
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated
*

O
O
P
S
LA
*

Ar
tifact *

A
E
C

Region-based Memory Management
for GPU Programming Languages

Enabling Rich Data Structures on a Spartan Host

Eric Holk Ryan Newton Jeremy Siek Andrew Lumsdaine
Indiana University, School of Informatics and Computing, Bloomington IN 47405

{eholk, rrnewton, jsiek, lums}@cs.indiana.edu

Abstract
Graphics Processing Units (GPUs) can effectively accelerate
many applications, but their applicability has been largely
limited to problems whose solutions can be expressed neatly
in terms of linear algebra. Indeed, most GPU programming
languages limit the user to simple data structures–typically
only multidimensional rectangular arrays of scalar values.
Many algorithms are more naturally expressed using higher
level language features, such as algebraic data types (ADTs)
and first class procedures, yet building these structures in a
manner suitable for a GPU remains a challenge. We present
a region-based memory management approach that enables
rich data structures in Harlan, a language for data parallel
computing. Regions enable rich data structures by provid-
ing a uniform representation for pointers on both the CPU
and GPU and by providing a means of transferring entire
data structures between CPU and GPU memory. We demon-
strate Harlan’s increased expressiveness on several example
programs and show that Harlan performs well on more tra-
ditional data-parallel problems.

Categories and Subject Descriptors D.3.2 [Programming
Languages]: Language Classifications—Concurrent, dis-
tributed, and parallel languages; Applicative (functional)
languages; D.3.4 [Programming Languages]: Processors—
Run-time environments; Optimization; Compilers; Memory
management (garbage collection)

Keywords Harlan; GPU; OpenCL; parallel programming;
recursion; algebraic data types; first class procedures; com-
pilers; implementation; performance; optimization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
OOPSLA ’14, October 20–24, 2014, Portland, OR, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2585-1/14/10. . . $15.00.
http://dx.doi.org/10.1145/2660193.2660244

1. Introduction
GPUs have become popular for high performance comput-
ing due to the high throughput afforded by their massively
parallel architecture. Programming models such as CUDA
or OpenCL have somewhat eased the burden of general pur-
pose GPU computing, but these models are still very low-
level. Several higher level domain specific languages such
as Copperhead [4] and Accelerate [7] have sought to sim-
plify GPU programming so that programmers can ignore the
architectural details and focus on their algorithms.

A large proportion of these languages rely extensively on
immutable, multidimensional rectangular arrays. The bene-
fits of immutability are clear, aiding the programmer in rea-
soning about their program and simplifying debugging with
deterministic semantics. The benefits extend to language im-
plementers as well, since compilers have much more free-
dom to optimize programs when there are fewer observable
effects to preserve. Constraining programs to rectangular ar-
rays also facilitates implementation, as these data structures
map naturally onto data parallel hardware.

Unfortunately, these languages are also limited. Many
problems do not fit nicely into rectangular arrays and would
be better be served by more complex structures like trees
and graphs. Consider one implementation of control flow
analysis on the GPU [22]. While this algorithm showed an
impressive speedup, achieving the speedup required the au-
thors to go to great lengths to cast the problem as a linear
algebra problem. We intend to simplify GPU implementa-
tions of problems such as these by providing even higher
level control and data structures in a language that can run
on the GPU.

This is the purpose of our language, Harlan [14], which
enables richer control flow constructs by providing first class
functions (lambda). In fact, procedures created in Harlan
can move freely between the GPU and CPU. This ability can
be used, for example, to allow a computation started on the
CPU to move to the GPU and vice-versa. Harlan also sup-
ports richer data structures, such as non-rectangular arrays
and ADTs. Harlan resembles Scheme in syntax and features
lightweight operators for data parallel computation, such as

141

kernel and reduce. Below is an example demonstrating
how a Harlan programmer might express a matrix-vector
product of M and xs.

(kernel ((m M))

(reduce + (kernel ((y m) (x xs)) (* x y))))

The key enabling technology behind Harlan is its region-
based memory system. Harlan’s rich data structures are
complicated for GPUs because of their heavy use of pointers.
Traditionally working with pointer structures in a GPU lan-
guage has been either explicitly disallowed or it necessitated
serializing the structure on the host side before transferring
it to the device memory. Using regions sidesteps these is-
sues by constructing data in a form that is readily transferred
between host and device memory. Furthermore, this is done
without requiring programmer involvement, as the assign-
ment of data to regions can be determined automatically (re-
gion inference [28]). Data can then be moved in units of re-
gions, which enables efficient data transfer between the CPU
and GPU memory.

We make the following contributions:

• We present Harlan, a language for GPU computing that
supports functional programming and a rich set of data
structures (Section 3).

• We show how the use of region-based memory manage-
ment in Harlan enables rich data structures and supports
efficient transfer of data structures between host and de-
vice memory (Section 4).

• We describe the implementation of Harlan, including the
region system, scheduling of memory transfers, and sev-
eral optimizations (Section 5).

• We show how supporting rich data structures makes it
more natural to express more problems for the GPU by
presenting several more extensive examples (Section 6).

• We show that Harlan can be efficiently implemented and
yields good performance on a selection of benchmarks
(Section 7).

2. Background
2.1 General Purpose GPU Computing
Graphics processing units are specialized processors whose
development has primarily been driven by the demand for
stunning visuals in video games. As GPUs have become
more powerful, they have evolved into general-purpose data-
parallel processors and are seeing increased use in scientific
computing and other disciplines.

GPUs consist of several processing units, called Stream-
ing Multiprocessors (SMs) by NVIDIA, which are analo-
gous to cores on a traditional CPU. Each of these can track
many thread contexts at once, and thus high performance
GPU kernels are written in terms of thousands of threads.
GPUs make little use of speculation and out of order execu-

tion to reduce latency and instead hide latency by switching
between threads as their dependencies are satisfied.

The most popular framework for programming NVIDIA
GPUs is CUDA [20], which presents the programmer with
the illusion of a virtually unlimited set of threads. These
threads are grouped into warps that execute in lock step, and
the warps are grouped into blocks. OpenCL presents similar
concepts using different terminology [19].

Memory management on GPUs is more complicated than
on CPUs. Most of the memory falls into the global memory
category, which resides in off-chip DRAM. GPUs also pro-
vide a small amount of local memory for each SM, which is
akin to L2 cache on CPUs. Changes to global memory are
visible to all CUDA threads, while local memory changes
are only visible to a single thread block. Local memory is
very fast, but limited in size. Writing efficient GPU codes
requires judicious use of local and global memory. The GPU
memory is almost always distinct from the memory of host
CPU, meaning applications must carefully schedule trans-
fers over the relatively slow PCI Express bus. We say data
that is directly accessible to the CPU as residing in host
memory, while data that is stored in the GPU memory is said
to reside in device memory.

Programming models for CPUs and GPUs have tradition-
ally been quite different, and yet the actual CPU and GPU
architectures are becoming more similar. Newer generations
of CPUs typically include more powerful vector processing
capabilities, such as with Intel’s AVX instructions. Likewise,
GPUs are adopting features that were once CPU-only, such
as hardware-managed L2 caches. This suggests that a sin-
gle unified programming model for both CPUs and GPUs is
achievable and code that is written to run well on the GPU
can also run well on the CPU with minimal changes. The
primary architectural differences at this point are memory
bandwidth, the width of the vector processing units, and the
tradeoff between simultaneous multithreading and out of or-
der, speculative execution.

Harlan facilitates write-once, run anywhere data paral-
lel programming by abstracting away most of the details of
the particular hardware. Programmers specify at a high level
what must be done in computational kernels, and the lan-
guage implementation is responsible for best mapping these
kernels to the available hardware. Indeed, because Harlan
compiles to OpenCL, it is trivial to switch between execut-
ing kernels on the GPU and executing them on the CPU.

2.2 Region-Based Memory Management
Region-based memory management is a technique for man-
aging the lifetime of objects by assigning them to regions.
Allocating from a region is typically cheap, and all objects
in a region are deallocated at once. The ML Kit compiler
used region-based memory management (RBMM) as a gen-
eral garbage collection strategy [28]. In this system, objects
were automatically assigned to regions based on their in-

142

ferred lifetimes. An important safety property is that a region
must outlive all references to any object contained within it.

Regions are sometimes also known as arenas, and can
be used to amortize the deallocation overhead over many
objects. For example, deallocating a linked list takes O(N)
time when using malloc and free, but when all nodes are
allocated in an arena, deallocation becomes a constant time
operation–one simply needs to deallocate the whole region
at once. This approach is used to improve performance in
software such as the Apache Web Server.

Programming languages such as Rust [24] and Cy-
clone [13] use a version of regions to enforce safety prop-
erties by ensuring that an object outlives any references to
the object. In these cases, it is important to distinguish re-
gions from lifetimes. A lifetime is the period that an object
must remain live to ensure all reference to it remain valid.
Lifetimes may be analyzed statically and provided they are
proven safe, they do not have any effect at runtime. Regions,
on the other hand, do have a runtime impact; they are an ac-
tual object that is allocated and deallocated at runtime, and
other objects are represented as pointers into their region.
Using this terminology, ML Kit and Harlan use regions,
while Cyclone and Rust use lifetimes.

3. The Harlan Programming Language
Harlan is a language for data-parallel computing that was
designed from the beginning with GPU implementation
in mind. Its syntax is reminiscent of Scheme’s, and Har-
lan features a hygienic macro system similar to Scheme’s
syntax-rules. Unlike Scheme, however, Harlan is stat-
ically typed. Harlan allows for the rapid development of
GPU kernels through its support of nested data parallelism,
rich data structures.

3.1 Data-parallel Computing
Parallel operations are indicated using kernel and reduce

forms. For example, a dot product in Harlan is performed as
follows:

(reduce + (kernel ((x xs) (y ys)) (* x y)))

The kernel form in this snippet performs the element-
wise multiplication of the vectors xs and ys. Kernels are
similar to Haskell’s zipWith function. The result of this
kernel is a new vector with the same length as the input
vectors. This result is used by reduce, which computes the
sum of all of the elements in its vector.

Harlan programs use the same language inside kernels as
outside, although there are some restrictions. For example,
kernels cannot perform IO. Currently, compilation uncere-
moniously fails when the programmer violates these restric-
tions, but Harlan’s type system could be extended to detect
and report these violations in a programmer-friendly way.

The parallel constructs in Harlan can be arbitrarily nested,
allowing us to write a parallel matrix-vector product as fol-
lows.

(kernel ((row M))

(reduce + (kernel ((r row) (x xs)) (* r x))))

The Harlan compiler is responsible for generating code to
implement the high level specification provided by the user.
Harlan compiles to C++ and OpenCL. Kernels roughly map
to OpenCL kernels, while the reduction operation is imple-
mented as a macro in Harlan’s runtime library. Compiling to
OpenCL allows Harlan to easily target both GPUs, multicore
CPUs and other accelerators. In the future, Harlan may use
both types of hardware simultaneously.

3.2 Data Structures
Harlan provides several data types in addition to the usual
complement of scalar types. The first of these is the vector
type, which is an immutable ordered collection of elements
of a single type. Harlan’s parallel operators all work over
vectors. Vectors can contain any data type, including other
vectors. Nested vectors need not be the same size, so the
following code snippet is perfectly acceptable:

(vector (vector 1)

(vector 1 2)

(vector 1 2 3))

More interesting is the fact that Harlan supports ADTs.
These allow Harlan programs to naturally handle tree-
structured data and directed acyclic graphs (DAGs). For
example, suppose we were writing an interpreter for the
λ-Calculus. Below is an example data type we could use to
represent expressions.

(define-datatype Expr

(variable int)

(lambda Expr)

(app Expr Expr))

In this type, we have chosen to represent variables with
deBruijn indices. Having defined the type for expressions,
we can write a simple non-terminating program as follows:

(app (lambda (app (variable 0) (variable 0)))

(lambda (app (variable 0) (variable 0))))

As another example, Figure 1 shows a simple N-Body
simulation that uses both ADTs and nested parallelism.
Note that the core algorithm is quite short; the bulk of the
code is defining auxiliary helper functions for manipulat-
ing point3-t objects in parallel. Here, the function nbody

computes the forces on each object. The inner kernel com-
putes the force on body i due to each other body, and these
are accumulated using a reduction with point-add. For
simplicity, we assume the gravitational constant is 1.

3.3 First Class Procedures
Harlan leverages its support for ADTs to provide first class
procedures in the form of lambda. Procedures in Harlan
are completely interchangeable between host and device
code. Programs can create procedures on the CPU and apply
them on the GPU, and vice-versa. Harlan’s lambda follows
Scheme’s syntax:

143

(define (nbody bodies)

(kernel ((i bodies))

(reduce point-add

(kernel ((j bodies))

(let* ((diff (point-diff j i))

(d (point-mag diff)))

(if (< 0 d)

(point-div diff (* (* d d) d))

(point3 0 0 0)))))))

Figure 1: A simple N-Body simulation written in Harlan.

(lambda (x) (+ x 1))

The expression above creates a procedure that adds one to its
argument. We can then apply this procedure to many items
in parallel using a kernel:

(let ((f (lambda (x) (+ x 1))))

(kernel ((i (iota 10)))

(f i)))

Notice that in this case the procedure, f, is created in the host
portion of the code but then applied inside of a kernel which
runs on the device.

In the same way, kernels can produce procedures which
are applied on host:

(let* ((funcs (kernel ((i (iota 10)))

(lambda (n)

(* n i))))

(f (vector-ref funcs 5)))

(println (f 24)))

Here, we use a kernel to create ten different procedures. We
use vector-ref to extract one of these procedures and then
print the result of applying it to 24. This program prints 120.

In effect, using lambda this way lets the programmer
build vectors of lightweight objects. They automatically cap-
ture a subset of the available data, without requiring the pro-
grammer to define a new data type which may only be used
for one return value.

Of course, vectors of functions can be inputs to a kernel
as well. We take advantage of that in this “multiple-program,
single data” style program:

(let ((funcs (make-some-procedures))

(x (make-a-datum)))

(kernel ((f funcs))

(f x)))

This style of program does run the risk of increasing
branch divergence, a common performance pitfall in GPU
programming. Recent advances in JavaScript compilation,
such as [12], suggest that even if language allows very ir-
regular programs, the control and data flow are often quite
predictable in performance-critical sections. We explore the
issue of branch divergence in Section 7.4.

Given that lambda is a building block for a variety of con-
trol and binding structures, the flexibility from having pro-

cedures that can move freely between computational devices
will enable a variety of novel parallel program structures.

3.4 Macros
One useful aspect of higher level language features is that
they can be used to build new useful abstractions. This is
particularly true when the syntax is extensible. To this end,
Harlan features a hygienic macro system similar to Scheme’s
syntax-rules. Many of Harlan’s built-in language features
are defined as macros in the standard library. This style is
useful for programmers because they can add new language
forms as it is convenient for their application, as we do in
the ray tracing example in Section 6.1, and it simplifies the
language implementation because the compiler has a smaller
set of core forms to handle.

4. Region-based Memory Management in
Harlan

Harlan’s rich data structures pose several implementation
challenges. Often, data will be created in CPU code, such as
by reading from a file. The data must then be transferred into
the GPU memory. For regular structures, such as dense rect-
angular arrays, this is a simple memory copy. For tree struc-
tures, such as arise with Harlan’s ADTs, finding all nodes of
the tree in memory involves traversing the whole tree. Fur-
thermore, OpenCL makes no guarantees about the stability
of pointer values between kernel invocations, making it im-
possible to have pointers between OpenCL memory objects.

We solve these problems in Harlan using a region-based
memory management system. The type inference process
assigns data structures to regions. This guarantees that all
elements of a data structure can be easily located. Before
invoking a kernel, Harlan copies the regions containing each
of the kernel’s data structures into the GPU memory, rather
than attempting to precisely move each individual element.
This approach enables other features as well, such as being
able to allocate memory from the GPU.

It is worth noting that several of the limitations imposed
by OpenCL, such as forbidding pointers to pointers and re-
cursive functions, are not present in CUDA and thus many
of the implementation challenges facing Harlan would not
exist if Harlan generated CUDA instead of OpenCL. How-
ever, CPU/GPU systems are one particular instance of a dis-
tributed system. Many of these challenges will arise in other
distributed contexts, such as when it is necessary to move
complex data structures or procedures between nodes in a
cluster. We invite the reader to view Harlan’s region system
as a set of techniques that may apply to other distributed sys-
tems as well.

4.1 Region Inference
Region inference happens alongside type inference using an
approach similar to that of [28]. The Harlan type system
separates types into value types and region-allocated types.

144

Value types are objects that are passed by value while region-
allocated types are represented as pointers into the heap.
Region-allocated types carry region parameters, which spec-
ify which region they are allocated from.

When the type inferencer encounters a region-allocated
type, such as a vector, it creates a new free region variable.
In the course of type inference, the algorithm may find new
constraints requiring two values to be in the same region. In
this case, the two types’ region variables are unified. At the
end of type inference, the compiler replaces the region uni-
fication variables with concrete region variables and binds
these variables by inserting let-region expressions. The
let-region expression must enclose all uses of a given re-
gion. Harlan does this by inserting let-region expressions
at the entrance to functions that will bind any regions free in
the body that do not escape through the return value.

Consider the following example:

(define (foo)

(let* ((v1 (vector 1 2 3))

(v2 (vector 4 5 6))

(v (vector v1 v2)))

(vector-ref v 1)))

The type inferencer may first determine that v1 is a vector
of integers, and assigns it the type (vec ρ1 int), meaning
a vector of integers in region ρ1. In a similar way, the type
inferencer will assign v2 the type (vec ρ2 int).

Things are slightly more complicated for v. The type
inferencer knows v must be a vector. Furthermore, vectors
must contain values of uniform type. Yet, v1 is a vector in
region ρ1 and v2 is a vector in region ρ2. Thus, the type
inferencer assigns v the type (vec ρ3 (vec ρ1 int)) and
adds the constraint that ρ1 = ρ2.

The let* expression returns (vector-ref v 1), and
we can see from the type of v that this means the whole let*
expression has type (vec ρ1 int), which incidentally also
becomes the return type of function foo.

Having inferred types and region constraints, the com-
piler now inserts a let-region expression enclosing the
body of foo. There are two distinct variables to consider: ρ1
and ρ3. Because ρ1 escapes the function, it cannot be bound
here. Thus, the compiler only binds ρ3, assigning it a con-
crete region variable which we will call r1.

At this point, the intermediate representation of our func-
tion looks something like this:

(define (foo)

(let-region [r1]

(let* ((v1 (vector [ρ1] 1 2 3))

(v2 (vector [ρ1] 4 5 6))

(v (vector [r1] v1 v2)))

(vector-ref v 1))))

By convention, we use square brackets to denote region
variable bindings and region arguments. Thus, (vector

[r1] v1 v2) explicitly indicates that the vector is allocated
from region r1.

One might ask why regions are stored as part of the type,
rather than the runtime representation of the object. Region
references can be viewed as a pair of a region and an offset
into that region, so why not represent pointers as two words,
one for the region and one for the offset? Instead, pointers
in Harlan are simply the offset, and the region portion is
determined by the type. The reason is that we would run
afoul of OpenCL’s injunction against multiple indirection if
region references included a pointer to the region. We must
be able to find all pointer bases through explicit parameters,
rather than discovering them by traversing data structures.

The example above is not finished yet, as we have left
the region inference variable ρ1 unbound! We solve this by
allowing functions to be region-polymorphic. The caller will
supply a region to foo, which specifies where to store the
return value. Thus, the final region-inferred version of this
function is:
(define (foo [r2])

(let-region [r1]

(let* ((v1 (vector [r2] 1 2 3))

(v2 (vector [r2] 4 5 6))

(v (vector [r1] v1 v2)))

(vector-ref v 1))))

(1)

Figure 2a shows how these vectors are grouped into regions.
Figure 2b shows a diagram of the heap immediately before
returning from foo, while Figure 2c shows the heap right
after returning. Notice that region r1 is destroyed, but there
remains unreachable data in region r2. We do not currently
perform garbage collection within a region, but doing so
would enable Harlan to reclaim this space.

4.2 Region-allocated Types
In general, Harlan prefers value types over region-allocated
types. This tends to lead to flatter data structures. Although
multiple indirection is possible on the GPU, memory refer-
ences are relatively expensive. Flatter data structures result
in less pointer chasing. There are three classes of types in
Harlan that interact with the region system: vectors, alge-
braic data types and closures.

Vectors are region allocated in part because they can be
quite large and passing vectors by value could be expensive.
In the case of vectors of vectors, vector-ref could not be
a constant time operation, because the location of each of
the child vectors would not be known. Harlan requires the
size of value types to be known statically, which is explicitly
not the case with vectors. Instead, vectors are represented by
constant-size pointers to data of unknown size in regions.

ADTs can be either region-allocated types or value types,
depending on the structure of the ADT. For example, in a
type such as

(define-datatype Number

(Float float)

(Int int))

there is no reason to involve the region system at all. Harlan
represents this type as a value type, and the size is deter-

145

r1

r2v

v1 1 2 3

v2 4 5 6

(a) This figure shows how the three vec-
tors in (1) are mapped onto regions. The
gray cells represent a header containing
information such as the vector’s length.

r2 1 2 3 4 5 6

r1

(b) The layout of the heap just before re-
turning from function foo.

r2 1 2 3 4 5 6

x

(c) The layout of the heap returning from
function foo. This assumes the caller has
stored the return value in variable x. No-
tice that region r1 has been destroyed, but
v1 is still in r2 but unreachable.

Figure 2: Examples showing how data is assigned to and arranged within regions.

mined by the size of the largest variant. On the other hand,
the following type is affected by the region system.

(define-datatype IntList

(Cons int IntList)

(Null))

The reason is that the type is recursive. Naively trying to find
the size of the largest variant would never terminate, as the
list can be of arbitrary length. Instead, the recursive reference
to IntList is replaced by a reference to a region-allocated
IntList. After region inference, IntList becomes:

(define-datatype (IntList [r])

(Cons int (IntList [r]))

(Null))

An ADT requires a region parameter if any variant is
immediately recursive, or if any field in any variant is region-
allocated.

ADTs contain exactly zero or one region parameters. We
are not aware of any technical reasons to prevent more than
one region parameter, but one region parameter does not
seem overly restrictive and simplifies the implementation.
In a more general scheme, we could imagine, for example,
a binary tree type where all the leftward nodes are in one
region and all the rightward nodes are in another:

(define-datatype (Tree [r1 r2])

(Node (Tree [r1]) (Tree [r2]))

(Leaf))

The final class of types that are affected by regions are
closures.1 Closures themselves are value types, but they may
close over region-allocated data. In order to ensure the appli-
cation of the closure can find all of the data in its captured
environment, the type of a closure must include a region pa-
rameter as well. Consider the following:

(let ((v1 (vector 1 2 3))

(v2 (vector 4 5 6)))

1 We will see in Section 5 that this is in part because closures are compiled
into ADTs, which are themselves affected by regions.

(lambda (b i)

(if b (vector-ref v1 i)

(vector-ref v2 i))))

Ignoring regions, this example evaluates to a procedure of
type (bool int) -> int. The procedure uses its boolean
argument to decide which vector to return a value from.
Clearly, vectors v1 and v2 must live as long as the procedure
closing over them does, and we ensure this with the region
system. One obvious way to do this would be to add as many
region parameters as necessary. The examples we have seen
so far allow v1 and v2 to be in different regions, so assuming
they are in regions r1 and r2, we could change the type of
the closure to be [r1 r2](bool int) -> int.

Now, consider another function:

(lambda (b i)

(if b i (* i 2)))

This evaluates to another procedure of type (bool int)

-> int. It does not close over any region-allocated data,
and therefore does not need a region parameter. There is
now a problem, however, which is that these procedures
both take arguments of the same type and return a value
of the same type but are not interchangeable solely because
of differences in their environment. Closures are meant to
abstract away the environment, and yet here our programmer
is left to wonder why seemingly equivalent functions cannot
be used in the same location.

For this reason, Harlan gives every closure exactly one re-
gion parameter. Thus, both of these examples gain the type
[r](bool int) -> int. The second function simply ig-
nores its region argument, but this fact is invisible to callers.
In the case of the first example, the fact that both vectors are
captured by the same procedure means they are now con-
strained to be in the same region.

In each of these three classes, notice that region parame-
ters are not as much about where the particular value resides,
but rather where that value may point.

146

4.3 Flexibility in Region Assignment
These rules leave a great deal of freedom for assigning ob-
jects to regions. At one extreme, all objects could be as-
signed to a single region. This has obvious disadvantages.
Since regions are used as the unit of data transfer between
the host and device memories, assigning all data to a single
region means all of the program’s data must be transferred at
once. Furthermore, we do not do garbage collection within
regions, meaning large amounts of stale data would accumu-
late over the run on the program.

At the other extreme, Harlan could try to assign each ob-
ject to its own region. This results in much more precise
data transfer at the cost of having to start many more mem-
ory transfers. In our experience, the cost of launching more
transfers is minor compared to the cost of transferring more
data than necessary (Section 7.1), but the ideal region as-
signment may lie somewhere in between these two extremes.
Harlan’s region assignment algorithm tends more towards
assigning each object its own region.

One additional degree of freedom is in the placement of
let-region expressions. Currently, we insert let-region
expressions at the entrance of each function. Alternatively,
the compiler could be more precise and insert let-region
expressions deeper in the function to further limit how long
data remains allocated.

5. Implementation
5.1 Compilation
The Harlan compiler is written in Scheme as a nanopass-
style compiler [26]. Programs are read in as S-Expressions
and compiled into C++ programs that use OpenCL. We se-
lected OpenCL over CUDA as a compilation target due to its
ability to support a variety of devices, including CPUs and
both NVIDIA and AMD GPUs. The OpenCL kernel code is
compiled once when the Harlan program begins execution,
taking it off the critical path for performance-sensitive por-
tions of the program. Very little of the compiler and runtime
is specific to OpenCL, however, so a CUDA backend could
be developed without much trouble. The passes are roughly
divided into a front end, a middle end and the back end.

The front end checks to make sure the input program is
well-formed, loads libraries used by the program, performs
hygienic macro expansion and, finally, does type and region
inference. From that point, the middle end takes over with a
series of passes that progressively lower a Harlan program
into a C++ program. This involves steps such as converting
match expressions into a chain of if-statements, inserting
array bounds checks, imposing kernel calling conventions,
rewriting memory references as region references, and con-
verting Harlan kernels into top-level OpenCL kernels. The
middle end is also where some simple optimizations take
place (Section 5.5). Finally, the back end generates a C++
program from the generated abstract syntax tree and invokes
the C++ compiler to produce an executable program.

We now take a more in-depth look at some of the more
interesting compiler passes.

ADT Construction This pass compiles the ADTs away
from the language. The compiler generates a C struct con-
taining a tag field and a union of all of the variants for the
type. Each variant is also given a constructor function, which
takes an argument for each field in the variant and returns an
instance of the correct type. The compiler desugars match

expressions into a chain of if statements that check the tag
and bind the given variables to each field in the variant.

Kernel Dimension Analysis In order to facilitate other op-
timizations, Harlan’s surface level kernel form is lowered
into a version that explicitly gives the number of work items
in each dimension. This form more closely matches the way
kernels function in OpenCL, and also makes it easier to fuse
nested kernels into a two dimensional kernel (Section 5.5).

Kernel Flattening OpenCL does not support spawning
kernels from inside of kernels, and thus nested kernels in
the Harlan source must be removed. We do this by leaving
one of the kernels in a nest as a true kernel and converting
the rest into sequential code. The two obvious strategies are
to leave either the outermost or innermost kernel as a true
kernel and sequentialize the rest. We choose to keep the out-
ermost kernel and sequentialize all of the inner kernels in
order to have more code running on the GPU with fewer
round-trips to the CPU. This heuristic has worked well so
far, but it may not always be the best. Larger kernels provide
the GPU with more code to use for hiding memory latency,
but they can also reduce performance by increasing register
pressure [25]. More analysis could be used to determine the
best point in a kernel nest to keep parallel.

Explicit Region Reference Insertion Up until this point
in the compiler, all types still maintain their region annota-
tions. This phase replaces references to region-allocated data
with explicit reads and writes from a given offset in the ap-
propriate region. After this pass, region-allocated types are
replaced with generic region pointers with casts inserted as
necessary. Regions that appear in function types are con-
verted to additional parameters so that these regions are
available for references to that region within the function.

Kernel Hoisting Kernels in OpenCL must be top-level
forms, so this pass extracts kernel expressions from within
the bodies of Harlan functions and lifts them to top level.
This process includes converting any free variables in the
kernel body into parameters to the kernel. At this point in
the compiler, regions that a kernel references are also treated
as free variables. All the kernels in the program are lifted
into a special gpu-module form, which is compiled into
an OpenCL program. This process is essentially the same
process as lambda lifting [18]. Any functions that a kernel
might reference are also included in the GPU module, en-
abling kernels to call other functions. OpenCL C is similar

147

enough to standard C that we can reuse much of the Harlan
compiler’s backend to generate the OpenCL program.

5.2 First Class Procedures
We implement first class procedures by defunctionaliza-
tion [23]. Lambda expressions of the same type are com-
piled into a single ADT combined with a dispatch function.
Each variant of the ADT represents each possible class of
closure, while the dispatch function contains the code asso-
ciated with each variant. As an example, consider the fol-
lowing program.

(module

(define (main)

(let ((c 2))

(let ((f (lambda (x) (+ 1 x)))

(g (lambda (y) (* c y))))

(println* (f 5) (g 5))))))

This program would be compiled into something like the
following.

(module

(define-datatype lambda-int->int

(lambda-f)

(lambda-g int))

(define (dispatch-int->int closure a)

(match closure

((lambda-f)

(let ((x a))

(+ 1 x)))

((lambda-g c)

(let ((y a))

(* c y)))))

(define (main)

(let ((c 2))

(let ((f (lambda-f))

(g (lambda-g c)))

(println* (dispatch-int->int f 5)

(dispatch-int->int g 5)))))

Notice that we have constructed one new data type and one
new function that together are responsible for both lambda

expressions. The lambda expressions themselves are re-
placed by calls to the appropriate constructors, and applica-
tions are replaced by calls to the generated dispatch function
with the closure as an explicit argument.

The type system ensures that only closures of the correct
type can be applied in each location. We take advantage of
this fact to group procedures according to their type.

One downside is that each generated data type is the size
of the largest closure of a given type. This has not yet caused
problems for us, but if it did, we could mitigate the impact
by running a control flow analysis to more precisely limit
which closures can flow to each call site.

5.3 Recursive Functions in Kernels
OpenCL explicitly forbids the use of recursive functions in
kernels, and some OpenCL compilers fail to terminate in
the presence of such functions. Harlan works around this
limitation by converting recursive procedure calls to gotos
with an explicitly managed stack.

We do this by generating a call graph and then using Tar-
jan’s algorithm [27] to find the strongly connected compo-
nents. Each component represents a set of mutually recur-
sive functions. Harlan combines these into a single function
in OpenCL, where each Harlan function corresponds to a la-
bel within the large OpenCL function. Parameters to each
label are represented as local variables.

Care is needed with the return pointer, since OpenCL also
forbids code pointers. Instead, we generate a label at each
return point and give each of these labels a unique identi-
fier. We then generate a special return label, which jumps
to the correct return point based on the return identifier on
the stack. This is analogous to the way we worked around
OpenCL’s restriction on pointers to code in our implementa-
tion of first class procedures.

We also considered implementing recursion by translat-
ing sets of mutually recursive functions into continuation
passing style. This approach would likely have led to too
many continuations being allocated from the same region,
so instead we opted for an explicitly managed stack.

Due to the way Harlan implements first class procedures,
the generated code may include recursive functions even
if the source level program is not recursive. The reason is
because the code for all closures of the same type become a
single function. If any of these closures call another closure
of the same type, then the generated dispatch function will
appear recursive. This makes having compiler support for
recursion all the more important, as it may not be obvious or
even under that programmer’s control that a program would
appear recursive to OpenCL.

5.4 Regions
Harlan’s pointer structures are all written in terms of regions.
Conceptually, a heap-allocated object, like a vector or linked
list, is represented as a pair of a region and an offset into
that region. The region portion is known statically, and so
all Harlan heap objects are represented at runtime simply as
offsets into a region.

Regions are represented as a block of memory that con-
sists of a header followed by program data. The header stores
the current size of the region and an allocation pointer, which
points to the end of the allocated data. When data is allocated
from a region, the allocation pointer is simply incremented
by the size of the object being allocated, and the original
value is returned. If the allocation pointer is greater than the
size of the region, the Harlan runtime resizes the region to
hold the new allocation.

148

Since all heap-allocated data is accessed relative to a re-
gion, these regions must be provided to functions that either
accept arguments in regions or return a region-allocated ob-
ject. In this case, the Harlan compiler inserts an extra pa-
rameter for each region a function uses. This is similar to
implementing type polymorphism by passing type descrip-
tors [10].

When the region is resident in CPU memory, it may be
resized if the allocation pointer moves beyond the end of
the region. Harlan currently uses a doubling policy to resize
regions when there is not enough room for the requested
allocation.

Region resizing is not possible when allocating from
within kernels, and in this case the kernel would simply fail
with an error indicating that the region did not have enough
space available. Future versions of Harlan may choose to
resize the region on the CPU side and then retry the kernel
to automatically recover from the error.

The region’s backing OpenCL buffer may be left unallo-
cated during most of the program, and instead be allocated
immediately before the region is needed on the GPU. With
this approach, the backing buffer can be freed as soon as the
region is no longer live on the GPU as well. Our experience
is that allocating and deallocating OpenCL buffers is cheap
relative to the cost of transferring the contents of the region
between host and device memory, so this technique enables
Harlan programs to work with larger working sets, provided
not all regions are needed at once by a kernel.

5.5 Optimizations
The Harlan compiler currently performs several simple opti-
mizations. These optimizations let us keep Harlan fairly sim-
ple as a language yet still get good performance. We focus
on optimizations that affect the structure of kernels and rely
on the underlying C++ compiler to perform its standard set
of optimizations.

5.5.1 Kernel Fusion
There are two types of fusion optimizations which Harlan
performs. The first is applicable when one kernel receives its
inputs directly from another, as in the code snippet below.

(kernel ((x (kernel ((i is)) (+ i 1))))

(* 2 x))

Here, the two kernels can be combined into a single kernel:

(kernel ((i is))

(let ((x (+ i 1)))

(* 2 x)))

Eliminating the intermediate kernel improves perfor-
mance by providing more operations for the GPU to use
to hide latency and also avoids allocating memory to store
the result of the first kernel. A similar optimization is applied
in the case of reductions over kernels, such as in:

(reduce + (kernel ((x xs) (y yx)) (* x y)))

In this case, the compiler would eliminate the temporary
result that stores the product of xs and ys, and instead
compute this product while performing the reduction.

A second form of fusion combines two kernels where one
is immediately nested inside another into a two-dimensional
kernel. This transformation is applicable to cases such as
the following fragment from a simple matrix multiplication
program.

(kernel ((row A))

(kernel ((col (transpose B)))

(dot-product row col)))

5.5.2 Let Lifting
Let lifting takes advantage of the fact that data in Harlan
is immutable and thus tries to lift computations as high as
possible to prevent the computations from being needlessly
repeated. This is effectively a form of loop-invariant code
motion [9]. Lifting computations can transform the code so
that more kernels are adjacent to each other, thus increasing
the number of kernels that can be fused together. Even in
cases where more kernels cannot be fused, let lifting can
improve memory transfers by allowing data that is reused by
several successive kernels to remain resident on the GPU.
This is especially true when combined with the lazy data
transfer optimizations.

5.5.3 Lazy Data Transfer
Regions are used as the unit of data transfer between host
and device memories. At a basic level, Harlan migrates the
entire contents of each region used by a kernel to the de-
vice memory before executing the kernel, and upon exiting
the kernel Harlan migrates all regions back to the host mem-
ory. Several obvious optimizations are possible. First, region
transfers can be initiated lazily. Regions needed by a kernel
are migrated to the device memory as before, but they re-
main there until the host code references a portion of that
region. Second, regions consist of some amount of live data
followed by unallocated space. Because the portion of the
region beyond the allocation pointer is not meaningful, Har-
lan only needs to transfer the portion of the region up to the
allocation pointer. Returning a region to the host memory is
done in two transfers. The first reads the region header to de-
termine the most up to data value of the allocation pointer,
since kernels may have allocated from this region. Then,
the remaining portion of the region up to the new alloca-
tion pointer is transfered. This approach does introduce in-
cur a slight overhead in initiating two transfers, but in our
experience this overhead is negligible in light of the savings
from not transferring useless bits. These optimizations to-
gether yield a significant improvement in performance.

Furthermore, because data in Harlan is immutable, it
is possible for the runtime system to establish fairly tight
bounds on the portions of a region that might have changed.
A more advanced version of lazy data transfer could take ad-

149

(define (render-image scene origin

width height)

(interpolate-range

(y 1.0 -1.0 height)

(interpolate-range

(x -1.0 1.0 width)

(let ((dir (unit-length (point3f x y 1))))

(match (reduce select-closest

(kernel ((object scene))

(object origin dir)))

((miss) (point3f 0 0 0))

((hit dist color) color))))))

Figure 3: A portion of the ray tracing program. This program
represents a scene as a vector of procedures that computer
the intersection of an object with a ray. The program also
makes use of custom syntax in interpolate-range, which
uniformly samples a range of floating pointer numbers.

vantage of this to more precisely transfer only the changed
portions of a region.

6. Extended Examples
We now explore several larger Harlan programs to see how
Harlan’s higher level features aid in their implementation.

6.1 Ray Tracing
Ray tracing is a way of rendering images that works by sim-
ulating the movement of light rays through a scene. In con-
trast to rasterization techniques, which typically only handle
triangles, ray tracers can work with mathematical surfaces
directly. For example, rather than approximate a sphere as a
triangle mesh, ray tracers can instead use the equation defin-
ing a sphere to directly compute the intersection of a ray and
that sphere.

We take advantage of this fact and represent objects in a
scene as functions. The ray tracer provides an object with
a source and a direction for a ray, and the objects reports
whether this ray intersects the object. If the ray does inter-
sect, the object also returns the color that should be used for
that portion of the object.

A portion of the ray tracer code is given in Figure 3.
This code snippet makes use of several of Harlan’s features.
The interpolate-range construct is used to sample a
range of floating pointer numbers and a certain number of
evenly spaced points, and illustrates the use of macros. In
this example, interpolate range maps a pixel in the output
image into a point in space in the scene, which is later used
to compute the direction of the ray that intersects the given
pixel. This construct is implemented as a macro that expands
into a kernel, enabling our ray tracer to compute many pixels
in parallel.

For each pixel, the ray tracer computes a ray and then
tests for intersection with each object in the scene. The re-
duction with the select-closest function finds the near-

est intersection, and uses this as the final pixel value. The
scene is represented as a vector of objects, which are con-
structed by functions that return other functions. One exam-
ple object constructor is given below.

(define (make-sphere center radius)

(lambda (source direction)

. . . compute intersection of the ray and sphere. . .))

Having creating many objects in this fashion, the main
rendering kernel applies each of these to a source and di-
rection vector. This method of defining objects allows for
easy composition. For example, one might write a function
that takes an object as an input and produces an object that
scales the input object by some factor.

The results of testing an object for intersection are re-
ported through a simple ADT, given below.

(define-datatype ray-result

(miss)

(hit float point3f-t))

Functions return (miss) when the ray does not intersect,
and when the ray does intersect they return a hit with
a distance value (used by select-closest) and a color
represented as a point3f-t value.

This way of structuring a ray tracer has some perfor-
mance implications, which we evaluate in Section 7.4.

6.2 Breadth First Search
Graph algorithms such as breadth first search are naturally
irregular problems, and thus a good candidate for Harlan’s
native support for irregular data structures. One challenge in
constructing graph algorithms is that there are data structures
that are easy for programmers to work with, but these do not
always give the best performance. The code in Figure 4 is
written using an adjacency list representation. The graph is
represented as a vector of nodes, each of which contains a
vector of all of the nodes they have an edge to. This rep-
resentation gives a concise breadth first search implementa-
tion, but for efficiency we would rather store the graph as
a matrix in compressed sparse row (CSR) format. A nice
side effect of Harlan’s region system is that the adjacency
list looks very similar to CSR format in memory.

The algorithm used in Figure 4 is a straightforward level-
synchronized breadth first search (BFS). Each node’s status
is tracked in a vector of colors. White nodes have not been
explored, gray nodes are currently under consideration, and
black nodes are completed. The kernel processes each node
in parallel. If a node is white, then the kernel checks if any
of its adjacent nodes are gray, and if so the node itself turns
gray. Gray nodes become black, and black nodes stay black.
The kernel would then run in a loop until the color vector
reaches a fixed point.

150

(kernel ((i (iota (length graph)))

(c colors))

(match c

((black) (black))

((gray) (black))

((white)

(if (reduce or

(kernel ((j (vector-ref graph i)))

(match (vector-ref colors j)

((white) #f)

((gray) #t)

((black) #f))))

(gray)

(white)))))

Figure 4: The core of the breadth first search code. The
outer kernel applies to each node identifier (given by (iota

(length graph))) and the current color vector. For nodes
that have not yet been visited, another reduction and kernel
is used to check if any incoming edges have been visited.

100 101 102 103 104 105 106 107 108 109

Transfer Size (bytes)

10-3

10-2

10-1

100

101

102

E
x
e
cu

ti
o
n
 T

im
e
 (

m
s)

Figure 5: Transfer times between the CPU and GPU memory
for buffers of various sizes.

7. Evaluation
In this section, we present performance measurements for
several programs in Harlan and compare their performance
against a high performance implementation in other systems.
We conducted our experiments on Delta and Big Red II.
Delta is a GPU cluster within FutureGrid that uses NVIDIA
Tesla C2075 GPUs. Big Red II is a new hybrid CPU/GPU
cluster featuring NIVIDA Tesla K20 GPUs.

7.1 GPU Memory Performance
We argued in Section 4.3 that the per-transfer overhead is
small relative to the time spent doing the actual transfer.
Figure 5 shows the total time to transfer data of varying sizes
from the host memory to the device memory. The amount
of time is relatively flat until about 8KB and afterwards it
increases linearly.

100 101 102 103 104 105 106

Chunk Size (KB)

0

500

1000

1500

2000

2500

3000

E
x
e
cu

ti
o
n
 T

im
e
 (

m
s)

Figure 6: Time to transfer 256MB of data from the CPU to
the GPU, dividing the total data into chunks. The per-transfer
overhead is minimal when the chunk size is 64KB or greater.

Figure 6 looks at memory bandwidth in a different way,
by transferring a total amount of 256MB but breaking it into
a number of chunks of various sizes. As expected, small
chunk sizes take significantly longer, but after around 64KB
the overhead for many transfers is relatively small.

Regions in Harlan start at some minimum size and
grow as necessary to accommodate their contents. The data
present here suggest that there is no reason to make the min-
imum region size smaller than 8KB. The small threshold for
where the bandwidth costs overtake the latency costs vali-
date our strategy of assigning data into as many regions as
possible. Data structures will likely already be larger than
this threshold for the increased throughput of the GPU to
overcome the cost of transferring the data over the relatively
slow PCI-Express bus.

7.2 Microbenchmarks
We start with two micro benchmarks, vector addition and
dot product, and compare the Harlan implementation against
the CUBLAS equivalent. We use CUBLAS from CUDA 5.5.
Figures 7 and 8 show the results from these two tests. The
timings include the time to transfer memory as well as the
actual kernel execution time. Harlan significantly underper-
forms CUBLAS for vector addition. We suspect this is due to
Harlan introducing more region transfers than are necessary,
and that future optimizations can alleviate this problem.

Harlan performs much better on the dot product bench-
mark, as shown in Figure 8. In this case we perform almost
as well as CUBLAS. The performance of a good dot product
implementation should be limited by the hardware memory
bandwidth, which shows that both of these implementations
are performing as well as they should.

Both benchmarks show several discontinuities in the
graphs of Harlan’s performance. These result from Harlan
needing to increase the region size. The remaining graphs
show similar discontinuities for the same reason.

151

0 10 20 30 40 50 60 70 80 90

Vector Size (million elements)

0.0

0.5

1.0

1.5

2.0

2.5

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

Harlan

CUBLAS

Figure 7: Vector addition in Harlan compared with vector
addition in CUBLAS.

0 20 40 60 80 100 120 140

Vector Size (million elements)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

Harlan

CUBLAS

Figure 8: Dot product in Harlan compared with dot product
in CUBLAS.

7.3 N-Body Simulation
As an example of a more realistic application, we present
results from a naive N-Body simulation in Figure 9. The
Harlan version is adapted from the code presented in Fig-
ure 1, and the Accelerate version is adapted from the naive
N-Body solver in the Accelerate repository. Both programs
are idiomatic in their own language. We used version 0.13 of
Accelerate. The results show the execution time increasing
as the square of the number of bodies, as is expected.

The Accelerate version takes significantly more time than
the Harlan version. The reason is that Accelerate and Harlan
use different reduction strategies, and Harlan’s happens to
work better for this particular benchmark. Because the re-
ductions happen inside a kernel, Harlan implements these
as sequential loops that all run in parallel, while Accelerate
uses parallelism within each reduction.

The benchmarks presented here show that Harlan is com-
petitive with existing GPU programming approaches. It is
important to note that Harlan’s region system does not im-

0 10 20 30 40 50 60 70

Number of bodies (thousands)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

Accelerate

Harlan

Figure 9: N-Body simulation in Harlan compared with Ac-
celerate.

Delta Big Red II
Sorted 7.106s 4.885s
Unsorted 7.092s 4.897s

Table 1: The effect of thread divergence on ray tracing per-
formance. In this particular case, thread divergence does not
make a significant impact on the overall execution time.

pose a performance penalty while increasing the expressive-
ness of the language.

7.4 Ray Tracing
One potential risk with Harlan programs is that they can
lead to code with many more branches, and these branches
could lead to poor performance on the GPU. To measure
this penalty, we ran two versions of the ray tracing pro-
gram from Section 6.1. In both versions, we render a ran-
domly generated scene consisting of 100 scaled and trans-
lated spheres. The scaling and translation is accomplished
by creating wrapper object functions that alter the incoming
ray before intersecting the ray with the base surface. For this
benchmark, half of the objects were scaled and then trans-
lated, while the other half were translated and then scaled.
In one variant, objects with the same sequence or transfor-
mations are stored together in the scene vector, while in the
other variant these are interleaved together. In the case where
the scene is sorted, all threads in a block should go the same
direction at a branch, while the unsorted case should have
more thread divergence.

Table 1 shows the results of running this benchmark on
both Delta and Big Red II. We did not see a significant
difference in the performance for either variant. This is likely
because the parallelism is per pixel, rather than per object,
and thus all threads consider the same objects in the same
order. This suggests that though Harlan programs have the
potential to have poor branch behavior, they will often be
structured to minimize these effects.

152

102 103 104 105

Number of nodes

0.1

0.2

0.3

0.4

0.5

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

Figure 10: Execution time for BFS traversal of a graph of
varying numbers of nodes. Graphs are randomly generated,
with each node having 16 edges.

7.5 Breadth First Search
Figure 10 shows the results of running the program from
Section 6.2 on randomly generated graphs of various sizes.
These results are from running on Delta. The graphs were
generated by choosing 16 random edges with a uniform
distributed for each node.

8. Related Work
Some of the initial inspiration for this project came from
EigenCFA [22]. This project showed that GPUs are applica-
ble to more than just traditional scientific computing prob-
lems. EigenCFA also highlighted the limitations on the ex-
pressiveness in current GPU languages.

Many languages such as Accelerate [6] and Copper-
head [4] provide a higher level of abstraction for GPU pro-
gramming. These languages enable parallelism through a
collection of data parallel operators, such as map, fold and
scan. Accelerate makes use of Haskell’s type system to en-
force properties such as constraints on the shapes of arrays,
while Copperhead relies on program analysis to determine
these properties. The Delite project is exploring similar with
a focus of exploiting heterogeneous parallelism [5].

Regions in Harlan bear some similarity to places in X10,
which can also be compiled for the GPU [11]. In both sys-
tems, data is assigned to places or regions, but X10 fixes
places to a specific device and transfers between places are
written explicitly.

Legion uses a logical region system to ensure safety in
parallel programs while providing control of data movement
through the memory hierarchy to the programmer [1]. Re-
gions are used to identify independent portions of computa-
tion that can then be dynamically scheduled on the available
resources. Harlan’s region system differs significantly in that
it is primarily concerned with representing pointer struc-
tures. Deterministic Parallel Java also uses regions with an
effect system to ensure determinism in parallel programs [3].

While determinism is not an explicit goal of Harlan, the lack
of mutable data eliminates many sources of nondeterminism.

Region-based Software Virtual Memory (RSVM), like
Harlan, uses regions as its unit of data transfer [17]. RSVM
allows arbitrary cross-region pointers by mapping region
identifiers to memory locations at runtime using a lookup
table. This coupled with transparent swapping allows GPU
kernels to work on data sets that do not fit in device memory.

The CPU-GPU Communication Manager (CGCM) man-
ages the transfer of data between the host and device mem-
ories in terms of allocation units [16]. These allocation units
are similar to Harlan’s regions. Many of the communication
optimizations in this work would apply to Harlan.

OptiX is a domain specific language for ray tracing [21].
OptiX shaders can use recursion to follow reflected rays.
Recursion is implemented through a continuation passing
style and trampolining technique. [29] describes a technique
for supporting recursion on GPUs by explicitly managing
stacks, which is the approach used by Harlan.

Work on compiling Mozilla’s Rust for the GPU is simi-
lar to this in its focus on enabling higher-level abstractions
in GPU kernels [15]. Rust for the GPU supports some enum
types, but cannot handle pointer structures like those possi-
ble in Harlan.

NOVA [8] is a programming language that is very sim-
ilar to Harlan. NOVA is also a LISP-like language that ex-
presses data parallelism using primitives like map, reduce
and scan. Like Harlan, NOVA supports ADTs, first class
procedures and recursive functions in kernels. In addition,
NOVA supports type-polymorphic functions. One key dif-
ference is that NOVA is only used to define kernel code,
producing functions that may be called by a host program
written in a language like C++. Harlan, on the other hand,
defines a language for both the kernels and the host code.

9. Conclusions and Future Work
We have presented an expressive GPU programming lan-
guage called Harlan. Harlan uses a region-based memory
management system to support rich data structures such
as trees, non-rectangular arrays and first class procedures.
These structures allow many new programs to be easily writ-
ten to run on the GPU. Harlan is able to maintain reasonable
performance on problems that are in the more traditional do-
main of GPUs.

Harlan’s semantics are designed to enable optimization,
and future work should explore these optimizations. In this
work, we have presented one region inference strategy, but
many others are legal. Investigating the tradeoffs in different
strategies would be valuable.

Though Harlan supports trees, its parallelism constructs
work in terms of vectors. New parallel constructs are likely
necessary in order to most efficiently work with tree struc-
tures. Nested data parallel languages like NESL [2] could
provide inspiration.

153

Finally, modern computers typically have both a CPU and
GPU available for computation. Harlan is able to trivially use
either because it uses OpenCL, meaning Harlan could poten-
tially use all available hardware automatically, perhaps pref-
erentially scheduling kernels on different hardware depend-
ing on the characteristics of the kernel and the hardware.

Acknowledgments
This material is based upon work supported by the National
Science Foundation under Grant Nos. 0834722, 1035658
and 1248464, as well as a gift from the Mozilla Corporation.
This research was supported in part by Lilly Endowment,
Inc., through its support for the Indiana University Pervasive
Technology Institute, and in part by the Indiana METACyt
Initiative. The Indiana METACyt Initiative at IU is also
supported in part by Lilly Endowment, Inc.

References
[1] Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: Ex-

pressing locality and independence with logical regions. In:
2012 International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC) (2012)

[2] Blelloch, G.E., Chatterjee, S., Hardwick, J.C., Sipelstein,
J., Zagha, M.: Implementation of a portable nested data-
parallel language. Journal of Parallel and Distributed Com-
puting 21(1), 4–14 (Apr 1994)

[3] Bocchino, Jr., R.L., Adve, V.S., Adve, S.V., Snir, M.: Parallel
programming must be deterministic by default. In: Proceed-
ings of the First USENIX conference on Hot topics in paral-
lelism. USENIX Association (2009)

[4] Catanzaro, B.C., Garland, M., Keutzer, K.: Copperhead: com-
piling an embedded data parallel language. In: PPOPP. pp. 47–
56 (2011)

[5] Chafi, H., Sujeeth, A.K., Brown, K.J., Lee, H., Atreya, A.R.,
Olukotun, K.: A domain-specific approach to heterogeneous
parallelism. In: Proceedings of the 16th ACM symposium on
Principles and practice of parallel programming. ACM (2011)

[6] Chakravarty, M.M., Keller, G., Lee, S., McDonell, T.L.,
Grover, V.: Accelerating Haskell array codes with multicore
GPUs. In: Proceedings of the sixth workshop on Declara-
tive aspects of multicore programming. pp. 3–14. DAMP ’11,
ACM, New York, NY, USA (2011)

[7] Chakravarty, M., Keller, G., Lee, S., McDonell, T., Grover,
V.: Accelerating Haskell array codes with multicore GPUs.
In: Proceedings of the sixth workshop on Declarative aspects
of multicore programming. pp. 3–14. ACM (2011)

[8] Collins, A., Grewe, D., Grover, V., Lee, S., Susnea, A.: NOVA:
A functional language for data parallelism. Tech. Rep. NVR-
2013-001, NVIDIA (July 2013)

[9] Cooper, K.D., Torczon, L.: Engineering a Compiler. Elsevier
Science (October 2003)

[10] Crary, K., Weirich, S., Morrisett, G.: Intensional polymor-
phism in type-erasure semantics. In: Proceedings of the third
ACM SIGPLAN international conference on Functional pro-
gramming. ACM (1998)

[11] Cunningham, D., Bordawekar, R., Saraswat, V.: Gpu pro-
gramming in a high level language: Compiling x10 to cuda.
In: Proceedings of the 2011 ACM SIGPLAN X10 Workshop.
pp. 8:1–8:10. X10 ’11, ACM, New York, NY, USA (2011)

[12] Gal, A., Eich, B., Shaver, M., Anderson, D., Mandelin, D.,
Haghighat, M.R., Kaplan, B., Hoare, G., Zbarsky, B., Oren-
dorff, J., Ruderman, J., Smith, E.W., Reitmaier, R., Bebenita,
M., Chang, M., Franz, M.: Trace-based just-in-time type spe-
cialization for dynamic languages. In: Proceedings of the 2009
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation. ACM (2009)

[13] Grossman, D., Morrisett, G., Jim, T., Hicks, M., Wang, Y., Ch-
eney, J.: Region-based memory management in Cyclone. In:
Proceedings of the ACM SIGPLAN 2002 Conference on Pro-
gramming language design and implementation. ACM (2002)

[14] Holk, E., Byrd, W., Mahajan, N., Willcock, J., Chauhan, A.,
Lumsdaine, A.: Declarative parallel programming for GPUs.
In: Proceedings of the International Conference on Parallel
Computing (ParCo) (Sep 2011)

[15] Holk, E., Pathirage, M., Chauhan, A., Lumsdaine, A., Mat-
sakis, N.D.: GPU programming in Rust: Implementing high-
level abstractions in a systems-level language. In: Proceed-
ings of the 18th International Workshop on High-Level Paral-
lel Programming Models and Supportive Environments (May
2013)

[16] Jablin, T.B., Prabhu, P., Jablin, J.A., Johnson, N.P., Beard,
S.R., August, D.I.: Automatic cpu-gpu communication man-
agement and optimization. In: Proceedings of the 32nd ACM
SIGPLAN conference on Programming language design and
implementation. ACM (2011)

[17] Ji, F., Lin, H., Ma, X.: Rsvm: A region-based software virtual
memory for gpu. In: Proceedings of the 22Nd International
Conference on Parallel Architectures and Compilation Tech-
niques. pp. 269–278. PACT ’13, IEEE Press, Piscataway, NJ,
USA (2013)

[18] Johnsson, T.: Lambda lifting: Transforming programs to re-
cursive equations. In: Functional programming languages and
computer architecture. pp. 190–203. Springer (1985)

[19] Khronos OpenCL Working Group: The OpenCL Specification
(Nov 2012)

[20] NVIDIA: CUDA C Programming Guide (Oct 2012)

[21] Parker, S.G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock,
J., Luebke, D., McAllister, D., McGuire, M., Morley, K., Ro-
bison, A., Stich, M.: OptiX: a general purpose ray tracing en-
gine. In: ACM SIGGRAPH 2010 papers. ACM (2010)

[22] Prabhu, T., Ramalingam, S., Might, M., Hall, M.: EigenCFA:
accelerating flow analysis with GPUs. In: Proceedings of the
38th annual ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages. ACM (2011)

[23] Reynolds, J.C.: Definitional interpreters for higher-order pro-
gramming languages. In: Proceedings of the ACM Annual
Conference - Volume 2. ACM (1972)

[24] The Rust programming language. http://www.rust-lang.
org/

[25] Ryoo, S., Rodrigues, C.I., Baghsorkhi, S.S., Stone, S.S., Kirk,
D.B., Hwu, W.m.W.: Optimization principles and application

154

performance evaluation of a multithreaded gpu using cuda.
In: Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and practice of parallel programming. ACM (2008)

[26] Sarkar, D., Waddell, O., Dybvig, R.K.: A nanopass infrastruc-
ture for compiler education. In: Proceedings of the ninth ACM
SIGPLAN international conference on Functional program-
ming. ACM (2004)

[27] Tarjan, R.: Depth-first search and linear graph algorithms.
SIAM Journal on Computing 1(2), 146–160 (1972)

[28] Tofte, M., Talpin, J.P.: Region-based memory management.
Information and Computation 132(2) (1997)

[29] Yang, K., He, B., Luo, Q., Sander, P.V., Shi, J.: Stack-based
parallel recursion on graphics processors. In: Proceedings of
the 14th ACM SIGPLAN symposium on Principles and prac-
tice of parallel programming. ACM (2009)

155

