

MetaEdit+: Defining and Using Domain-Specific Modeling
Languages and Code Generators

Juha-Pekka Tolvanen
MetaCase Consulting

Ylistonmaentie 31
FIN-40500 Jyvaskyla, Finland

+358 14 4451406

jpt@metacase.com

Matti Rossi
Helsinki School of Economics
FIN-00100 Helsinki, Finland

+358 9 43138996

mrossi@hkkk.fi

ABSTRACT
MetaEdit+ is an environment that allows building modeling tools
and generators fitting to application domains, without having to
write a single line of code. The capability to define modeling tools
and generators is relevant as it provides the ability to raise the
abstraction of design work from code to domain concepts, and a
raise in abstraction leads to an imminent raise in productivity, as
illustrated by the past years' experiences.

In domain-specific modeling and MetaEdit+, one expert defines a
domain-specific language as a metamodel containing the domain
concepts and rules, and specifies the mapping from that to code in
a domain-specific code generator. For the method
implementation, MetaEdit+ provides a metamodeling language
and tool suite for defining the method concepts, their properties,
associated rules, symbols, checking reports, and generators.

Once the expert defines a modeling method, or even a partial
prototype, the rest of the team can start to use it in MetaEdit+ to
make models with the modeling language and the required code is
automatically generated from those models. Based on the
metamodel, MetaEdit+ automatically provides CASE tool
functionality: diagramming editors, browsers, generators, multi-
user/project/platform support, etc.

The MetaEdit+ demo will focus on showing how the domain-
specific languages and generators are made; complete with several
examples of domain-specific methods and related code generators.

Categories and Subject Descriptors
D 2.2 [Design Tools and Techniques]: Computer-aided software
engineering (CASE)

General Terms: Design, Languages.

Keywords
Metamodel; domain-specific modeling; code generators.

1. INTRODUCTION
‘One tool fits all’ – that seems to be the common principle
followed by many tools on the market today. Alternatively,
MetaEdit+ is an environment that enables you to build your own
modelling tools and code generators fitting to your own domain
— without having to write a single line of code.

The capability to define modelling and generator tools is relevant
as it provides the possibility to raise the abstraction of design
work from code to domain concepts, and a raise in abstraction
leads to an imminent raise in productivity, as illustrated by the
past years’ experiences, such as those listed in the SEI Product
Line Hall of Fame. Empirical studies such as [1] consistently back
up this observation.

With these benefits, it is little wonder that there is a growing
interest in domain-specific modelling, as shown by workshops at
OOPSLA [2] and this year’s theme of Domain-Driven
Development.

2. DOMAIN-SPECIFIC MODELLING
In domain-specific modelling and MetaEdit+, one expert defines a
domain-specific language containing the domain concepts and
rules, and specifies the mapping from that to code in a domain-
specific code generator. As soon as the expert defines a modelling
method, or even a partial prototype, the team can start to use it in
MetaEdit+ to make models with the modelling language and code
is automatically generated from those models. Developers no
longer need to solve the problem of manually mapping domain
ideas into quality code by themselves, time after time. As the
modelling language is based on the already known and used
domain concepts and rules, it is easy to remember and understand
by all developers.

3. METACASE TECHNOLOGY
For method implementation, MetaEdit+ provides a metamodeling
language and tool suite for defining the method concepts, their
properties, associated rules, symbols, checking reports and
generators with ease [3]. The method definition is stored as a
metamodel to the MetaEdit+ repository allowing future
modifications, which reflect automatically to models and
generators.

MetaEdit+ follows the given method definition and automatically
provides full CASE tool functionality: diagramming editors,
browsers, generators, multi-user/project/platform support, etc.
Whole team can immediately start to edit designs as graphical
diagrams, matrices or tables, switching between views according
to user needs. User can browse designs with filters, apply
components, link models to other designs following domain rules,
and check models with various pre/user-defined reports. The
results of modelling can be published to the web or word
processors, and generated into code for your product.

Copyright is held by the author/owner(s).
OOPSLA’03, October 26–30, 2003, Anaheim, California, USA.
ACM 1-58113-751-6/03/0010.

92

4. CODE GENERATION
In contrast to the generic code generators provided with standard
CASE tools, the basis of code generation in domain-specific
modeling is the domain itself. As with product line engineering
[4] the architecture and patterns of code found in implementations
for that domain are analyzed to determine code commonalities and
variabilities over a product family [5].
The variabilities form a significant source of information when
designing what information needs to be stored in models. For
each variability point, there must be a corresponding point in a
model where information can be stored about the choice of value
for this product variant. The code generator’s task is to transform
the models into code, often largely in the form of calls to
components using these values as arguments.
Commonalities are abstracted out into framework code: a layer of
code between the generated code and the platform and standard
libraries [6]. This information is thus not included as part of the
models — why should every model include something that is the
same for all models? Instead, the framework code is linked in with
that generated from the models.

5. CONCLUSION
Domain-specific modeling provides significant increases in
productivity, especially for product families. Providing tool
support for such a modeling method has previously required at
least a man-year of work. A metaCASE tool such as MetaEdit+
reduces the time needed down to the order of days or weeks.
Industrial experiences such as Nokia [7] show productivity gains
of 5-10 times, and comparable decreases in the time needed for
new users to become productive.

6. REFERENCES
[1] Kieburtz, R. et al., A Software Engineering Experiment in

Software Component Generation, Proceedings of 18th
International Conference on Software Engineering, Berlin,
IEEE Computer Society Press, March, 1996.

[2] OOPSLA Workshop on Domain-Specific Visual Languages
(DSVL'01), Juha-Pekka Tolvanen, Steven Kelly, Jeff Gray,
Kalle Lyytinen (eds.), University of Jyväskylä 2001.

[3] Kelly, S., Lyytinen, K., Rossi, M., MetaEdit+: A fully
configurable multi-user and multi-tool CASE and CAME
environment, Advanced Information Systems Engineering,
proceedings of the 8th International Conference CAISE'96,
Constantopoulos et al (Ed.), Springer-Verlag, 1996.

[4] Weiss, D., Lai, C. T. R., Software Product-line Engineering,
Addison Wesley Longman, 1999.

[5] Domain-Specific Application Frameworks, Mohamed E.
Fayad and Ralph E. Johnson (Eds.), Wiley 1999.

[6] Pohjonen, R., and Kelly, S., “Domain-Specific Modeling,”
Dr. Dobbs Journal, August 2002.

[7] MetaCase, Benefits of MetaCASE: Nokia Mobile Phones
Case Study, http://www.metacase.com/papers/

ACKNOWLEDGEMENTS
The authors would like to thank Slava Arion and Steven Kelly for
their help in the preparation of this article.

93

