
Reflections on Metaclass Programming in SOM
Scott Danforth

Ira R. Forman
IBM Object Technology Products

11400 Burnet Road
Austin, TX 78758

Abstract. This paper reports on the evolution of
metaclass programming in SOM (the IBM System
Object Model). Initially, SOM’s use of explicit
men&asses introduced metaclass incompatibilities.
This was cured by having SOM dynamically derive an
appropriate metaclass by interpreting the “metaclass
declaration” as a constraint. In effect, inheritance is
given a new dimension, because the constraint is also
inherited. The derived metaclass is the least solution
to all these constraints. Subsequently, this cure led to
the possibility of metaclasses conflicting over the need
to assign meaning to a method. The cure for this
problem is a framework that facilitates the
programming of metaclasses that cooperate on the
assignment of meaning to methods.

Introduction

The term “procedural reflection” was introduced by
Smith [18,191 to describe a general theory and
mechanism allowing computational systems to reason
about their own operations and structures. Reflective
capabilities have now been studied within a variety of
different computational systems (CommonLoops [11.
3KRS [16], Scheme [9,21], LISP [6], ObjVLisp
[5,11], ABCL/R [22], Rosette [20], and CLOS [3,15]).
This paper discusses some of the ways reflective
capabilities are useful and important to SOM
metaclass programmers. In a more general sense, the
word reflection seems appropriate for describing the
overall purpose of this paper, a thoughtful overview of
the origin and historical development of mechanisms
supporting metaclass programming in SOM.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
OOPSLA 94- lo/94 Portland, Or on USA
0 1994 ACM O-89791 -688-3194 0010..$3.50 7

First Principles

The benefits of using OOP for system-level support of
component software development in systems like
Smalltalk- and NextStep (based on Objective-C) are
by now well-known and accepted. SOM’s objective is
to allow binary class libraries to provide these benefits
independent of programming languages and
compilers.

To provide language-neutrality, SOM defines a
runtime API that is based on a few external procedures
and simple data structures. This API is used by
programmers (or by “language bindings” or by
“DirectI’oSOM” compilers) to create and use SOM
objects according to a traditional object-oriented
model of computation. Within this context, SOM has
two fundamental guiding principles:

1. If changes to the implementation of a class
don’t require changes to client source code
(i.e., code that subclasses or uses instances of
the class), it should be possible to replace the
class’s implementation (in a binary library)
without requiring recompilation of client
co&.

2. The SOM API should be expressed as an
object-oriented system composed of SOM
objects available to the programmer.

The main reason for the first principle is to support
component software. Once application binaries are
delivered to users, any need for recompilation of
source is best avoided -- even when aspects of the
supporting system are reorganized or reimplemented.
The first principle thus maximizes the flexibility
available for supporting system evolution when OOP
is used to implement and publish system interfaces.
This issue cannot be taken lightly. Evolution of an
OOP system often suggests refactorings of its class

440

Figure 1 -- Relationships between the SOM Kernel Obiects

hierarchy, even though this may not require source
level changes in client code. From the perspective of
metaclass programming, however, this principle
represents a serious challenge [7]. The section on
SOM-derived metaclasses, below, explains the unique
mechanism provided by SOM for answering this
challenge.

The second principle results in implementing classes
as objects, which creates the very possibility of
metaclass programming in SOM (if classes are
objects, they must be instances of other classes called
metaclasses). The second principle also relates
directly to a fundamental requirement for reflection
explained by [19]: reflection requires a model within
which to express the operations, structures, and
overall protocols that are used to organize and control
computation. The SOM abstract machine expresses
such a model for OOP, and a bootstrap procedure
creates a concrete embodiment of this model as the
initial SOM runtime environment.

d I I

of metaclass programming as its metaobject protocol.
Second was the invention of the derived metaclass.
Third was a framework that allows metaclasses to
cooperate on the definition of method
implementations. The result is that rather than merely
programming classes anew or as extensions of
previously written classes, SOM users will be able to
factor functionality in new ways, which in turn leads
to achieving programming goals by composing
classes. Thus, SOM users can program at a higher
level (as can any programmer with an available
metaobject protocol).

In particular, the second principle results in a model of
the operations, objects, and protocols used for
implementing object-oriented computation -- i.e., for
subclassing, inheriting methods, adding new methods,
overriding inherited methods, and dispatching
methods. Thus, in SOM, the fundamental requirement
of reflection is met as a result of first principles -- the
operations and objects used to implement OOP
computation are reflected in concrete SOM objects
immediately available to executing code.

The SOM capabilities based on these principles enable
its users to program at a higher level. As this paper
explains, the ability to program at a higher level
unfolded in several stages. First was SOM’s adoption

The SOM Abstract Machine

The SOM abstract machine has changed in many ways
since the introduction of SOM in OS/2 2.0, where
SOM was used to implement the Workplace Shell (a
class framework representing aspects of the OS/2 2.0
system). But, the top-level structure of the SOM
machine remains the same. When the SOM runtime
environment is created, the objects illustrated in
Figure 1 are created and made available to the SOM
user

Figure 1 contains the two primitive classes that are the
basis for all subsequent classes:

l SOMObject - the root ancestor for all SOM
classes

l SOMClass - the root ancestor of all SOM meta-
classes.

All SOM objects are an instance of a SOM class, and
all SOM classes are ultimately derived by subclassing
from SOMObject. Thus, all SOM objects can execute
the methods introduced by SOMObject. In a similar
manner, all SOM classes are an instance of a SOM

441

metaclass, and all SOM metaclasses are ultimately de-
rived from SOMClass. Thus, all classes can execute
the methods introduced by SOMClass. Both SOMOb-
ject and SOMClass are instances of SOMClass.

In addition to SOMObject and SOMClass, the SOM
kernel includes the class SOMClassMgr which imple-
ments a runtime class registry. This allows use of dy-
namically loaded libraries (DLLs) to define SOM
classes. As illustrated in Figure 1, the SOM nmtime en-
vironment initially contains the above three classes and
a class manager (i.e., an object that is an instance of
SOMClassMgr).

In SOM the class of an object defines its
implementation. Therefore, in SOM, reflective code is
method code that follows the instance-of link from
“self’ (the object on which the method is invoked),
because SOM provides the method somGetClass
for this purpose.

Operational use of the SOM API

Although Figure 1 shows the primitive objects used to
implement SOM, an understanding of SOM includes
knowing how these objects are used. For example, to
create a new class in SOM, the following steps are
followed:

l Choose a me&class object (either SOMClass or
some class derived from SOMClass) and create a
new instance of the metaclass -- this will be the new
class. SOMClass introduces a number of different
methods for creating new objects, and, at this stage
the new class we are creating is simply a new object
that happens to be an instance of a metaclass.

l Inform the new class object of its parents by using
the somInitMIClass method. Whenaclass exe-
cutes this method, it creates an initial instance
method table by inheriting the contents of its par-
ents’ instance method tables. The instance method
table of a class determines the behavior of its
instances.

l Add new methods to the class and override inherited
methods by using the methods provided by SOM-
Class for this purpose. These methods, when applied
to the new class object, modify the class’s instance
method table that was created in the previous step.

l Use somClassReady to inform the class that its

construction is complete. This method registers the
new class with the SOMClassMgrObject, so that
client code can access the class for further subclass-
ing or instance creation.

Language bindings or DirectToSOM compilers
automatically provide code that does the above steps
according to static information provided by a class
designer, thus removing these considerations from the
direct concern of the programmer. But it is important
to understand that all classes in SOM are runtime
objects created by invoking methods on other objects
as explained above. In general, SOM programmers
can create classes according to dynamically computed
requirements. This is of crucial importance, because
supporting static class definition in SOM has required
the dynamic derivation of metaclasses. To understand
this surprising fact, it helps to review how metaclasses
appear and are used in OIDL, the object interface
definition language of SOM 1 .O

Metaclasses in SOM 1.0

The original version of SOM was supported and
implemented using C language bindings generated (by
the SOM compiler) from class declarations expressed
using OIDL (Object Interface Definition Language).
OIDL provided two different ways of statically
indicating the information necessary to create new
metaclasses. Accordingly, metaclasses were either
explicit or implicit metaclasses. An explicit metaclass
is declared by explicit subclassing from some other
metaclass (perhaps from SOMClass). Here is an
example.

class: Counted;
parent: SOMClass;
data:

long instancecount;
methods:

long getInstanceCount();
overrides:

somInit;
somInitMIClass;
somNew;

Instances of the above metaclass include (in addition
to inherited class variables) a class variable to record
the number of instances of the class and (in addition to
the inherited class methods) a class method to allow

442

users to access the current instance count. The new
metaclass overrides the method somInit

(introduced by SOMObject) and overrides the
methods somInitMIClass and somNew (both
introduced by SOMClass). The implementation of
Counted must therefore provide four method
procedures: one to execute the new method,
getInstanceCount, and three others for the
overridden methods.

In OIDL, a class designer indicates the use of an
explicit metaclass when declaring a class, as
illustrated here.

class: ClassExample;
parent: SOMObject;
metaclass: Counted;

On the other hand, an implicit metaclass is declared
implicitly when declaring the class intended to be its
instance, as illustrated by the following OIDL:

class: ClassImplicitExample;
parent: SOMObject;
data:

long instancecount, class:
methods:

long getInstanceCOunt(), class;
overrides:

somInit, class;
somInitMIClass, class;
somNew, class;

The above OIDL explicitly declares a class named
ClassImplicitExample and also implicitly declares a
metaclass that has the same fundamental
characteristics as Counted, declared above. This is
done by using the class modifier to indicate that
either data or methods are to be attributes of the class
being declared (as opposed to being attributes of
instances of the class). But there is an important
difference -- the implicit metaclass has no name. The
functionality it provides, while generally useful, is
available only on ClassImplicitExample and its
descendants. In contrast, the functionality packaged
by Counted is available, by name, to any class.

Implicit metaclasses can know and make use of the
methods inherited and introduced by their instances. A
class (for example Y in Figure 2) might implement an
instance method by invoking a class method on itself

(reached by first using somGe tC1 as s on the target
instance), passing the target instance as an argument to
the class method, and then use an implicit metaclass I
to implement the class method using instance methods
introduced by Y. In contrast, an explicit metaclass is
normally designed to be of use to any class, and
therefore doesn’t make any assumptions concerning
the methods inherited or introduced by its instances
(other than that these inherited methods must include
those introduced by SOMObject). It would probably
seem more reasonable to package functionality for
providing instance counts using an explicit metaclass
such as Counted. Note that Smalltalk was the first
language to have class as objects [141, but it provides
only implicit metaclasses.

@I. @

8 8

.I.. @

‘$

, 8’
@), . Q””

Figure 2 -- Semantics of Implicit Metaclasses

Areas of Concern for SOM 1.0

How, specifically, are implicit metaclasses derived?
What are their parents, and of which classes are they
instances? Figure 2 illustrates the general situation for
SOM 1.0 implicit metaclasses. The class Y has been
derived by subclassing X, and the class I is the
implicit metaclass declared by Y’s designer. I is
derived by subclassing from MX (X’s class) and is
created as an instance of MMX (MX’s class).

This semantics supports SOM classes as polymorphic
objects useful through the interfaces of all ancestor
classes. For example, recall the example scenario
suggested above for reflective programming with
implicit metaclasses. It is imperative that class
methods introduced by MX be available on Y, because
the implementation of Y’s methods is inherited from
X, and these methods may access the class of the
instance target and invoke methods introduced by MX
on this class. The above derivation of I guarantees this

443

Figure 3 -- The Problem with Explicit
Metaclasses in SOM 1.0

result in general, for all implicit metaclasses.

Unfortunately, SOM 1.0 does not provide a similarly
pleasing result in the case of explicit metaclasses. For
example, using the explicit metaclass Counted
declared earlier, it is possible to construct the
following example, in which the class of Y does not
support an appropriate interface:

class: X;
parent: SOMObject
metaclass: Counted;

class Y;
parent: X;
metaclass: SOMClass;

Figure 3 illustrates the semantics of these declarations
in SOM 1.0, and the following code, expressed using
the C bindings of SOM 1.0, illustrates the problem
with the class Y in Figure 3. Execution of this code
creates a method resolution error because the class of
Y, SOMClass, doesn’t support the method
rumInstances 0nY.

#include <Y.h>

void printCount(X *x)
{/* This code is typesafe on Xs */
printf("%d\n*,

-numInstances(-somGetClass(x)));

I

main0
{Y *yInstance = YNew();
/* But this call with a subclass

instance fails */
_printCount(yInstance);

I

This kind of situation was identified by Nicolas
Graube [121, who characterized the problem in terms
of metuclass compatibility. Put simply, SOMClass is
not compatible with the requirements placed on Y’s
class to support the Counted interface. However,
SOM 2.0 doesn’t construct class hierarchies with
metaclass incompatibilities. Instead, SOM 2.0
automatically builds new metaclasses that are
compatible with their requirements, dynamically
subclassing from existing metaclasses whenever this
is necessary.

Metaclasses in SOM 2.0

While supporting previously existing binaries, SOM
2.0 added multiple inheritance and complete support
for OMG’s CORBA (Common Object Request Broker
Architecture) [171. Although OIDL is still supported
by the SOM compiler, the preferred language used to
declare SOM classes is now CORBA IDL. The
following is an IDL declaration for the metaclass
Counted:

interface Counted : SOMClass {
readonly attribute long instancecount;
#ifdef -SOMIDL-
implementation (
somInit: override:
somInitMIClass: override;
somNew: override;

1.

iendif

1;

CORBA IDL was designed to support interfaces to
objects, not their implementations. The SOM IDL
implementation section (guarded with an #i f def)
provides additional information used by the SOM
compiler to create language bindings that assist in
implementing SOM classes whose objects support the
declared interface. For brevity, the # i f de f is omitted
in following illustrations. Here is the IDL for X and Y
of the previous example:

interface X : SOMObject (
implementation { metaclass = Counted;};

1;

interface Y : X {
implementation (metaclass= SOMClass;};

1;

IDL doesn’t provide implicit metaclasses, but explicit

444

Figure 4 -- SOM 2.0 supports classes as
polymorphic objects

metaclasses can serve the same purposes. A close
coupling between the implementations of a metaclass
and its instances is supported from IDL by using the
IDL pre-processor to make such metaclasses statically
visible only to a restricted set of class declarations
(normally, a single class). Details of this are not
important to this paper. But, the fact that all
metaclasses in IDL are explicit underscores the
importance of providing an improved semantics for
explicit metaclasses in SOM 2.0.

SOM-derived Metaclasses

In SOM 2.0, if a metaclass is indicated in a class
declaration, the new class is constructed (at runtime)
either as an instance of the indicated metaclass or as
an instance of some class derived from the indicated
metaclass. In the second case, there are two
possibilities: the metaclass may already exist as a
user-defined metaclass, or, if necessary, SOM will
derive it dynamically in the process of creating the
new class object.

Why isn’t a SOM 2.0 class always simply an instance
of the metaclass indicated in its declaration (as was the
case in SOM l.O)? The answer is that SOM allows
unconstrained class declarations -- even those such as
illustrated by the problematic class Y in the above
example -- while also supporting classes as
polymorphic objects. For example, Figure 4 illustrates
the SOM 2.0 semantics of the above problematic
OIDL and IDL declarations. As shown, SOM 2.0
simply uses Counted as the class of Y. An example

.{I.

Figure 5 -- Of what class should C be an instance?

Figure 6 - The solution: C’s metaclass must be
derived from A’s and B’s metaclasses

that requires SOM to actually derive a new metaclass
is provided by Figure 5. In Figure 5, a new class C is
declared using multiple inheritance from two other
classes, A and B, whose classes are, respectively, MA
and MB. The question in Figure 5: What should be the
class of C? The solution must guarantee that C (i.e.,
the class object itself) responds to the interfaces of
both the A and B class objects. As illustrated in Figure
6, SOM guarantees this by deriving the class of C
(named DMC, for “Derived Metaclass”) from the
classes of C’s parents.

Of course, a general solution must deal with any
number of parents and an explicit metaclass (when
one is indicated) Figure 7 presents the general case
using IDL and illustrates the resulting SOM-derived
metaclass, DMC. This shows how SOM uses multiple
inheritance to derive a new metaclass whose
instance’s interfaces are compatible with both (1) the
requirements indicated by the programmer that
indicates a metaclass when subclassing and (2) the
requirements implied by the need to support the
newly-defined class as a polymorphic object with
respect the class of each parent. This has the effect of
treating the metaclass as a constraint rather than an

445

interface C : PI, Pz, PN

1 implementation { me&lass = MC; };
1;

Figure 7- A General Solution for Interface Compatibility

imperative declaration. In effect, inheritance is given a
new dimension, because the metaclass constraint is
also inherited. The derived metaclass is the least
solution to all these constraints.

Dealing with Object State

The approach illustrated in Figure 7 guarantees
metaclass compatibility by assuring the existence of
the necessary interfaces and class variables. But class
variables must be initialized. In SOM, a class’s state
includes:

l an instance method table (introduced by SOMClass)

l a variety of other class variables (often introduced
by subclasses of SOMClass -- i.e., other meta-
classes)

And, of course, a class’ state must be initialized before
the class is used. As suggested earlier, the SOM API
provides methods whose purpose is to provide for ini-
tialization (and uninitialization):

l SOMObject::somInit

default variable initialization

*SOMClass::somInitMIClass

create and initialize instance method table

l SOMClass::somClassReady

register class

l SOMObject::somUninit

free allocated resources

In general, a metaclass designer overrides each of
these methods to perform class-specific initialization
(or uninitialization). And, each of the resulting method
procedures used by a metaclass implementation
normally makes parent method calls to cooperatively
invoke similar functionality implemented by the
parents of the metaclass. To correctly initialize
(uninitialize) all the variables containing a class’s
state, then, a SOM-derived metaclass overrides the
above methods with code that makes the necessary
parent method calls on all of its metaclass parents.
This assures that all appropriate initialization code is
executed. This is done only for these four, special
initialization methods. Further details are provided
elsewhere [7].

It is interesting to note the conditions under which the
problem solved by derived metaclasses can arise.
Metaclass incompatibility can arise in the case of
single inheritance models that allow explicit
metaclasses and in the case of multiple inheritance
models (with either explicit or implicit metaclasses).
Smalltalk has implicit metaclasses but doesn’t support
multiple inheritance. C++ allows multiple inheritance
but doesn’t allow metaclasses. Thus, neither of these

446

object models needs to worry about metaclass
incompatibility. On the other hand, object models such
as ObjVLisp [4] and CLOS [2] can encounter the
problem [12]. None of these systems provide the
benefits offered by SOM-derived metaclasses.

SOM is unique in that it relieves programmers of the
responsibility for avoiding metaclass incompatibility
when defining a new class. At first glance, this might
seem to be merely a useful convenience. But, in fact, it
is essential because SOM must provide backwards
binary compatibility with respect to changes in class
implementations. A programmer might, at one point in
time, know the classes of all the ancestor classes of a
new subclass (and so on, recursively), and, as result,
be able to explicitly derive an appropriate class for a
new subclass using the approach we have described
above. But, we doubt that a system based on requiring
this would ever be successful. And, in any case, SOM
must guarantee that a class implementation continues
to execute and function correctly when its ancestor
class’s implementations are changed without
retracting existing interfaces. This includes specifying
different parents or different metaclasses, so requiring
a static solution (on the part of either a programmer or
a compiler) is simply not acceptable in SOM.

SOM-derived metaclasses enable functionality
packaged as SOM classes to be combined into a large
number of different configurations, thus supporting
code reuse. Software reuse is one promise of OOP
technology, and it has been gratifying to find that
many useful kinds of functionality are automatically
composed by SOM-derived metaclasses. Examples
include aspects of DSOM (a SOM class framework
allowing transparent distribution of objects according
to the CORBA model [lo]), Replication (a SOM class
framework providing single-copy serializability for
distributed, replicated objects [lo]), and “before/after”
metaclasses [8]. Another example is provided by the
metaclass cooperation framework, described in the
following section.

Metaclasses in SOM 2.1

SOM-derived metaclasses do not solve all the
problems encountered by SOM metaclass
programmers. In particular, the dynamic behavior of
different metaclasses combined into a derived

metaclass may result in “interference” between these
metaclasses. This problem does not manifest itself as a
lack of polymorphism (the problem identified in [12]),
but as an operational conflict between different
metaclasses’ behavior. For example, this problem
could arise when two unrelated metaclasses combined
into a derived metaclass want different method
procedures to execute when a new object is created
with som~ew. If the two metaclasses both use their
somInitMIClass code to override the object
creation method som~ew, then the last override to
execute “wins,” interfering with the other metaclass,
whose method procedure not execute.

‘Ihe question is how to cooperatively associate a
multiplicity of method procedures with a single
method. When method procedures are contributed by
classes related by inheritance, parent method calls
serve this purpose. But, when a method procedure is
contributed by a metaclass, parent method calls cannot
do the job of enabling cooperation. Remember that
SOM-derived metaclasses are determined
dynamically; those metaclasses combined into a
SOM-derived metaclass do not have any static
inheritance relations among themselves (otherwise
there would be no reason to derive a new metaclass).

We address this problem with a “metaclass
cooperation framework.” This provides a
programming model in which metaclasses achieve
their objectives cooperatively by combining different
method procedures into a “cooperation chain.”
Interference (when it would otherwise occur) is
identified as conflicting requirements for ordering
method procedures in this chain. This maximizes the
opportunity for cooperation between metaclasses
(because, for most purposes, ordering doesn’t matter)
and it guarantees that metaclasses never mysteriously
cease to operate correctly as a result of interference
with other metaclasses.

Next we re-implement Counted to provide supporting
details. The following examples are expressed
according to the cooperation framework provided by
ESOM, a current research prototype for SOM 2.1.
ESOM is not a product, so these examples are for
illustration only. The APIs provided by the SOM 2.1
product may vary from those shown here.

447

We start with a metaclass that implements an instance
count without using the cooperation framework, and
then we show how the same objective can be achieved
with the framework. The IDL for an “uncooperative”
metaclass might appear as follows.

interface Counted : SOMClass (
readonly attribute long instancecount;
implementation (

somMethodProc* doFree;
// a class variable explained below

somInit: override;
// to initialize instancecount

somNew : override;
// to increment instancecount

somInitMIClass: ovefiide;
// explained below

1;
1;

First note the above Counted cannot be reliably

combined into a SOM-derived metaclass with any
other metaclasses that overrides somNew. As
explained above, if some other metaclass overrides
somNew, and this metaclass (call it MC) and
Counted happen to be automatically combined into a
SOM-derived metaclass during subclassing, then it
would use either MC’s sort-New or Counted’s.
Despite this potential problem, below is an
implementation for Counted using DirectToSOM
C++ (i.e., C++ compiled to the SOM API, as provided
by the MetaWare AIX and OS/2 C++ compilers). The
file Counted . hh is a C++ header file produced from
Counted . id1 by a SOMObjects Toolkit compiler

Although the above solution is not cooperative (due to
its override of somNew) the handling of the instance
method table entry for SomFree is similar to the way
that the cooperation framework is designed.

#include <Counted.hh>

Counted::Counted()
{instancecount = 0;)

Counted: : somNew ()
{instanceCount++;
return SOMClass::somNew(); }

void somFree(SOMObject& obj) // a function used below

i
obj.somGetClass().instanceCount--;
obj.doFree();
/* doFree is set in somInitMIClass, below */

I

Counted. .:somInitMIClass(long inherit-vars,
string className,
SOMClassSequence* parentclasses,
long datasize,
long dataAlignment,
long maxStaticMethods,
long majorversion,
long minorversion)

/* Do parent method call to chain somInitMIClass upwards.*/
SOMClass::somInitMIClass(...);
/* Record instance mtab entry for somFree in a class variable.*/
doFree = somClassResolve(this,SOMObjectClassData.somFree);
/* Replace original somFree entry with the above function. */
somOverrideSMethod("SOMObject::somFree", som.Pree);

448

Counted::somInitMIClass remembers the
initial content of the somFree entry of the instance
method table, and this is later called by the locally-
registered routine for somFree, after decrementing
the class’s instance count. This is very similar to a
parent method call, but is not based directly on
inheritance. Rather, it is simply based on whatever the
content of the instance method table is when
Counted::somInitMIClass saves the
somFree entry.

If the technique illustrated above for somFree were
all that a metaclass programmer needed to avoid
interference, then there would be little need for a
cooperation framework. Metaclass programmers
could simply use this technique to achieve the desired
results. But, complications arise from providing
control over the cooperation chain ordering and, also,
from handling parent method calls correctly. As a
result, the methods introduced by the cooperation
framework are extremely important -- they solve a
number of difficult problems and they offer a simple-
to-use interface for metaclass programmers. These
methods are now described using IDL.

somMethodProc**
sommAddCooperativeInstanceMethod(

in somId methodId,
in somMethodProc* coopProc);

This method installs a cooperative override in the
receiver’s instance method table and is the cooperation
framework analogy to the technique illustrated in the
above example for handling somFree. The returned
result is the location of the method procedure pointer
that must be invoked by coopProc to continue the
cooperation chain. This location is maintained and
used by a class to support cooperation chain ordering.

sonOIethodProc**
somtnAddCooperativeClassMethod(

in somId methodId,
in somMethodProc* coopProc);

This method installs a cooperative override in the
instance method table of its receiver’s class. In other
words, this method allows a class to change its own
behavior (as opposed to the behavior of its instances)
by modifying the instance method table of the class of
which it is an instance. This is how cooperation on
class methods (such as somNew) is achieved, and

provides an interesting use of reflection within the
cooperation framework.

The above two methods can be used by metaclasses
without any possibility of interference. In contrast,
metaclasses using methods that request a particular
position in the cooperation chain (specifically, the first
or last position) may interfere with each other. This
possibility is handled by allowing each metaclass to
build up a request block by making requests, and then
asking to have the request block satisfied.

boolean somm.SatisfyRequests();

When this method is invoked, the class’s current
request block is checked to see if any new requests
conflict with previously-granted requests. If so, none
of the new requests are granted and FALSE is
returned. Otherwise all the new requests are granted.
Instead of returning a result, the request methods
themselves all accept an extra output argument that is
the address of a variable that the caller wants loaded
with the location of its cooperation chain method
pointer (if the request is satisfied upon later use of
sommSatisfyRequests).

void
sommRequestFirstCooperativeInstanceMethodCall(
in somId methodId,
in somMethodProc* coopProc,
out sorr&lethodProc** ChainProcAddrAddr);

This method is similar to
sommAddCooperativeInstanceMethod, but
requests that coopProc be the first cooperation chain
method procedure that is called when the indicated
method is invoked on an instance of the class being
initialized..

void
sonunRequestFi.rstCooperativeClassMethodCall(
in somId methodId,
in somMethodProc* coopProc,
out somMethodProc** ChainProcAddrAddr);

This method is similar to
sommAddCooperativeClassMethod, but
requests that coopProc be the first cooperation
chain method procedure that is called when the

449

indicated method is invoked on the class being
initialized.

void
sommRequestFinalClassMethodCall(

in somId methodId,
in somMethodProc* methodproc);

This method requests that the indicated
methodproc be called to provide the “final”
semantics for the indicated class method. Note that no
output argument is used to support cooperation -- the
final method simply returns a result. The last two
methods are both reflective -- a class object invokes
these methods on itself in order to change its future
behavior.

The notion of a method name corresponding to a set of
implementations is also employed in Subject Oriented
Programming [13].

Using the Cooperation Framework

Using the methods described above, a metaclass
CoopCounted can cooperate on the class method
somNew and the instance method somFree as
illustrated below. Note that no special ordering of
cooperation chain methods is required.

interface CoopCounted : SOMMCooperative

{
readonly attribute long instancecount;
implementation (

somMethodProc** doFree;
somMethodProc** doNew;
somInit: override;

// to initialize instancecount
somInitMIClass: override

// to register cooperation

1:
1;

#include -zCoopCounted.hh>

Counted::Counted()
{instancecount = 0;)

CC-somFree(SOMObject& obj)

obj.somGetClass().instanceCount--;
*doFree(obj); /*cooperate on somFree*/

CC-somNew(CoopCounted& somself)

1
somSelf.instanceCount++;
return *doNew(somSelf);

/*cooperate on somNew*/

CoopCounted: :somInitMIClass(...)
{SOMClass: :somInitMIClass(...);
doFree =

soxmnAddCooperativeInstanceMethod(
"SOMObject::somFree",CC_somFree);

doNew = sommAddCooperativeClassMethod(
"SOMClass::somNew",CC_somNew);

The above example provides a simple illustration of
ideas and techniques used for metaclass programming
in ESOM.

Comparison with CLOS

In comparison with many other OOP models, SOM
2.0 provides enhanced opportunities for using classes
to encapsulate useful functionality, and therefore
enhances code reuse. To guarantee metaclass
compatibility, the SOM 2.0 runtime uses multiple
inheritance to derive me&lasses from which
polymorphic class objects can be instantiated. Due to

450

the complexity of correctly supporting classes as
polymorphic objects, it seems unlikely that the power
of explicit metaclasses would be generally useful
without this support. Finally, to aid in preventing
interference between different metaclasses combined
into a derived metaclass, ESOM provides a metaclass
cooperation framework that allows metaclasses to
achieve their objectives cooperatively by creating
cooperation chains for both instance and class
methods.

It is interesting ask to whether CLOS could also do
these things, and, if so, how. By default, CLOS
requires a subclass to have the same metaclass as its
parent(s). While this prevents metaclass
incompatibility, it also removes most of the benefit of
explicit me&classes. But, experienced CLOS users
have indicated to the authors that this policy could be
changed on a per-application basis by suitable use of
the CLOS Metaobject Protocol, and that derived
metaclasses could thereby be integrated into the
overall semantics of CLOS class definition by
automatically creating appropriate metaclasses (as in
SOM) whenever necessary.

In CLOS, multiple inheritance is supported by
linearizing ancestor classes into a class precedence
Eist. One uses call-next-method to invoke the
method with the same name (as the currently
executing method) from the next entry in the class
precedence list. This would allow the necessary
method chaining as required for initialization of
derived metaclass’ instances’ state -- likely via the
CLOS initialize-instance method.

Creation and use of “cooperation chains” for methods
also seems possible in CLOS. However, just as the
parent-method call paradigm in SOM is too limited in
flexibility, so too would be use of call -next -
method through the class precedence list. The right
way to view the cooperation chain for a method is that
it is orthogonal to parent calls. For each different
method, the chain is built up dynamically, as different
classes’ initialization code (defined by the different
metaclasses combined into a derived metaclass) is
executed.

Arranging for appropriate interaction between parent
calls for a method and the calls contained within a

cooperation chain for the method presented a
challenge in SOM, and the solution was encapsulated
using classes (two public metaclasses make up the
cooperation framework). It seems likely that CLOS
could also create and encapsulate a similar solution.
This might be done using the CLOS ability to support
multiple primary methods. In between invocation of
:before and : after methods in CLOS, the
apply-methods function orders the execution of
any number of primary methods. As a result,
metaclasses in CLOS might simply be able to add new
primary methods. A remaining detail to consider
would be the need for a metaclass to request a
particular position among the primary methods.

Clearly, the mechanisms provided by CLOS and SOM
are somewhat different. Yet it seems clear that the
ideas incorporated in SOM for support of explicit
metaclasses have general applicability for other
systems in which classes are first class objects and
explicit metaclasses are available.

Conclusion

SOM 1 .O allowed explicit metaclasses, but really only
provided reliable support for implicit metaclasses.
SOM 2.0 added a unique form of support for explicit
me&lasses that enables their reliable use in evolving
OOP systems. SOM version 2.1 then builds on this
foundation to provide a metaclass cooperation
framework. Experience has shown the necessity for
evolution in software systems, and, clearly, SOM has
been no exception. Yet, while offering greatly
enhanced capabilities in comparison with the original
SOM 1.0, current versions of SOM continue to
support the original Workplace Shell and all its
associated applications. Thus, although SOM’s
objective was to support evolution of class libraries in
general, the second principle (which used SOM to
implement SOM) has resulted in similar support for
SOM’s evolution.

This report focused on aspects of SOM’s evolution
that relate to metaclass programming. This evolution
has been influenced by our experiences constructing
useful metaclasses (a few of which were mentioned
here), and by the addition of multiple inheritance.
There are a host of other areas in which SOM has
evolved, but these are topics for other papers.

451

Acknowledgments

Mike Conner and Larry Raper are the designers of the
SOM model and API; their insight in providing SOM
with metaclasses provides the basis upon which we
worked. We wish to thank Gregor Kiczales, Ralph
Johnson, and the anonymous OOPSLA referees for
their valuable and greatly appreciated comments.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Bobrow, D.G., Kahn, K., Kiczales, G., Masiner,
L., Stefik, M., and Zdybel, F. “CommonLoops ---
Merging Lisp and Object-Oriented Program-
ming,” OOPSLA ‘86 Conference Proceedings,
1986.

Bobrow. D. G. and KiczaIes, G. “The Common
Lisp Object System Metaobject Kernel: A Status
Report,” Proceedings ACM Conference on Lisp
and Functional Programming, July, 1988.

Bobrow, D.G., DeMichiel, L.G., Gabriel, RI?,
Keene, SE., Kiczales, G. and Moon, D.A.,
“Common Lisp Object System Specification”
Sigplan Notices,Vol. 23 (September 1988).

Briot, J.-P and Cointe, P. “A Uniform Model for
Object-Oriented Languages Using the Class
Abstraction,” ZJCAZ Vol. 1, August, 1987.

Cointe, P. “The ObjVlisp Kernel: A Reflexive
Lisp Architecture to Define a Uniform Object-
Oriented System,” in Meta-Level Architectures
and Reflection Pattie Maes and Daniele Nardi
(ed.)North-Holland, 1987.

Danvy, 0. and Malmkjaer, K.. “Intentions and
Extensions in a Reflective Tower,” Proceedings
ACM Lisp and FP Conference, 1988.

Danforth, S. and Forman, I.R. “Derived Meta-
classes in SOM,” Proceedings TOOLS Europe
‘94, 1994.

Forman, I.R., Danforth, S. and Madduri, H.
“Composition of Before/After Metaclasses in
SOM,” OOPSLA ‘94 Conference Proceedings,
1994.

Friedman, D. and Wand, M. “Reification: Reflec-
tion without Metaphysics,” Proceedings ACM
Lisp and FP Conference, 1994.

SOMObjects Developer ToolKit, Users Guide,
IBM, June, 1993.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Graube, N. “Reflexive Architecture: From ObjV-
Lisp to CLOS,” Proceedings ECOOP ‘88,
Springer Verlag LNCS Vol. 322, 1988.

Graube, N. “Metaclass Compatibility,” OOPSLA
‘89 Conference Proceedings, 1989.

Harrison, W. and Ossher, H. “Subject-Oriented
Programming (A Critique of Pure Objects)”
OOPSLA ‘93 Conference Proceedings, 1993

Ingalls H.H. “The Evolution of the Smalltalk Vir-
tual Machine,” in Smalltalk- Bits of Wisdom
Words of Advice G. Kramer (ed.) Addison-Wes-
ley 1983.

Kiczales, G., des Rivieres, J. and Bobrow, D. G.
The Art of the Metaobject Protocol,.MIT Press,
Cambridge MA, 1991.

Maes, l?Computational Reflection Ph. D. Thesis,
Artificial Intelligence Laboratory, Vrije Univer-
siteit, Brussel, 1987

The Common Object Request Broker: Architec-
ture and Spec$cation, Revision 1.1, Object Man-
agement Group and X/Open, 1993.

Smith, B.C. Reflection and Semantics in a Proce-
dural Language Ph.D.Thesis, Laboratory for
Computer Science, MIT, 1982.

Smith, B. “Reflection and Semantics in Lisp,”
Proceedings ACM Lisp and FP Conference, 1993

Tomlinson, C. and Singh, V. “Inheritance and
Synchronization with Enabled Sets,” OOPSLA
‘89 Conference Proceedings, 1989.

Wand, M. and Friedman, D. “The Mystery of the
Tower Revealed,” Proceedings ACM Lisp and
FP Conference, 1986.

Watanabe. T. and Yonezawa, A. “Reflection in an
Object-Oriented Concurrent Language,” OOP-
SLA ‘88 Conference Proceedings, 1988.

452

