
R-RIO: Reflective-Reconfigurable Interconnectable Objects
Alexandre Sztajnberg

DICC/IME/UERJ
Rio de Janeiro, RJ, Brazil

alexszt@uerj.br

Orlando Loques
CAA/IC/UFF

Niterói, RJ, Brazil

loques@ic.uff.br

ABSTRACT
Separation of concerns is a key goal in achieving software
reusability. Meta-Level Programming approaches pave the way to
separation of concerns by handling functional and non-functional
aspects in different levels, but provide little help for software
composition, verification and evolution activities. Approaches
based on Software Architecture Description Languages can
overcome these deficiencies and additionally may discipline, and
make explicit, the deployment of meta-level programming. R-RIO
combines both approaches providing a useful framework to
develop, implement and maintain applications.

1   Introduction
Modern computer applications must be developed rapidly in order
to meet market demands. Variants of a basic functional system
have to be delivered in a short time, and comply with specific
functional and non-functional requirements. Successful software
development for those applications would benefit from some
common guide-lines:

• modularity is a prime to collect a functional component set
and selectively add to it non-functional features, modularity
will help reusability if carefully applied;

• components can be independently designed, may be
implemented using different programming languages, and
run on different operating platforms;

• applications may have to change their component makeup
during theirs life-cycle; software architectures have to be
flexible to evolve dynamically;

• verification of formal properties should assure the quality of
the delivered software.

In this context, methodologies, development systems and
supporting environments that can integrate these guide-lines into
systematic software-engineering practice, are necessary.
Compositional development and separation of concerns, with
which different requirements can be tackled separately are key
concepts to attain this goal.

Meta-Level Programming (MLP) approaches allow arranging
software elements in different levels of concerns. Using
reflection-like techniques, the designer can isolate non-functional
requirement code in a meta-level and have the base level

computation reified to that meta-level whenever necessary.
However, MLP is usually associated with specific object-oriented
languages, were composition is achieved using inheritance
mechanisms, that hide the actual structure of the software inside
the objects. The resulting software structure opacity makes
verification and dynamic evolution activities fairly difficult.

Component-Based (CB) approaches allow composing
applications from heterogeneously-built components, providing
reusability and interoperability. Some CB development
environments provide mechanisms for non-functional requirement
programming (e.g., CORBA interceptors), but they lack adequate
concepts and mechanisms to describe, configure (non-functional
aspects included), and perform formal verification of applications
in a systematic way.

2   Project Goal
Our goal is to demonstrate that the combination of the abstraction,
configuration description, and analysis capabilities of Software
Architecture/Configuration Programming (SA/CP) approaches,
and the reification flexibility provided by MLP (including its
intrinsic separation of concerns support capability) can provide a
sound framework to develop the intended class of applications.

SA/CP goes some steps further from CB, allowing the description
of software systems in an abstract level, and explicitly separating
concerns regarding functional components from their interaction
schemes. This makes it easier for the designer to understand the
system overall architecture and to configure applications to fulfill
specific non-functional requirements. SA/CP are described with
Architecture Description Languages (ADL), which are suitable
for property and architectural conformance checking due to the
explicit module composition exposition. This also helps achieving
a natural mapping from the described SA to the actual system
software structure, and can in a later stage facilitate dynamic
reconfiguration activities.

MLP techniques, such as reflection, by their turn, allow us to
design applications in separate levels: a base level, were basic
functional computation is performed and a meta-level, were non-
functional (including operational) computation can be handled. In
addition to encapsulating non-functional concerns in a meta-level,
reflection allows applications to reason about themselves and
possibly make adaptations in their software composition, e.g., in
order to adapt to operational status changes.

Despite of presenting some appropriate features for application
development, when taken separately, the use of SA/CP and MLP
have some drawbacks. MLP tools and reflection run-time support
environments do not provide direct support for reconfigurations
activities. In this case, reconfigurations are usually programmed
in ad-hoc manner and rely mostly on the programmer’s skills,

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a
fee.

OOPSLA 2000 Companion  Minneapolis, Minnesota
 Copyright ACM 2000  1-58113-307-3/00/10...$5.00

85



hindering reuse. Property verification is also more difficult
because the software structure is not exposed.

The explicit description of non-functional aspects in SA/CP
proposals is not a common practice. Most contemporary proposals
only consider specific non-functional aspects, such as remote
communication. Combining MLP and SA/CP, by handling
component interconnection and interaction (non-functional)
concerns in a meta-level can provide a framework that
encompasses the advantages of both approaches. In this way,
SA/CP can discipline the use of reflection by providing a simple
mechanism to reify interactions. In addition, dynamic changes in
the application, triggered from a meta-level, can now be handled
in a systematic way.

3   R-RIO
R-RIO (Reflective-Reconfigurable Interconnectable Objects)
integrates in single framework key concepts of Software
Architecture / Architecture Description Languages (SA/ADL) and
Meta-Level (MLP) Programming approaches [1]. This integration
helps to achieve separation of concerns and improve software
reuse. In addition, the capability of supporting dynamic
configuration and flexibility on component programming
language choice are potentially improved. In the following, the
main elements of R-RIO are presented.

• A component model based on the concepts of SA/CP: (a)
modules, application components that basically encapsulate
functional concerns; (b) connectors, used at the architecture
level to define module’s interaction relationships. At the
operating level, connectors encapsulate, mediate and handle
module interaction-domain concerns; (c) ports, identify
access points (through which modules and connectors
provide or require services) and are also used to link
explicitly modules and connectors.

• A software development methodology that stimulates the
designers to comply with a simple meta-level programming
discipline, were functional concerns are concentrated in the
modules (base level) and non-functional concerns are
encapsulated in connectors (meta-level) [2].

• A configuration model that allows for the dynamic creation,
connection, deletion and reconfiguration of components of
an application architecture.

• CBabel, an ADL used to describe: (i) application's
components and interaction structure; (ii) contracts
specifying non-functional concerns (such as coordination,
distribution, QoS, and special interaction patterns); and (iii)
planned reconfigurations.

• A reflective middleware that provides configuration
management and executive services, used to make and
control running images from a software architecture.
Through architecture-level reflection, an application can
collect meta-level information, kept by the middleware, and
reason about its own architecture in order to perform
reconfigurations [2]. This middleware also facilitates
implementing dynamic adaptation and software evolution
activities.

The mapping of modules, ports and connectors to an
implementation depends on the particular environment. In our
prototype environment, primitive module types are defined by

Java classes, and composite modules can be composed by
arbitrary configurations of primitive modules (it is also possible to
compose modules using Java's inheritance features, but this would
imply in loosing the capability of reconfiguring the individual
composing modules). Ports are associated to Java methods
declarations (signatures) at the configuration level and to method
invocations at the code level. It is important to note that only the
methods explicitly associated with ports are configurable through
connectors and directly visible at the configuration level; the
remaining methods use normal Java referencing and binding
mechanisms. Connectors types are currently defined and
composed as modules, but they have a special implementation and
are specially treated by the configuration management. Module
and connector types (mapped to Java classes) are associated to
module and connector instances through R-RIO’s ADL
declarations. At configuration time, module and connector
instances are created as Java objects.

4   Conclusions
The R-RIO’s component and configuration models are quite
stable. We also developed a prototype for the reflective
middleware. One of its features, that improves the flexibility of
our approach, is the support of context-reflective adaptation, i.e.,
generic connectors, encapsulating specific concern-related code
and off-the-shelf communication mechanisms, can be
automatically and dynamically adapted to any component
interface signature [1]. A prototype GUI to access the R-RIO’s
features was also developed. With the GUI, one can graphically
design and run software architectures.

We are validating our research in two ways: (i) developing
examples upon a prototype of the reflective middleware, and (ii)
showing that CBabel descriptions are suitable to formal proofing
of properties.

Currently, we are working on CBabel’s QoS contracts. The idea is
to have an open mechanism to allow the addition of QoS aspects
and also define their implementation mapping on the R-RIO's
configuration model [3]. Examples with QoS aspects are under
development.

A preliminary version of R-RIO is available for research use; see
http://www.ic.uff.br/~rrio for details.

Acknowledgments
This work has been partially supported by the following Brazilian
research funding agencies CNPq, CAPES, Finep and Faperj.

References
[1] Loques, O., Sztajnberg, A., Leite, J. and Lobosco, M., "On the

Integration of Meta-Level Programming and Configuration
Programming", In Reflection and Software Engineering, Lecture
Notes in Computer Science, V. 1826, pp.191-210, Springer-Verlag,
June, 2000.

[2] Sztajnberg, A. and Loques, O., "Reflection in the R-RIO
Environment", In Proceedings of the Middleware’2000 Workshop
on Reflective Middleware, Palisades, NY, EUA, April, 2000.

[3] Sztajnberg, A. and Loques, O., "Bringing QoS to the Architectural
Level", accepted for presentation, ECOOP 2000 Workshop on QoS
on Distributed Object Systems, Cannes, France, June, 2000.

86


