
Object-Oriented practice in 1998: Does it help or hinder 
collaboration? 
Panel Discussion 

John Artim (Moderator), Charlie Bridgeford, Lillian Christman, James Coplien, Mary Beth 
Rosson, Stanley Taylor and Rebecca Wirfs-Brock 

OOCL (IJSA), Inc., Employer’s Reinsurance Corporation, OOCL (USA), Inc., Bell Laboratories, 
Virginia Polytechnic Institute and State University, Apple Computer, Wirfs-Brock Associates 

ABSTRACT 
Groups of people working in concert perform most 
commercial, industrial or in-house software development. 
These groups are often quite diverse. This panel brings 
together object-oriented consultants and developers as well 
as practitioners and researchers interested in human factors 
and user-centered design, project management and 
technical writing. The panel will address the question, “To 
successfully complete today’s projects, does object-oriented 
development as practiced today do an adequate job of 
supporting ALL of the participants who must collaborate?’ 

Keywords 
Collaboration, object models, development practice 

PANELIST POSITIONS 
Lillian Christman 
When we work together in groups we always (1) divide up 
the work and (2) develop some mechanism for 
coordinating across this division of work. As an innovative 
activity, software development groups are best supported 
by an organizational structure dubbed adhocracy by 
organizational theorists. The division of labor in an 
adhocracy is highly specialized. Coordination is primarily 
achieved through mutual adjustment. “Under mutual 
adjustment, control of the work rests in the hands of the 
doers. The knowledge of what is needed develops as the 
work unfolds.” (1) Project success depends on the ability 
of the specialists to adapt their work to each other. 

The tug-and-pull between labor specialization and the need 
to dynamically adjust to one angther’s work raises issues 
for those in software development. Chief among these 
issues are (1) a low tolerance for ambiguity and (2) 
extremely high communication costs. Is it possible that an 
00 approach can help address these issues? 

Ambiguity 
Being primarily concerned with software usability, I’ve 
noted the often ambiguous reference to “the” user. Is this 
person the domain expert, the task expert, or the company 
executive who sponsors the project? Generally we stuff all 
of these people and the information they give us into the 
same user cubbyhole. What can we do to be more precise 
in our use of user information? At the project level: clearly 
distinguish between team members who are 
domain/business process experts (business users) and those 
who are task experts (end-users); align these users with the 
appropriate development staff. At the artifact level: in use 
cases, clearly distinguish task-specific (end-user) 
requirements from business process (business user) 
requirements; explicitly model the end-user as well as the 
domain; in addition to business scenarios, develop task 
scenarios to support end-user requirements. At the process 
level: conduct domain requirements reviews with business 
users; conduct usability reviews and tests with end-users. 

Communication 
Many of the problems that need to be solved during the 
development of a software system only become apparent as 
the work unfolds. It can take a great deal of time for 
project team members to talk through the issues raised and 
reach decisions. As a consequence, a software 
development unit can appear to be highly inefficient. 
Again, as someone concerned primarily with usability I 
would make a few suggestions for streamlining 
communication. At the project level: include both business 
and end-users as full-time members of the team. At the 
process level: provide an opportunity for all team members 
to observe end-users in their work context; disseminate task 
requirements and scenarios to domain modelers, domain 
developers, database designers and quality assurance team 
members in addition to the UI designers/developers. 
Mutual adjustment is achieved primarily through informal 
communication. Nurture these channels as enthusiastically 
as you do the formal development process. 

It’s easy to see how the pressures to reduce ambiguity and 
to make communication more efficient can push a software 

45 



development group into standardizing as much of the work 
as possible. These pressures are especially intense at the 
beginning of a project. But be careful of imposing 
standards before the work has had some time to evolve. 
Standardization tends to push the organization in the 
direction of bureaucracy, an organizational structure not 
particularly supportive of innovative work. 

At conferences like OOPSLA we spend a lot of time 
discussing the merits of various technical approaches to our 
work. I think it’s useful to take some time to understand 
how we can use an understanding of organizational 
behavior to support our work. 

[see Mintzberg, 19791 

Biographic Sketch 
Lillian Christman is Manager of User-Centered Design for 
OOCL, a global shipping company. For the last seven years 
she has lead the user-centered design activities of large 
business information and niche market software 
development teams. A devoted observer of organizational 
behavior, she has a PhD in industrial sociology from 
Vanderbilt University. 

James Coplien 
It takes several paradigms in concert to meet a typical 
customer need. Many customers need databases, and few 
of those need to be object-oriented in any way. The term 
“object-oriented user interface” is thrown around a lot, but 
really has little or nothing to do with objects, and probably 
shouldn’t have if it did. Those who limit themselves to 
objects are limiting their ability to communicate needs and 
to implement effectively. 

To a first order, even the design paradigm doesn’t matter. 
The primary issues of software development are 
organizational, logistic, and social. Many have to do with 
communication flow. There are techniques like CRC cards 
that have come from the object milieu, and those help. 
Refactoring has come into its own under object-oriented 
banners. But these have little to do with objects, are not 
new, but are just widely ignored. It’s not their object-ness 
that makes them useful: JAD or SCRUM would be just as 
good. 

To a first order, good communication comes from good 
organization, including good staffing, proper sizing, and 
strong role identification. If we are to seek improvements 
in software development, it’s time to start looking away 
from the languages and methods associated with objects 
and to start looking at the social and organizational factors. 
Doing that is a matter of will, as is much of the success of 
our discipline. It takes will to not be a sheep looking to 
methods, objects, or process to get them through. It’s about 
simple basics. 

Biographic Sketch 
Jim Coplien is a Distinguished Member of the Software 
Production Research Department in Bell Laboratories. He 
is currently studying organization communication patterns 
to help guide process evolution, as well as multi-paradigm 
design and architectural patterns of telecommunication 
software. He is author or co-editor of several books on 
C++, objects and software patterns. When he grows up, he 
wants to be an anthropologist. 

Mary Beth Rosson 
As a researcher in human-computer interaction (HCI), a 
key interest for me is how object technology can contribute 
to the development of useful and usable systems. Our 
work on HCI design methods relies centrally on scenarios 
of use (Carroll, 1995), and object-oriented analysis and 
design tit well into scenario-based development methods 
(Rosson & Carroll, 1995). We have used object analyses of 
proposed usage scenarios (i.e., a set of objects that could 
collaborate to implement a concrete scenario) to convey 
initial design specifications to programmers and to discuss 
and document the rationale for specific design decisions; 
we have used similar scenario-based analyses to explore 
proposed designs with potential users. 

Recently we have begun to explore the role of object- 
oriented analysis in participatory design settings. 
Participatory design is founded on direct involvement of 
prospective users in the analysis and design process; 
participatory engagements may involve shared observation 
and analysis of existing work processes, brainstorming 
sessions about new ways to apply technology, or more 
specific design sessions in which the details of proposed 
human-computer interactions are refined. An important 
goal of such methods is mutual education-software experts 
learn more about the users and their tasks, and users learn 
more about current technology. With respect to the latter, 
we are investigating the effectiveness of an object-oriented 
conception of tasks (e.g., computational entities with 
specific responsibilities and collaborations) in extending 
users’ views of their current goals and activities. Although 
end-users are initially skeptical about their abilities to 
reason about such models, we have found that once we 
help them identify and discuss a few objects they are able 
to extend these analyses in interesting and useful ways. 

Biographic Sketch 
Mary Beth Rosson is an Associate Professor of Computer 
Science at Virginia Polytechnic Institute and State 
University, where she has been since January 1994. Prior 
to that time, she was a Research Staff Member and 
Manager at the IBM T. J. Watson Research Center. She 
received a PhD in Experimental Psychology in 1982 from 
the University of Texas at Austin. She has been very active 
in both SIGCHI and SIGPLAN, serving in numerous 
Technical Program roles for the CHI and OOPSLA annual 
conferences, and as a member-at-large on the executive 

46 



committee of SIGPLAN. She is on the editorial board of 
Interacting with Computers. Dr. Rosson’s research 
interests include the development of new paradigms for 
research in human-computer interaction, the use of network 
technology to support collaboration, especially in learning 
contexts, and psychological issues in the learning and use 
of the object-oriented design paradigm. She is author of 
Instructor’s Guide to Object-Oriented Analysis and Design 
with Applications, has developed and taught a number of 
professional short courses in HCI design methods and in 
object-oriented design, and has authored numerous journal 
articles, conference papers, and book chapters. 

Rebecca Witis-Brock 
Object developers face two challenges: correctly 
interpreting stakeholders’ concerns and requirements in 
their designs, and presenting their analysis and design work 
in terms understood by a wide audience. Consider if we 
insisted on teaching our stakeholders basic object-oriented 
terms and forced them to only speak “objectese”. Pidgin- 
objects, would by necessity be a simplified language. Like 
all pidgin languages, object-pidgin could only expresses 
basic ideas. Some stakeholders’ complex usability 
requirements, specific needs and concerns simply could not 
be expressed. How absurdly object-centric this view is! 

You may think I’m going overboard. Of course you don’t 
insist on objects being the center of the universe! However, 
I have encountered teams where CRC that cards were 
touted as the being the only necessary bridge to 
programming. If users were taught to model classes, 
responsibilities and collaborations, then the programmers’ 
jobs sure would be easier. All they’d have to do would be 
to “translate” and “fix up” objects to make their software 
work. It wasn’t clear whether it was a priority that the 
software function as the users wanted. I’ve been in 
meetings where object technologists (we had an 
affectionate name for them at my former company- 
“propeller heads”) would discount other stakeholders as 
being stupid, clueless, and obviously misinformed. Since 
they didn’t know objects, and couldn’t understand our 
object technology deeply, they obviously didn’t know 
anything. 

While an object-oriented slant is useful, it is not complete. I 
happen to believe that expressing software designs with 
objects is very effective. However, each stakeholder in our 
object development process has differing needs and values. 
A lot of them know more about what they want their 
application to do than they can easily convey to us in object 
terms. With objects, we can capture high-level 
responsibilities of important concepts/aspects embodied by 
our software. Additionally, use case descriptions and 
scenarios can describe how our software should respond to 

its environment. Yet, both these models leaves unspoken 
the needs, intentions and day to day concerns of our 
system’s users, production support staff, database 
administrators, network administrators, user interface 
designers, etc. 

We must recognize that descriptions of what we are to 
build can be much more expressive and encompassing. I 
don’t advocate that every project should rush out to 
generate lots and lots of new models. Instead, we need to 
gather and interpret appropriate descriptions in the native 
languages spoken by our stakeholders. Our job as object 
technologists is to reflect these descriptions in our object 
analysis and design work. Object technology is only one 
small part of a development context. We’ll support 
collaborative work better as we become comfortable 
integrating our work into a process that adopts a variety of 
descriptions and models. 

Biographic Sketch 
Rebecca Wirfs-Brock is president of Wirfs-Brock 
Associates, a firm specializing in the transfer of object 
analysis and design expertise to organizations and 
individuals through training, mentoring, and consulting. 
Rebecca has been involved in object technology since 
1984. Rebecca once spent several weeks with a client on a 
task force that attempted to integrate the techniques and 
practices of several analysis areas including workflow 
modeling, data modeling, human factors engineering, and 
object analysis. This experience revealed that each 
discipline uses similar names for very different concepts, 
and that even getting eager, attentive experts to understand 
each other can be difficult. Rebecca is co-inventor of the 
Responsibility-Driven Design method and co-author of the 
classic, “Designing Object-Oriented Software. ” Rebecca’s 
is currently writing a new book on object design with her 
colleague, Alan McKean. 

REFERENCES 
1. 

2. 

3. 

Carroll, J. M. 1995. The Scenario Perspective on 
System Development. In (J. M. Carroll, Ed.), 
Scenario-Based Design: Envisioning Work and 
Technology in System Development (pp. 1-17). New 
York: John Wiley & Sons. 

Mintzberg, Henry, The Structuring of Organizations, 
Prentice-Hall, Englewood Cliffs, NJ, 1979. 

Rosson, M. B. & Carroll, J. M. 1995. Narrowing the 
Specification-Implementation Gap in Scenario-Based 
Design. In (J. M. Carroll, Ed.),Scenario-Based Design: 
Envisioning Work and Technology in System 
Development (pp. 247-278). New York: John Wiley & 
Sons. 

47 


