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Abstract. This paper reports on the evolution of 
metaclass programming in SOM (the IBM System 
Object Model). Initially, SOM’s use of explicit 
men&asses introduced metaclass incompatibilities. 
This was cured by having SOM dynamically derive an 
appropriate metaclass by interpreting the “metaclass 
declaration” as a constraint. In effect, inheritance is 
given a new dimension, because the constraint is also 
inherited. The derived metaclass is the least solution 
to all these constraints. Subsequently, this cure led to 
the possibility of metaclasses conflicting over the need 
to assign meaning to a method. The cure for this 
problem is a framework that facilitates the 
programming of metaclasses that cooperate on the 
assignment of meaning to methods. 

Introduction 

The term “procedural reflection” was introduced by 
Smith [ 18,191 to describe a general theory and 
mechanism allowing computational systems to reason 
about their own operations and structures. Reflective 
capabilities have now been studied within a variety of 
different computational systems (CommonLoops [ 11. 
3KRS [16], Scheme [9,21], LISP [6], ObjVLisp 
[5,11], ABCL/R [22], Rosette [20], and CLOS [3,15]). 
This paper discusses some of the ways reflective 
capabilities are useful and important to SOM 
metaclass programmers. In a more general sense, the 
word reflection seems appropriate for describing the 
overall purpose of this paper, a thoughtful overview of 
the origin and historical development of mechanisms 
supporting metaclass programming in SOM. 
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First Principles 

The benefits of using OOP for system-level support of 
component software development in systems like 
Smalltalk- and NextStep (based on Objective-C) are 
by now well-known and accepted. SOM’s objective is 
to allow binary class libraries to provide these benefits 
independent of programming languages and 
compilers. 

To provide language-neutrality, SOM defines a 
runtime API that is based on a few external procedures 
and simple data structures. This API is used by 
programmers (or by “language bindings” or by 
“DirectI’oSOM” compilers) to create and use SOM 
objects according to a traditional object-oriented 
model of computation. Within this context, SOM has 
two fundamental guiding principles: 

1. If changes to the implementation of a class 
don’t require changes to client source code 
(i.e., code that subclasses or uses instances of 
the class), it should be possible to replace the 
class’s implementation (in a binary library) 
without requiring recompilation of client 
co&. 

2. The SOM API should be expressed as an 
object-oriented system composed of SOM 
objects available to the programmer. 

The main reason for the first principle is to support 
component software. Once application binaries are 
delivered to users, any need for recompilation of 
source is best avoided -- even when aspects of the 
supporting system are reorganized or reimplemented. 
The first principle thus maximizes the flexibility 
available for supporting system evolution when OOP 
is used to implement and publish system interfaces. 
This issue cannot be taken lightly. Evolution of an 
OOP system often suggests refactorings of its class 
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Figure 1 -- Relationships between the SOM Kernel Obiects 

hierarchy, even though this may not require source 
level changes in client code. From the perspective of 
metaclass programming, however, this principle 
represents a serious challenge [7]. The section on 
SOM-derived metaclasses, below, explains the unique 
mechanism provided by SOM for answering this 
challenge. 

The second principle results in implementing classes 
as objects, which creates the very possibility of 
metaclass programming in SOM (if classes are 
objects, they must be instances of other classes called 
metaclasses). The second principle also relates 
directly to a fundamental requirement for reflection 
explained by [19]: reflection requires a model within 
which to express the operations, structures, and 
overall protocols that are used to organize and control 
computation. The SOM abstract machine expresses 
such a model for OOP, and a bootstrap procedure 
creates a concrete embodiment of this model as the 
initial SOM runtime environment. 

d I I 

of metaclass programming as its metaobject protocol. 
Second was the invention of the derived metaclass. 
Third was a framework that allows metaclasses to 
cooperate on the definition of method 
implementations. The result is that rather than merely 
programming classes anew or as extensions of 
previously written classes, SOM users will be able to 
factor functionality in new ways, which in turn leads 
to achieving programming goals by composing 
classes. Thus, SOM users can program at a higher 
level (as can any programmer with an available 
metaobject protocol). 

In particular, the second principle results in a model of 
the operations, objects, and protocols used for 
implementing object-oriented computation -- i.e., for 
subclassing, inheriting methods, adding new methods, 
overriding inherited methods, and dispatching 
methods. Thus, in SOM, the fundamental requirement 
of reflection is met as a result of first principles -- the 
operations and objects used to implement OOP 
computation are reflected in concrete SOM objects 
immediately available to executing code. 

The SOM capabilities based on these principles enable 
its users to program at a higher level. As this paper 
explains, the ability to program at a higher level 
unfolded in several stages. First was SOM’s adoption 

The SOM Abstract Machine 

The SOM abstract machine has changed in many ways 
since the introduction of SOM in OS/2 2.0, where 
SOM was used to implement the Workplace Shell (a 
class framework representing aspects of the OS/2 2.0 
system). But, the top-level structure of the SOM 
machine remains the same. When the SOM runtime 
environment is created, the objects illustrated in 
Figure 1 are created and made available to the SOM 
user 

Figure 1 contains the two primitive classes that are the 
basis for all subsequent classes: 

l SOMObject - the root ancestor for all SOM 
classes 

l SOMClass - the root ancestor of all SOM meta- 
classes. 

All SOM objects are an instance of a SOM class, and 
all SOM classes are ultimately derived by subclassing 
from SOMObject. Thus, all SOM objects can execute 
the methods introduced by SOMObject. In a similar 
manner, all SOM classes are an instance of a SOM 
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metaclass, and all SOM metaclasses are ultimately de- 
rived from SOMClass. Thus, all classes can execute 
the methods introduced by SOMClass. Both SOMOb- 
ject and SOMClass are instances of SOMClass. 

In addition to SOMObject and SOMClass, the SOM 
kernel includes the class SOMClassMgr which imple- 
ments a runtime class registry. This allows use of dy- 
namically loaded libraries (DLLs) to define SOM 
classes. As illustrated in Figure 1, the SOM nmtime en- 
vironment initially contains the above three classes and 
a class manager (i.e., an object that is an instance of 
SOMClassMgr). 

In SOM the class of an object defines its 
implementation. Therefore, in SOM, reflective code is 
method code that follows the instance-of link from 
“self’ (the object on which the method is invoked), 
because SOM provides the method somGetClass 
for this purpose. 

Operational use of the SOM API 

Although Figure 1 shows the primitive objects used to 
implement SOM, an understanding of SOM includes 
knowing how these objects are used. For example, to 
create a new class in SOM, the following steps are 
followed: 

l Choose a me&class object (either SOMClass or 
some class derived from SOMClass) and create a 
new instance of the metaclass -- this will be the new 
class. SOMClass introduces a number of different 
methods for creating new objects, and, at this stage 
the new class we are creating is simply a new object 
that happens to be an instance of a metaclass. 

l Inform the new class object of its parents by using 
the somInitMIClass method. Whenaclass exe- 
cutes this method, it creates an initial instance 
method table by inheriting the contents of its par- 
ents’ instance method tables. The instance method 
table of a class determines the behavior of its 
instances. 

l Add new methods to the class and override inherited 
methods by using the methods provided by SOM- 
Class for this purpose. These methods, when applied 
to the new class object, modify the class’s instance 
method table that was created in the previous step. 

l Use somClassReady to inform the class that its 

construction is complete. This method registers the 
new class with the SOMClassMgrObject, so that 
client code can access the class for further subclass- 
ing or instance creation. 

Language bindings or DirectToSOM compilers 
automatically provide code that does the above steps 
according to static information provided by a class 
designer, thus removing these considerations from the 
direct concern of the programmer. But it is important 
to understand that all classes in SOM are runtime 
objects created by invoking methods on other objects 
as explained above. In general, SOM programmers 
can create classes according to dynamically computed 
requirements. This is of crucial importance, because 
supporting static class definition in SOM has required 
the dynamic derivation of metaclasses. To understand 
this surprising fact, it helps to review how metaclasses 
appear and are used in OIDL, the object interface 
definition language of SOM 1 .O 

Metaclasses in SOM 1.0 

The original version of SOM was supported and 
implemented using C language bindings generated (by 
the SOM compiler) from class declarations expressed 
using OIDL (Object Interface Definition Language). 
OIDL provided two different ways of statically 
indicating the information necessary to create new 
metaclasses. Accordingly, metaclasses were either 
explicit or implicit metaclasses. An explicit metaclass 
is declared by explicit subclassing from some other 
metaclass (perhaps from SOMClass). Here is an 
example. 

class: Counted; 
parent: SOMClass; 
data: 

long instancecount; 
methods: 

long getInstanceCount(); 
overrides: 

somInit; 
somInitMIClass; 
somNew; 

Instances of the above metaclass include (in addition 
to inherited class variables) a class variable to record 
the number of instances of the class and (in addition to 
the inherited class methods) a class method to allow 
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users to access the current instance count. The new 
metaclass overrides the method somInit 

(introduced by SOMObject) and overrides the 
methods somInitMIClass and somNew (both 
introduced by SOMClass). The implementation of 
Counted must therefore provide four method 
procedures: one to execute the new method, 
getInstanceCount, and three others for the 
overridden methods. 

In OIDL, a class designer indicates the use of an 
explicit metaclass when declaring a class, as 
illustrated here. 

class: ClassExample; 
parent: SOMObject; 
metaclass: Counted; 

On the other hand, an implicit metaclass is declared 
implicitly when declaring the class intended to be its 
instance, as illustrated by the following OIDL: 

class: ClassImplicitExample; 
parent: SOMObject; 
data: 

long instancecount, class: 
methods: 

long getInstanceCOunt(), class; 
overrides: 

somInit, class; 
somInitMIClass, class; 
somNew, class; 

The above OIDL explicitly declares a class named 
ClassImplicitExample and also implicitly declares a 
metaclass that has the same fundamental 
characteristics as Counted, declared above. This is 
done by using the class modifier to indicate that 
either data or methods are to be attributes of the class 
being declared (as opposed to being attributes of 
instances of the class). But there is an important 
difference -- the implicit metaclass has no name. The 
functionality it provides, while generally useful, is 
available only on ClassImplicitExample and its 
descendants. In contrast, the functionality packaged 
by Counted is available, by name, to any class. 

Implicit metaclasses can know and make use of the 
methods inherited and introduced by their instances. A 
class (for example Y in Figure 2) might implement an 
instance method by invoking a class method on itself 

(reached by first using somGe tC1 as s on the target 
instance), passing the target instance as an argument to 
the class method, and then use an implicit metaclass I 
to implement the class method using instance methods 
introduced by Y. In contrast, an explicit metaclass is 
normally designed to be of use to any class, and 
therefore doesn’t make any assumptions concerning 
the methods inherited or introduced by its instances 
(other than that these inherited methods must include 
those introduced by SOMObject). It would probably 
seem more reasonable to package functionality for 
providing instance counts using an explicit metaclass 
such as Counted. Note that Smalltalk was the first 
language to have class as objects [ 141, but it provides 
only implicit metaclasses. 

@ . . . . . . . ..I. @ 
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Figure 2 -- Semantics of Implicit Metaclasses 

Areas of Concern for SOM 1.0 

How, specifically, are implicit metaclasses derived? 
What are their parents, and of which classes are they 
instances? Figure 2 illustrates the general situation for 
SOM 1.0 implicit metaclasses. The class Y has been 
derived by subclassing X, and the class I is the 
implicit metaclass declared by Y’s designer. I is 
derived by subclassing from MX (X’s class) and is 
created as an instance of MMX (MX’s class). 

This semantics supports SOM classes as polymorphic 
objects useful through the interfaces of all ancestor 
classes. For example, recall the example scenario 
suggested above for reflective programming with 
implicit metaclasses. It is imperative that class 
methods introduced by MX be available on Y, because 
the implementation of Y’s methods is inherited from 
X, and these methods may access the class of the 
instance target and invoke methods introduced by MX 
on this class. The above derivation of I guarantees this 
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Figure 3 -- The Problem with Explicit 
Metaclasses in SOM 1.0 

result in general, for all implicit metaclasses. 

Unfortunately, SOM 1.0 does not provide a similarly 
pleasing result in the case of explicit metaclasses. For 
example, using the explicit metaclass Counted 
declared earlier, it is possible to construct the 
following example, in which the class of Y does not 
support an appropriate interface: 

class: X; 
parent: SOMObject 
metaclass: Counted; 

class Y; 
parent: X; 
metaclass: SOMClass; 

Figure 3 illustrates the semantics of these declarations 
in SOM 1.0, and the following code, expressed using 
the C bindings of SOM 1.0, illustrates the problem 
with the class Y in Figure 3. Execution of this code 
creates a method resolution error because the class of 
Y, SOMClass, doesn’t support the method 
rumInstances 0nY. 

#include <Y.h> 

void printCount(X *x) 
{/* This code is typesafe on Xs */ 
printf("%d\n*, 

-numInstances(-somGetClass(x))); 

I 

main0 
{Y *yInstance = YNew(); 
/* But this call with a subclass 

instance fails */ 
_printCount(yInstance); 

I 

This kind of situation was identified by Nicolas 
Graube [ 121, who characterized the problem in terms 
of metuclass compatibility. Put simply, SOMClass is 
not compatible with the requirements placed on Y’s 
class to support the Counted interface. However, 
SOM 2.0 doesn’t construct class hierarchies with 
metaclass incompatibilities. Instead, SOM 2.0 
automatically builds new metaclasses that are 
compatible with their requirements, dynamically 
subclassing from existing metaclasses whenever this 
is necessary. 

Metaclasses in SOM 2.0 

While supporting previously existing binaries, SOM 
2.0 added multiple inheritance and complete support 
for OMG’s CORBA (Common Object Request Broker 
Architecture) [ 171. Although OIDL is still supported 
by the SOM compiler, the preferred language used to 
declare SOM classes is now CORBA IDL. The 
following is an IDL declaration for the metaclass 
Counted: 

interface Counted : SOMClass { 
readonly attribute long instancecount; 
#ifdef -SOMIDL- 
implementation ( 
somInit: override: 
somInitMIClass: override; 
somNew: override; 

1. 

iendif 

1; 

CORBA IDL was designed to support interfaces to 
objects, not their implementations. The SOM IDL 
implementation section (guarded with an #i f def) 
provides additional information used by the SOM 
compiler to create language bindings that assist in 
implementing SOM classes whose objects support the 
declared interface. For brevity, the # i f de f is omitted 
in following illustrations. Here is the IDL for X and Y 
of the previous example: 

interface X : SOMObject ( 
implementation { metaclass = Counted;}; 

1; 

interface Y : X { 
implementation ( metaclass= SOMClass;}; 

1; 

IDL doesn’t provide implicit metaclasses, but explicit 
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Figure 4 -- SOM 2.0 supports classes as 
polymorphic objects 

metaclasses can serve the same purposes. A close 
coupling between the implementations of a metaclass 
and its instances is supported from IDL by using the 
IDL pre-processor to make such metaclasses statically 
visible only to a restricted set of class declarations 
(normally, a single class). Details of this are not 
important to this paper. But, the fact that all 
metaclasses in IDL are explicit underscores the 
importance of providing an improved semantics for 
explicit metaclasses in SOM 2.0. 

SOM-derived Metaclasses 

In SOM 2.0, if a metaclass is indicated in a class 
declaration, the new class is constructed (at runtime) 
either as an instance of the indicated metaclass or as 
an instance of some class derived from the indicated 
metaclass. In the second case, there are two 
possibilities: the metaclass may already exist as a 
user-defined metaclass, or, if necessary, SOM will 
derive it dynamically in the process of creating the 
new class object. 

Why isn’t a SOM 2.0 class always simply an instance 
of the metaclass indicated in its declaration (as was the 
case in SOM l.O)? The answer is that SOM allows 
unconstrained class declarations -- even those such as 
illustrated by the problematic class Y in the above 
example -- while also supporting classes as 
polymorphic objects. For example, Figure 4 illustrates 
the SOM 2.0 semantics of the above problematic 
OIDL and IDL declarations. As shown, SOM 2.0 
simply uses Counted as the class of Y. An example 

. . . ..{I. 

Figure 5 -- Of what class should C be an instance? 

Figure 6 - The solution: C’s metaclass must be 
derived from A’s and B’s metaclasses 

that requires SOM to actually derive a new metaclass 
is provided by Figure 5. In Figure 5, a new class C is 
declared using multiple inheritance from two other 
classes, A and B, whose classes are, respectively, MA 
and MB. The question in Figure 5: What should be the 
class of C? The solution must guarantee that C (i.e., 
the class object itself) responds to the interfaces of 
both the A and B class objects. As illustrated in Figure 
6, SOM guarantees this by deriving the class of C 
(named DMC, for “Derived Metaclass”) from the 
classes of C’s parents. 

Of course, a general solution must deal with any 
number of parents and an explicit metaclass (when 
one is indicated) Figure 7 presents the general case 
using IDL and illustrates the resulting SOM-derived 
metaclass, DMC. This shows how SOM uses multiple 
inheritance to derive a new metaclass whose 
instance’s interfaces are compatible with both (1) the 
requirements indicated by the programmer that 
indicates a metaclass when subclassing and (2) the 
requirements implied by the need to support the 
newly-defined class as a polymorphic object with 
respect the class of each parent. This has the effect of 
treating the metaclass as a constraint rather than an 
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interface C : PI, Pz, . . . . PN 

1 implementation { me&lass = MC; }; 
1; 

Figure 7- A General Solution for Interface Compatibility 

imperative declaration. In effect, inheritance is given a 
new dimension, because the metaclass constraint is 
also inherited. The derived metaclass is the least 
solution to all these constraints. 

Dealing with Object State 

The approach illustrated in Figure 7 guarantees 
metaclass compatibility by assuring the existence of 
the necessary interfaces and class variables. But class 
variables must be initialized. In SOM, a class’s state 
includes: 

l an instance method table (introduced by SOMClass) 

l a variety of other class variables (often introduced 
by subclasses of SOMClass -- i.e., other meta- 
classes) 

And, of course, a class’ state must be initialized before 
the class is used. As suggested earlier, the SOM API 
provides methods whose purpose is to provide for ini- 
tialization (and uninitialization): 

l SOMObject::somInit 

default variable initialization 

*SOMClass::somInitMIClass 

create and initialize instance method table 

l SOMClass::somClassReady 

register class 

l SOMObject::somUninit 

free allocated resources 

In general, a metaclass designer overrides each of 
these methods to perform class-specific initialization 
(or uninitialization). And, each of the resulting method 
procedures used by a metaclass implementation 
normally makes parent method calls to cooperatively 
invoke similar functionality implemented by the 
parents of the metaclass. To correctly initialize 
(uninitialize) all the variables containing a class’s 
state, then, a SOM-derived metaclass overrides the 
above methods with code that makes the necessary 
parent method calls on all of its metaclass parents. 
This assures that all appropriate initialization code is 
executed. This is done only for these four, special 
initialization methods. Further details are provided 
elsewhere [7]. 

It is interesting to note the conditions under which the 
problem solved by derived metaclasses can arise. 
Metaclass incompatibility can arise in the case of 
single inheritance models that allow explicit 
metaclasses and in the case of multiple inheritance 
models (with either explicit or implicit metaclasses). 
Smalltalk has implicit metaclasses but doesn’t support 
multiple inheritance. C++ allows multiple inheritance 
but doesn’t allow metaclasses. Thus, neither of these 
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object models needs to worry about metaclass 
incompatibility. On the other hand, object models such 
as ObjVLisp [4] and CLOS [2] can encounter the 
problem [12]. None of these systems provide the 
benefits offered by SOM-derived metaclasses. 

SOM is unique in that it relieves programmers of the 
responsibility for avoiding metaclass incompatibility 
when defining a new class. At first glance, this might 
seem to be merely a useful convenience. But, in fact, it 
is essential because SOM must provide backwards 
binary compatibility with respect to changes in class 
implementations. A programmer might, at one point in 
time, know the classes of all the ancestor classes of a 
new subclass (and so on, recursively), and, as result, 
be able to explicitly derive an appropriate class for a 
new subclass using the approach we have described 
above. But, we doubt that a system based on requiring 
this would ever be successful. And, in any case, SOM 
must guarantee that a class implementation continues 
to execute and function correctly when its ancestor 
class’s implementations are changed without 
retracting existing interfaces. This includes specifying 
different parents or different metaclasses, so requiring 
a static solution (on the part of either a programmer or 
a compiler) is simply not acceptable in SOM. 

SOM-derived metaclasses enable functionality 
packaged as SOM classes to be combined into a large 
number of different configurations, thus supporting 
code reuse. Software reuse is one promise of OOP 
technology, and it has been gratifying to find that 
many useful kinds of functionality are automatically 
composed by SOM-derived metaclasses. Examples 
include aspects of DSOM (a SOM class framework 
allowing transparent distribution of objects according 
to the CORBA model [lo]), Replication (a SOM class 
framework providing single-copy serializability for 
distributed, replicated objects [lo]), and “before/after” 
metaclasses [8]. Another example is provided by the 
metaclass cooperation framework, described in the 
following section. 

Metaclasses in SOM 2.1 

SOM-derived metaclasses do not solve all the 
problems encountered by SOM metaclass 
programmers. In particular, the dynamic behavior of 
different metaclasses combined into a derived 

metaclass may result in “interference” between these 
metaclasses. This problem does not manifest itself as a 
lack of polymorphism (the problem identified in [ 12]), 
but as an operational conflict between different 
metaclasses’ behavior. For example, this problem 
could arise when two unrelated metaclasses combined 
into a derived metaclass want different method 
procedures to execute when a new object is created 
with som~ew. If the two metaclasses both use their 
somInitMIClass code to override the object 
creation method som~ew, then the last override to 
execute “wins,” interfering with the other metaclass, 
whose method procedure not execute. 

‘Ihe question is how to cooperatively associate a 
multiplicity of method procedures with a single 
method. When method procedures are contributed by 
classes related by inheritance, parent method calls 
serve this purpose. But, when a method procedure is 
contributed by a metaclass, parent method calls cannot 
do the job of enabling cooperation. Remember that 
SOM-derived metaclasses are determined 
dynamically; those metaclasses combined into a 
SOM-derived metaclass do not have any static 
inheritance relations among themselves (otherwise 
there would be no reason to derive a new metaclass). 

We address this problem with a “metaclass 
cooperation framework.” This provides a 
programming model in which metaclasses achieve 
their objectives cooperatively by combining different 
method procedures into a “cooperation chain.” 
Interference (when it would otherwise occur) is 
identified as conflicting requirements for ordering 
method procedures in this chain. This maximizes the 
opportunity for cooperation between metaclasses 
(because, for most purposes, ordering doesn’t matter) 
and it guarantees that metaclasses never mysteriously 
cease to operate correctly as a result of interference 
with other metaclasses. 

Next we re-implement Counted to provide supporting 
details. The following examples are expressed 
according to the cooperation framework provided by 
ESOM, a current research prototype for SOM 2.1. 
ESOM is not a product, so these examples are for 
illustration only. The APIs provided by the SOM 2.1 
product may vary from those shown here. 
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We start with a metaclass that implements an instance 
count without using the cooperation framework, and 
then we show how the same objective can be achieved 
with the framework. The IDL for an “uncooperative” 
metaclass might appear as follows. 

interface Counted : SOMClass ( 
readonly attribute long instancecount; 
implementation ( 

somMethodProc* doFree; 
// a class variable explained below 

somInit: override; 
// to initialize instancecount 

somNew : override; 
// to increment instancecount 

somInitMIClass: ovefiide; 
// explained below 

1; 
1; 

First note the above Counted cannot be reliably 

combined into a SOM-derived metaclass with any 
other metaclasses that overrides somNew. As 
explained above, if some other metaclass overrides 
somNew, and this metaclass (call it MC) and 
Counted happen to be automatically combined into a 
SOM-derived metaclass during subclassing, then it 
would use either MC’s sort-New or Counted’s. 
Despite this potential problem, below is an 
implementation for Counted using DirectToSOM 
C++ (i.e., C++ compiled to the SOM API, as provided 
by the MetaWare AIX and OS/2 C++ compilers). The 
file Counted . hh is a C++ header file produced from 
Counted . id1 by a SOMObjects Toolkit compiler 

Although the above solution is not cooperative (due to 
its override of somNew) the handling of the instance 
method table entry for SomFree is similar to the way 
that the cooperation framework is designed. 

#include <Counted.hh> 

Counted::Counted() 
{instancecount = 0; ) 

Counted: : somNew ( ) 
{instanceCount++; 
return SOMClass::somNew(); } 

void somFree(SOMObject& obj) // a function used below 

i 
obj.somGetClass().instanceCount--; 
obj.doFree(); 
/* doFree is set in somInitMIClass, below */ 

I 

Counted. .:somInitMIClass(long inherit-vars, 
string className, 
SOMClassSequence* parentclasses, 
long datasize, 
long dataAlignment, 
long maxStaticMethods, 
long majorversion, 
long minorversion) 

/* Do parent method call to chain somInitMIClass upwards.*/ 
SOMClass::somInitMIClass(...); 
/* Record instance mtab entry for somFree in a class variable.*/ 
doFree = somClassResolve(this,SOMObjectClassData.somFree); 
/* Replace original somFree entry with the above function. */ 
somOverrideSMethod( "SOMObject::somFree", som.Pree ); 
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Counted::somInitMIClass remembers the 
initial content of the somFree entry of the instance 
method table, and this is later called by the locally- 
registered routine for somFree, after decrementing 
the class’s instance count. This is very similar to a 
parent method call, but is not based directly on 
inheritance. Rather, it is simply based on whatever the 
content of the instance method table is when 
Counted::somInitMIClass saves the 
somFree entry. 

If the technique illustrated above for somFree were 
all that a metaclass programmer needed to avoid 
interference, then there would be little need for a 
cooperation framework. Metaclass programmers 
could simply use this technique to achieve the desired 
results. But, complications arise from providing 
control over the cooperation chain ordering and, also, 
from handling parent method calls correctly. As a 
result, the methods introduced by the cooperation 
framework are extremely important -- they solve a 
number of difficult problems and they offer a simple- 
to-use interface for metaclass programmers. These 
methods are now described using IDL. 

somMethodProc** 
sommAddCooperativeInstanceMethod( 

in somId methodId, 
in somMethodProc* coopProc); 

This method installs a cooperative override in the 
receiver’s instance method table and is the cooperation 
framework analogy to the technique illustrated in the 
above example for handling somFree. The returned 
result is the location of the method procedure pointer 
that must be invoked by coopProc to continue the 
cooperation chain. This location is maintained and 
used by a class to support cooperation chain ordering. 

sonOIethodProc** 
somtnAddCooperativeClassMethod( 

in somId methodId, 
in somMethodProc* coopProc); 

This method installs a cooperative override in the 
instance method table of its receiver’s class. In other 
words, this method allows a class to change its own 
behavior (as opposed to the behavior of its instances) 
by modifying the instance method table of the class of 
which it is an instance. This is how cooperation on 
class methods (such as somNew) is achieved, and 

provides an interesting use of reflection within the 
cooperation framework. 

The above two methods can be used by metaclasses 
without any possibility of interference. In contrast, 
metaclasses using methods that request a particular 
position in the cooperation chain (specifically, the first 
or last position) may interfere with each other. This 
possibility is handled by allowing each metaclass to 
build up a request block by making requests, and then 
asking to have the request block satisfied. 

boolean somm.SatisfyRequests(); 

When this method is invoked, the class’s current 
request block is checked to see if any new requests 
conflict with previously-granted requests. If so, none 
of the new requests are granted and FALSE is 
returned. Otherwise all the new requests are granted. 
Instead of returning a result, the request methods 
themselves all accept an extra output argument that is 
the address of a variable that the caller wants loaded 
with the location of its cooperation chain method 
pointer (if the request is satisfied upon later use of 
sommSatisfyRequests). 

void 
sommRequestFirstCooperativeInstanceMethodCall( 
in somId methodId, 
in somMethodProc* coopProc, 
out sorr&lethodProc** ChainProcAddrAddr); 

This method is similar to 
sommAddCooperativeInstanceMethod, but 
requests that coopProc be the first cooperation chain 
method procedure that is called when the indicated 
method is invoked on an instance of the class being 
initialized.. 

void 
sonunRequestFi.rstCooperativeClassMethodCall( 
in somId methodId, 
in somMethodProc* coopProc, 
out somMethodProc** ChainProcAddrAddr); 

This method is similar to 
sommAddCooperativeClassMethod, but 
requests that coopProc be the first cooperation 
chain method procedure that is called when the 
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indicated method is invoked on the class being 
initialized. 

void 
sommRequestFinalClassMethodCall( 

in somId methodId, 
in somMethodProc* methodproc); 

This method requests that the indicated 
methodproc be called to provide the “final” 
semantics for the indicated class method. Note that no 
output argument is used to support cooperation -- the 
final method simply returns a result. The last two 
methods are both reflective -- a class object invokes 
these methods on itself in order to change its future 
behavior. 

The notion of a method name corresponding to a set of 
implementations is also employed in Subject Oriented 
Programming [13]. 

Using the Cooperation Framework 

Using the methods described above, a metaclass 
CoopCounted can cooperate on the class method 
somNew and the instance method somFree as 
illustrated below. Note that no special ordering of 
cooperation chain methods is required. 

interface CoopCounted : SOMMCooperative 

{ 
readonly attribute long instancecount; 
implementation ( 

somMethodProc** doFree; 
somMethodProc** doNew; 
somInit: override; 

// to initialize instancecount 
somInitMIClass: override 

// to register cooperation 

1: 
1; 

#include -zCoopCounted.hh> 

Counted::Counted() 
{instancecount = 0; ) 

CC-somFree(SOMObject& obj) 

obj.somGetClass().instanceCount--; 
*doFree(obj); /*cooperate on somFree*/ 

CC-somNew(CoopCounted& somself) 

1 
somSelf.instanceCount++; 
return *doNew(somSelf); 

/*cooperate on somNew*/ 

CoopCounted: :somInitMIClass(...) 
{SOMClass: :somInitMIClass(...); 
doFree = 

soxmnAddCooperativeInstanceMethod( 
"SOMObject::somFree",CC_somFree); 

doNew = sommAddCooperativeClassMethod( 
"SOMClass::somNew",CC_somNew); 

The above example provides a simple illustration of 
ideas and techniques used for metaclass programming 
in ESOM. 

Comparison with CLOS 

In comparison with many other OOP models, SOM 
2.0 provides enhanced opportunities for using classes 
to encapsulate useful functionality, and therefore 
enhances code reuse. To guarantee metaclass 
compatibility, the SOM 2.0 runtime uses multiple 
inheritance to derive me&lasses from which 
polymorphic class objects can be instantiated. Due to 
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the complexity of correctly supporting classes as 
polymorphic objects, it seems unlikely that the power 
of explicit metaclasses would be generally useful 
without this support. Finally, to aid in preventing 
interference between different metaclasses combined 
into a derived metaclass, ESOM provides a metaclass 
cooperation framework that allows metaclasses to 
achieve their objectives cooperatively by creating 
cooperation chains for both instance and class 
methods. 

It is interesting ask to whether CLOS could also do 
these things, and, if so, how. By default, CLOS 
requires a subclass to have the same metaclass as its 
parent(s). While this prevents metaclass 
incompatibility, it also removes most of the benefit of 
explicit me&classes. But, experienced CLOS users 
have indicated to the authors that this policy could be 
changed on a per-application basis by suitable use of 
the CLOS Metaobject Protocol, and that derived 
metaclasses could thereby be integrated into the 
overall semantics of CLOS class definition by 
automatically creating appropriate metaclasses (as in 
SOM) whenever necessary. 

In CLOS, multiple inheritance is supported by 
linearizing ancestor classes into a class precedence 
Eist. One uses call-next-method to invoke the 
method with the same name (as the currently 
executing method) from the next entry in the class 
precedence list. This would allow the necessary 
method chaining as required for initialization of 
derived metaclass’ instances’ state -- likely via the 
CLOS initialize-instance method. 

Creation and use of “cooperation chains” for methods 
also seems possible in CLOS. However, just as the 
parent-method call paradigm in SOM is too limited in 
flexibility, so too would be use of call -next - 
method through the class precedence list. The right 
way to view the cooperation chain for a method is that 
it is orthogonal to parent calls. For each different 
method, the chain is built up dynamically, as different 
classes’ initialization code (defined by the different 
metaclasses combined into a derived metaclass) is 
executed. 

Arranging for appropriate interaction between parent 
calls for a method and the calls contained within a 

cooperation chain for the method presented a 
challenge in SOM, and the solution was encapsulated 
using classes (two public metaclasses make up the 
cooperation framework). It seems likely that CLOS 
could also create and encapsulate a similar solution. 
This might be done using the CLOS ability to support 
multiple primary methods. In between invocation of 
:before and : after methods in CLOS, the 
apply-methods function orders the execution of 
any number of primary methods. As a result, 
metaclasses in CLOS might simply be able to add new 
primary methods. A remaining detail to consider 
would be the need for a metaclass to request a 
particular position among the primary methods. 

Clearly, the mechanisms provided by CLOS and SOM 
are somewhat different. Yet it seems clear that the 
ideas incorporated in SOM for support of explicit 
metaclasses have general applicability for other 
systems in which classes are first class objects and 
explicit metaclasses are available. 

Conclusion 

SOM 1 .O allowed explicit metaclasses, but really only 
provided reliable support for implicit metaclasses. 
SOM 2.0 added a unique form of support for explicit 
me&lasses that enables their reliable use in evolving 
OOP systems. SOM version 2.1 then builds on this 
foundation to provide a metaclass cooperation 
framework. Experience has shown the necessity for 
evolution in software systems, and, clearly, SOM has 
been no exception. Yet, while offering greatly 
enhanced capabilities in comparison with the original 
SOM 1.0, current versions of SOM continue to 
support the original Workplace Shell and all its 
associated applications. Thus, although SOM’s 
objective was to support evolution of class libraries in 
general, the second principle (which used SOM to 
implement SOM) has resulted in similar support for 
SOM’s evolution. 

This report focused on aspects of SOM’s evolution 
that relate to metaclass programming. This evolution 
has been influenced by our experiences constructing 
useful metaclasses (a few of which were mentioned 
here), and by the addition of multiple inheritance. 
There are a host of other areas in which SOM has 
evolved, but these are topics for other papers. 
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