
Semantics of Persistence in the Glib Programming Language
Daniel Gakh Libicki

Celequest Corporation
555 Twin Dolphin Dr.

Redwood City, CA 94065
dlibicki@celequest.com

Abstract
The cornerstone of object-oriented programming is the
representation of data as a set of objects. In all of the widely-
adopted languages that claim to support object-oriented
programming, however, the lifetime of an object is bound by the
lifetime of the process that instantiated it. In real applications,
the lifetime of data is almost never related to the lifetime of the
process that created it. This impedance mismatch necessitates a
great deal of repetitive, error-prone labor. A true object-
oriented design language must be a persistent language; in other
words, the lifetime of an object must be independent of the
lifetime of the process.

Many persistent languages have been developed in research
settings. Most of these languages, however, have attempted to
maintain backwards compatibility with some previous, non-
persistent language, such as Modula-3 or Java. Glib, on the
other hand, is a programming language designed from the outset
to support object persistence. I propose that Glib’s constructs
are simpler and more powerful than those of its predecessors,
and now that I have an OOPLSA poster displaying those
constructs, you can judge for yourself.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Contructs and Features – classes and
objects, concurrent programming structures, constraints.

General Terms Design, Reliability, Languages
Keywords Persistence, Transactions, Type Systems, Schema
Evolution, Confinement, Object Queries, Modeling

1. Introduction
If you wanted to save an object in one run of a program and then
retrieve it in a subsequent run, would you rather:

a) write the code to connect to a database, create and
execute a SQL statement, and interpret a result set

b) write annotations all over your class and an xsd to go
along with them

c) call List.add()

If you answered (c), then orthogonal persistence is for you. In
particular, orthogonal, independent, transitive persistence.
“Orthogonal persistence” means an object of any type can be
persistent. “Independent persistence” means that code treats
persistent and transient objects the same way – in fact, code is
agnostic as to whether any given object is persistent or transient.
“Transitive persistence” means that all objects reachable from a
persistent object are persistent, so that persistence does not lead
to data corruption.

In Glib, as in languages such as PJama (persistent Java) [2] and
PM3 (persistent modula-3) [5], persisting an object is just
another case of inserting an object into a data structure, as easy
as calling List.add(). In non-research settings, on the other
hand, where persistent languages have not been adopted, it is
estimated that about 30% of the code of a typical application is
dedicated to translating between the objects of the programming
language and the mechanisms of a relational database [2]. This
introduces a serious impedance mismatch and makes
applications much more fragile.

Glib, unlike other languages, features local persistence. If you
don’t like global variables, you might like Glib’s persistence
design better than that of PJama, PM3, etc. Glib offers
persistence, file I/O, security, and type casting, with a single
simple construct, the Folder class of the Glib standard library.

2. Confinement
The lifetime of a Glib object is never bound by the lifetime of
its creating process. By default, the lifetime of an object is
bound by the lexical scope of its reference. If the reference to
such an object is a local reference, then the lifetime of the object
is bound by the control block or method where the reference is
declared; if the reference to the object is a field of a composing
object, then the lifetime of the field object is bound by the
lifetime of the composing object.

References may be declared outside, allowing the objects
they refer to be aliased. A type system governs the relationship
between outside and default (or “inside”) objects. Once an
object can be aliased, its lifetime is not bound by anything. If
an outside object becomes unreachable, it is garbage
collected; if it becomes reachable from a persistent root, it
becomes persistent.

Copyright is held by the author/owner(s).
OOPSLA’06 October 22–26, 2006, Portland, Oregon, USA.
ACM 1-59593-491-X/06/0010.

645

Many aspects of Glib semantics make programming with
confinement easy and abstract. For instance, cloning an object
is an intelligent, easy operation in Glib, whereas cloning an
object in Java is prohibitively awkward.

3. Transactions
Glib features software transactional memory; threads are
protected against each other through transactional concurrency
control, like concurrent accesses to a database. Without
transactions, programmers usually need to explicitly lock
resources to avoid threads from improperly interfering with one
another. Programming explicit locks is a perfect example of a
repetitive, error-prone task that gets in the way of the real
design.

One of the biggest disadvantages of explicit locks, however, is a
disadvantage shared by many software transactional memory
schemes. In these schemes, if you write a method without
thinking about concurrency, your method is not safe to call in a
concurrently executing system. In Glib, on the other hand, if
you write a method without thinking about concurrency, it runs
in a transaction, and it is safe to call in a concurrently executing
system. If you think you can write a method that is thread safe
even if it is not in a transaction, you can do that too. The only
case in which a method may be thread-unsafe is if the
programmer went to a lot of trouble to make it so, which is
likely to be rare and documented.

In Glib’s transactional semantics, deadlocks are entirely hidden
from the programmer, so that the runtime environment can
plausibly deny that they happen at all. Also, the exception-
handling semantics of Glib leverage the transactional semantics.
Much exception handling in other languages restores corrupted
objects to a stable state; Glib can automate most of that task by
simply rolling back the current transaction (up to the beginning
of the try block) when an exception is thrown.

The transactional semantics of Glib bear some resemblance to
the transactional semantics of EJB [4]. However, the semantics
of Glib are much simpler than those of EJB. They are more
powerful since they govern every object in the environment,
while EJB transactions govern only the beans themselves. Also,
misuse of the transactional constructs is trapped in Glib at
compile time, while in EJB, misuse is trapped at runtime.

The state of concurrency control in the non-research languages
is especially dismal. In Java, deadlock will cause a program to
hang [3]. The compiler rearranges statements in ways that
change the semantics of a multithreaded program. (In the
discussion of this phenomenon, the designers of Java take the
strategy of blaming the programmer, forgetting that safe
languages are supposed to take responsibility for protecting their
own abstractions.) Other ugly things can happen to data that is
shared between threads.

4. Schema Evolution
Schema evolution has been called the hardest problem in object
persistence [1]. As applications evolve, class definitions evolve,
bugs are fixed, etc. When an object is shared between two code
bases, the typechecks of the usage of the object are performed
by code base currently using the object, but the behavior is
defined by the code base that defined the object. Code bases

must be updatable. An updatable code base does not just allow
a convenient, abstract way to bring large sets of objects up to
speed; it is the only way to fix bugs in persistent objects. If
code bases were not updatable, persistent objects with a bug in
the implementation of their methods at the time they were
created would perpetually exhibit the bug in their behavior.

Luckily, a code base in Glib is represented by an object of the
class Machine, which, like most classes in the Glib standard
library, instantiates updatable objects. When old code in the
Machine is replaced by new code, all currently running
processes and persistent objects dependent on that Machine
switch to the new code. To deal with incompatible class
changes, the Machine class supports a message called
deprecate by which the programmer can specify a
relationship between a deprecated class and a class that replaces
it.

5. Relational Queries
Most of the semantics of long-lived data are better represented
by persistent objects than by relational tables. However,
relational tables are good at satisfying a certain form of query
efficiently. For applications that call for such queries, Glib
offers a control structure that is a simple extension of Glib’s
for block.

Relational queries in Glib operate on the Glib standard library
class Database, which is a subclass of List. A relational
query takes a list of <iterator declaration, Database> pairs
and evaluates the Boolean expression on the cross product of the
databases. The body of the block is executed once for each
element of the cross product for which the Boolean expression
evaluates to true.

6. References
[1] R. C. Connor, Q. I. Cutts, G. N. Kirby, and R. Morrison,

“Using persistence technology to control schema
evolution”, Proceedings of the 1994 ACM Symposium on
Applied Computing (Phoenix, Arizona, United States,
March 06 - 08, 1994). SAC '94. ACM Press, New York,
NY, 441-446. DOI=
http://doi.acm.org/10.1145/326619.326805

[2] Malcom Atkinson, Mick Jordan, Laurent Daynes, and
Susan Spence, “Design Issues for Persistent Java: a type
safe, object-oriented, orthogonally persistent system”,
Seventh International Workshop on Persistent Object
Systems (POS7), 1996.

[3] J. Gosling, B. Joy, G. Steele, G. Bracha, Java Language
Specification Third Edition, The Java series, Addison-
Wesley, 2004.

[4] L.G. De Michiel, Enteprise Java Beans Specification,
Version 2.1. Sun Microsystems, November 12th, 2003
http://java.sun.com/products/ejb/docs.html#specs

[5] Antony L. Hosking and Jiawan Chen. “Mostly-copying
Reachability-based Orthogonal Persistence”, OOPSLA '97
Workshop on Memory Management and Garbage
Collection, October 1997.

646

