

Copyright is held by the author/owner(s).
SPLASH’10 October 17-21, 2010, Reno/Tahoe, Nevada, USA.
ACM 978-1-4503-0240-1/10/10.

Metamodel Evolution through Metamodel Inference

Qichao Liu

Department of Computer and Information Sciences
University of Alabama at Birmingham

Birmingham, Alabama, USA

qichao@cis.uab.edu

Abstract

Serving as the schema of models, a metamodel defines the
abstract syntax of models and the interrelationships between
model elements. Model instances are often inaccessible due to
metamodel evolution or the metamodel becoming lost. This poster
describes our research recovering a metamodel from model
instances to support metamodel driven evolution.

Categories and Subject Descriptors I.6.5 [Simulation and
modeling]: Model Development

General Terms Algorithms, Design, Languages.

Keywords model-driven engineering; domain-specific modeling;
grammar inference; metamodel

1. Background and Motivation

Model-driven engineering (MDE) is considered an alternative to
traditional code-based software development due to its potential to
increase software productivity and quality [1]. In MDE, a user
defines a metamodel to represent a schema definition of the
syntax and static semantics of a model. A programming language
depends on a grammar similar to how a model depends on a
metamodel. A metamodel serves as the grammar of a model and
both grammars and metamodels represent a schema that defines
the syntax of a language.

Under most conditions the schema needs to evolve to address
new features resulting in previous instances being orphaned from
the new definition. Lämmel and Verhoef [2] [3] addressed the
schema evolution problem in the area of programming languages
and their approach is to recover grammars from grammar-related
artifacts and create a parser for language instances. In MDE,
modeling language designers often need to modify metamodels
even if they have created many instance models that depend on a
previous metamodel. As a result, those former models that depend
on the previous metamodel could not be interpreted and used by
the modified metamodel which is a waste of model instances in
most cases. The common approach toward addressing the
metamodel evolution problem is to create model transformations
that update existing model instances to be interpretable by the
latest metamodel. This work requires that both the old and new
metamodel are available for mapping and comparison. However,
users usually make changes to a metamodel without restoring the

old definition or more generally a metamodel may be lost due to
the version change or hard disk crash. Without the old metamodel
it is very hard to perform model transformation.

This research addresses the metamodel evolution problem in
MDE through metamodel recovery from model instances so that
users could perform model transformation with both the old and
evolved metamodel and enable the latest metamodel to interpret
existing model instances.

2. Limitations of Related Work

Sprinkle and Karsai proposed to update the domain models
created by a domain-specific visual language (DSVL) using
graph-rewriting (GR) techniques in [4]. Their approach could be
considered as rewriting a domain model to another one as required
by the new DSVL to make an old model evolve to conform to a
new DSVL. However, the domain models created by a DSVL is
represented using a graph structure and could not be applied to
general domain-specific modeling environment.

There is a variety of work that has been done or is being
conducted in the area of grammar inference. Traditionally, schema
evolution has been related with the problem of database schema
evolution to adapt to changes in the modeled reality. Grammar
inference has been applied to DTD and XML Schema extraction
from XML documents. For example XTRACT [5] can induce the
DTD from a set of XML documents using its regular grammar
induction engine. Our research is concentrated on recovering a
metamodel from model instances contained in XML documents to
address the metamodel schema evolution problem.

Favre [6] presented a generic metamodel-driven process,
CacOphoNy that integrates software architecture and MDE.
Although their work includes metamodel recovery, the approach
requires manual intervention. Our research also incorporates MDE
through the effort toward the metamodel recovery problem and
our process is semi-automatic beyond the information from the
model instances. Javed et al. [7] presented work on metamodel
recovery using grammar inference which addressed the more
general problem of metamodels lost due to disk crash. The work is
greatly limited to a simple metamodel and is also platform
dependent. Our research provides a general approach aiming at
solving the problem of metamodel evolution.

3. Solution Approach: MRMI

The Metamodel Recovery from Model Instances (MRMI)
research described in this poster is the first step toward addressing
the metamodel evolution problem. The idea behind metamodel
inference is to analyze the characteristics exhibited in the model

209

instances and infer a metamodel. As a result, we have
implemented EMARS (Extended MetAmodel Recovery System)
[8]. The modeling tool used in EMARS is GME [9] which could
export a model instance into XML file and modeling concepts like
“model” and “atom” are established as nodes in XML.

The metamodel inference begins with reading in a set of
instance models in XML as input. An XSLT translator performs
the XSL (Extensible Stylesheet) Transformation [10] on XML
files. XSLT uses the XML Path Language (XPath) [11] to retrieve
values of interest at specific nodes in an XML document. As the
output of the XSLT translator, a domain-specific language (DSL)
called model representation language (MRL) containing the
essence of model instances is produced. MRL is composed of
components of the model instance in a form that could be used by
the metamodel inference process. The following is an example for
‘model’ definition in MRL. As such, a mapping is constructed
from model instances in XML to MRL.

 model folderX::X
 {
 submodelsY,Y;
 fields fieldX1, fieldX2;
 connections;
 }

The MRL is then loaded into the LISA language development
environment [12]. Our metamodel inference algorithm could infer
the corresponding XML representation for MRL having an
inferred metamodel as the output. This inferred metamodel could
be loaded back into the modeling tool (e.g., GME) to view the
previous model instances. Figure 1 illustrates the MRL example in
GME.

4. Results and Contribution

We have tested MRMI successfully on various simple domains
with a small number of elements and our inference is almost
exactly the same as the original metamodel. We have also tested
the approach with some complex domains like ESML [13] with
multiple viewpoints. Due to the large number of metamodeling
elements used in ESML, the quality of our inference greatly relies
on the quality of model instances used to do the inference. We
applied MRMI on three instances created by the original ESML
metamodel and over 90% of the metamodeling elements of the
original are inferred accurately in our inference. Additionally,
MRMI currently can infer accurate generalization of elements
sharing common features and the cardinality is also inferred as
being the same as the original. Detailed experimental results will
be presented in the poster.

Our ultimate goal is to infer a metamodel exactly the same as
the original which could be used to view model instances just like
the original. However, the semantics contained in a metamodel
could not be inferred from static model instances except the
containment cardinality. Likewise, inference of OCL constraints
is not possible with the proposed technique. OCL (Object
Constraint Language) is used to describe domain semantics and
can only be captured by dynamic class diagrams. Without OCL,

the inferred metamodel may reject model instances legally created
by the original metamodel. The related work will be addressed in
our future work.

The contribution of this paper is to present MRMI for
metamodel recovery from model instances. A host of technologies
such as XSLT, LISA and metamodel inference algorithm are
utilized to solve the problem of inaccessible existing model
instances due to metamodel evolution or the metamodel becoming
lost. MRMI is the most succesful work in applying grammar
inference in the field of MDE and also serves as our first step
towards addressing the metamodel evolution problem.

Acknowledgments

This work is supported in part by NSF award CCF-0811630.

References

[1] Schmidt, D. C.: Guest Editor's Introduction - Model-Driven
Engineering. IEEE Computer, vol. 39, no. 2, Feb. 2006, pp.
25-31.

[2] Lämmel, R., Verhoef, C.: Semi-automatic grammar recovery.
Software-Practice & Experience, vol. 31, no. 15, Dec. 2001,
pp.1395-1448.

[3] Lämmel, R., Verhoef, C.: Cracking the 500 language
problem. IEEE Software, vol. 18, no. 6, Dec. 2001, pp.78-88.

[4] Sprinkle, J., Karsai, G.: A domain-specific visual language
for domain model evolution. Journal of Visual Languages
and Computing, vol. 15, no. 3-4, Aug. 2004, pp. 291-307.

[5] Garofalakis, M. N., Gionis, A., Rastogi, R., Seshadri, S.,
Shim, K.: XTRACT - A system for extracting document type
descriptors from XML documents. In Proceedings of the
ACM SIGMOD International Conference on Management of
Data, ACM Press, Dallas Texas, USA, May. 2000, pp. 165-
176.

[6] Favre, J-M.: CacOphoNy - Metamodel driven architecture
reconstruction. In Proceedings of the 11th Working
Conference on Reverse Engineering, Nov. 2004, pp. 204-
213.

[7] Javed, F., Mernik, M., Gray, J., Bryant, B.: MARS - A
metamodel recovery system using grammar inference.
Information and Software Technology, vol. 50, no. 9-10,
Aug. 2008, pp.948-968.

[8] Liu, Q., Bryant, B.R., Mernik, M.: Metamodel recovery from
multi-tiered domains using extended MARS. In Proceedings
of the 34th Annual International Computer Software and
Applications Conference, Seoul, South Korea, Jul. 2010, pp.
279-288.

[9] The Generic Modeling Environment,
http://www.isis.vanderbilt.edu.

[10] Clark, J.: XSL Transformations (XSLT) (Version 1). W3C
Technical Report, Nov. 1999,
 http://www.w3.org/TR/1999/REC-xslt-19991116.

[11] Clark, J., DeRose, S.: XML path language (XPath) (Version
1.0). W3C Technical Report, Nov. 1999,
http://www.w3.org/TR/1999/REC-xpath-19991116.

[12] Mernik, M., Lenič, M., Avdičaušević, E., Žumer V.: LISA -
An interactive environment for programming language
development. In Proceedings of the 11th International
Conference on Compiler Construction, Apr. 2002, pp. 1-4.

[13] Karsai, G., Neema, S., Sharp, D.: Model-driven architecture for
embedded software - A synopsis and an example. Science of
Computer Programming, vol. 73, no. 1, Sep. 2008, pp.26-38.

Figure 1. MRL example in GME

210

