A Lightweight JavaScript Engine for Mobile Devices

Ryan H. Choi *

Youngil Choi

Software R&D Center
Samsung Electronics, Republic of Korea

{ryan.choi,duddIf.choi}@samsung.com

Abstract

We present Typed JS, a subset of JavaScript that sup-
ports AOT compilation by utilizing type-decorated syn-
tax. Typed JS is designed for mobile devices with goals
of having smaller memory footprint while achieving high-
performance, which is accomplished by having static types
and AOT compilable architecture. Experiments show that
Typed JS requires significantly much less memory usage
while performing better than industry-leading JavaScript en-
gines on a mobile platform.

Categories and Subject Descriptors D.3.2 [Programming
Languages]: Language Classifications— Very high-level lan-
guages; D.3.4 [Programming Languages]: Processors—
Code generation, Compilers

Keywords JavaScript, Static Typing, Mobile

1. Introduction

In Web application framework, JavaScript brings web ap-
plication interactive by implementing client-side interaction
and business logic. However, due to unsatisfactory perfor-
mance of JavaScript, improving the performance and mem-
ory usage of JavaScript has been an active research and engi-
neering problem [1, 3]. One research direction is to propose
a variant of JavaScript that restricts current JavaScript’s dy-
namicity by adding static types. Noticeable work include
TypeScript! and Flow?, which both extend JavaScript to
accept type-decorated syntax. The aim of these work is
to utilize many already-integrated optimization techniques
in JavaScript engines by providing extra type information.
Ahead-of-time (AOT) compilation can generally optimize

* Corresponding author
Uhttp://www.typescriptlang.org
2 https://flowtype.org

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

MobileDeLi’15, October 26, 2015, Pittsburgh, PA, USA

© 2015 ACM. 978-1-4503-3906-3/15/10...$15.00
http://dx.doi.org/10.1145/2846661.2846662

better for performance, but it is not suitable for JavaScript
due to its untyped dynamicity design. asm.js® attempts to
integrate AOT compilation into JavaScript by translating
C++ code into non-dynamic JavaScript code that runs faster.
However, the use of asm.js is limited, as it cannot support
JavaScript core design such as objects, prototype, etc.

In this paper, we propose Typed JavaScript (Typed JS), a
subset of JavaScript that supports AOT compilation by utiliz-
ing type-decorated syntax. Unlike Google’s V8 and Apple’s
JSC, Typed JS is designed to reduce runtime memory foot-
print and binary size when run on mobile devices. Unlike
asm.js, Typed JS supports most of JavaScript core design
such as object model, prototype, functions and closures, and
garbage collection. By utilizing type-decoration and fixed
object layout, object lookups are removed, which results in
achieving high performance. Also by supporting AOT com-
pilation, JavaScript VM is replaced by much compact native
runtime library, which significantly reduced memory foot-
print. Typed JS provides additional advantages. Rigorous
type checking during compilation allows us to early detect
errors caused by type-mismatching. Any applications writ-
ten in Typed JS runs on any platform, when recompiled,
without modifying the source code. Furthermore, only bi-
nary files can be distributed, if one wants to prevent from
unauthorized code modification, which often is an impor-
tant requirement in industry. Finally, Typed JS can be used
to easily implement mobile applications. A binding API be-
tween Typed JS and EFL* graphics library on Tizen> mobile
platform is implemented, and we successfully implemented
mobile applications in Typed JS which were originally writ-
ten in C++. Our recent work [2] describes Typed JS in detail.

Organization: Section 2 presents design principles of
Typed JS. Section 3 gives design, model, and implementa-
tion details of Typed JS. Section 4 shows experimental re-
sults. Lastly, we conclude in Section 5.

2. Design of Typed JS

Typed JS enforces type annotations, allows both dynamic
and static features, and supports AOT compilation for perfor-
mance and smaller memory footprint on mobile platforms.
The design principles are as follows.

3 http://asmjs.org
4 https://www.enlightenment.org
3 https://developer.tizen.org

Compiler
Parser : TIDL
Esprima e

C Mozilla AST + syntax decoration)

code Closure

var hanoi =
function(disc: int,
src: string,
aux: string,
dst: string):

void { 1
if(disc > 0) { C Instruction (C++ format) D)
hanoi(disc-1, src, i L
dst, aux); (Native Binary
s H

Runtime
Built-in Obj Binding | || External Libraries
AP

console.log(
"Move disc " +

:
disc +

" from " + src + Object Model String

" to " + dst); [closure][Function
hanoi(disc-1, aux, = e PI[_a;fcrm
src, dst);) b ibrary

Object Property.

} Representation Access

}
hanoi(5, "src",
|Iauxl| s "dSt") ;

Figure 1. Tower of
Hanoi in Typed JS

Garbage Collector

Figure 2. Architecture of Typed JS

Type Annotation: Type checking for dynamic objects
in runtime is one of the major performance bottlenecks in
JavaScript. Typed JS extends JavaScript such that, types of
objects must be supplied when objects are declared. Figure 1
shows an example of a function written in Typed JS.

Object Model: Two object models, dynamic object
and sealed class models, cohesively exist. Dynamic ob-
ject model is the prototypical model found in JavaScript,
while sealed class model is the class-oriented model found
in C++. Former is to be compatible with typical JavaScript,
while latter is designed to give better performance. The dif-
ferences between these two models are that, dynamically
adding/removing properties is removed in the sealed class
model, and all types are finalized in the compilation time.

AOT Compilation: Typed JS is compiled to a target-
specific, optimized binary executable. Moreover, Typed JS
utilizes modern compiler optimization techniques, as it an-
notates types and supports static classes. In our prototype,
Typed JS compiler transpiles Typed JS source code into
C++11, and it is natively compiled and optimized by g++.

Robust and Secure: Typed JS follows the strict mode
of JavaScript, and redefines a set of dynamic features that
can be efficiently implemented. Also, Typed JS does not
support evaluating source code during runtime, i.e., eval(),
eliminating security holes.

3. Architecture of Typed JS

Figure 2 shows the architecture of Typed JS. It consists of
compiler and runtime parts. The compiler part takes Typed
JS source code as input, and generates C++11 code. The
runtime part provides the implementation of the internal data
structure and runtime library on which Typed JS depends.
Compilation is a 3-phase process. First, the parser gen-
erates an abstract syntax tree (AST) from Typed JS source
code. The AST follows Mozilla JavaScript AST except it
additionally contains type-specific information and Typed JS
extensions such as type-annotated objects and sealed classes.
Moreover, f:sprima,6 a ECMAScript 5.1 parser, is extended

6 http://esprima.org

70 ~108

60} 4 210 F Typed JS —1 4§
g sof 1 giodE
o 40 | J 107 F
o @ 4|
E 30} | 510,
= > 3k
€ 210
S 20 - S 42k
C ot : 1 5%
o s o |5 E]go
B, 2. G O % &
%/’4- 6‘/@/' /@0\9 /,%\v QO%/.))%’ oO”b
006 © 7R /L& @%

Sunspider Testsuites Sunspider Testsuites

(a) Runtime (b) Memory

Figure 3. Tizen Platform

to parse and validate Typed JS syntax. Furthermore, Tizen
binding API written in Tizen IDL (TIDL) is parsed and
validated, and added to the AST. Second, the code gener-
ator takes the AST as input, performs semantics validation,
and generates C++11 code. We modified escodegen,” which
originally generates JavaScript code from an AST, to gen-
erate C++11 code. Furthermore, we modified escodegen to
perform type inference by deriving and applying a set of type
inference rules during the semantics validation to deduce un-
known variable types. Finally, the auto-generated C++ code
is compiled and linked to Typed JS runtime library and op-
tionally Tizen library, if required.

4. Experimental Results

We now present experimental results. Experiments were
conducted on a preproduction, low-end Samsung Tizen mo-
bile phone. Typed JS is compiled using Tizen SDK 2.3 and
g++. Sunspider testsuites® were used for performance bench-
mark. Furthermore, the same testsuites were executed on V8
and JSC, and were also ported to C and executed.

Figure 3 shows the runtime performance and memory
usage of Typed JS against V8, JSC, and C on the Tizen
mobile phone. Typed JS outperforms V8 and JSC by up to
3.5x while consuming up to 20x less memory.

S. Conclusion
In this paper, we presented Typed JS, a memory efficient but
yet high-performance JavaScript engine for mobile devices.
By utilizing type-decoration, Typed JS can be compiled
ahead-of-time, which results in achieving smaller mem-
ory footprint and high-performance. Experiments show that
Typed JS is memory-efficient and achieves better perfor-
mance than industry-leading JavaScript engines on Tizen.
As future work, we plan to update C++11 code generator
to generate LLVM IR to give us more performance optimiza-
tion opportunities.

References

[1] W. Ahn, J. Choi, T. Shull, M. J. Garzaran, and J. Torrellas.
Improving javascript performance by deconstructing the type
system. In PLDI, 2014.

[2] R. H. Choi and Y. Choi. Typed js: A lightweight typed
javascript engine for mobile devices. In MobiCASE, 2015.

[3] T. Rompf, A. K. Sujeeth, K. J. Brown, H. Lee, H. Chafi, and
K. Olukotun. Surgical precision JIT compilers. In PLDI, 2014.

7 https://github.com/estools/escodegen
8 http://www.webkit.org/perf/sunspider/sunspider.html

