

selection - string
fpo - Ractangla

make
PopUpMenu((selection, 'Wall/Door/Window'), (view, redButton))
CetObject((floor, fpo), view)
condition selection = 'Wall'

AddToList(source.floorPlan.valls. fpo)
oondition selection = 'Door'

AddToList(source.floorPlan.doors. fpo)
aonditioa selection = ‘Window’

AddToList(sourca.floorPlan.Ylnd~ws, fpo)
end

/* filter type for DisplayFloor, all units are rendered onto the display '/

liltSr TypS DiSplayFloor (source: Floor, view: OutputMedium)
ma&k*

Render(source.frama, view)
iteration s0urce.floorPlan.valIs.size tin** 1

Render(source.floorPlan.walls[i], view)
iteration source.floorPlan.doors.size timam 1

Render(Source. f loorPlSn.doors[i], view)
iixr~tion source.floorPlan.vindovs.slre tiMaS 1

Render(source. floorPlan.windows[i], view)
iteration soutce.floorObjects.desks.size tin.8 I

Render(source. floorObjects.deskS[i]. View)
iteration source.floorObjacts.chSlrs.size tilaSS i

Render(Source.floorObjects.chalrs[i]. vlew)
itmtaticn sourco.floorObjacte.closets.si2g timem 1

Rsnder(source.floorObjects.closets[il. View)
end

/* filter typos for CetObjrcts. AddToLlst and DSr1gn.r Sr. included '/
/' here to show their respective source and VSiV types l /

riltar Typ. GetObject (source: (Floor, Rectangle) view: Workstation)
rake

. . . get rectangle from user that doss not overlap existing Structure

l nd

YiltSr TYPO AddToList (source: List, view: Element)
8ako

. . . adds l lemant to list
OrId
lilt*= %'R. Designer (Source: Floor, view: Workstation)
mkm

. . . Snalagous to Architect
uld

/' other filter types and filter Stems that arm not mon+ioned hero me l /
/' provided by th. implsmmtrtian. l /

306 OOPSLA ‘87 Proceedings October 441987

