
Automatic Code Generation and Solution Estimate for
Object-Oriented Embedded Software

Ronaldo Rodrigues Ferreira
Instituto de Informatica

Universidade Federal do Rio Grande do Sul (UFRGS)
Porto Alegre, Brazil

rrferreira@inf.ufrgs.br

Abstract
This work tailors an Alloy model translator to Java code and
an estimate tool for physical resources optimization into a
design-flow. Experimental results show distinct implementa-
tion strategies only varying data structures used in generated
Java code.

Categories and Subject Descriptors C.3 [Special-purpose
and Application-based Systems]: Real-time and Embed-
ded Systems; D.1.2 [Programming Techniques]: Auto-
matic Programming; D.2.4 [Software Engineering]: Soft-
ware/Program Verification

General Terms Design, Languages, Measurement, Perfor-
mance, Verification

Keywords Alloy, Code Generation, Design Space Explo-
ration, Embedded Systems, Java, Modeling Languages,
Software Automation

1. PROBLEM STATEMENT
The fundamental issue in embedded software development is
the constrained physical resources available to software ex-
ecution. Any embedded software must be carefully tuned to
minimize use of hardware resources and avoid waste. Simple
physical requirements such as program memory, energy and
power consumption create a huge solution exploration space.
Thus, automatic decision techniques for physical properties
estimation and optimization, also called design space explo-
ration, are mandatory to successfully choose a final system
design.

Embedded system industries seek quality within their
tight time-to-market windows. To enhance productivity and
quality for software development, the industry is shifting
its development from solely low-level coding towards high-
level modeling. Model-driven approaches rely on code gen-
erators to reduce overall coding time. It is desirable that code
generators using high-level models embody formal verifica-

Copyright is held by the author/owner(s).
OOPSLA ’08, October 19–23, 2008, Nashville, Tennessee, USA.
ACM 978-1-60558-220-7/08/10.

Figure 1. Proposed flow for embedded software automation

tion in order to assure model consistency with the applica-
tion requirements.

2. PROPOSED SOLUTION
This work introduces a design-flow targeting object-oriented
(OO) embedded software development, which provides au-
tomatic code generation from formal high-level Alloy mod-
els plus solution estimates and exploration of physical prop-
erties. Figure 1 illustrates the proposed design-flow. Alloy
Analyzer verification tool accompanies the Alloy language,
providing an efficient state reduction algorithm before re-
solving the formal specification by bounded model check-
ing. This work uses DESEJOS (1) tool for physical proper-
ties estimate and exploration, and adopts the FemtoJava (2)
processor as embedded platform. This processor is a stack
based Java Virtual Machine implementation that executes
Java bytecodes natively. We have adopted FemtoJava and
DESEJOS due to their use of Java, which makes this design-
flow general enough to be adapted to others OO based plat-
forms. This work presents the Model Translator implemen-
tation that translates an Alloy model into different Java im-
plementations of the modeled application.

The transformation between Alloy and Java has several
issues due to the paradigm shift from a declarative language
to an object-oriented one. Alloy has relational operation
semantic, does not embody explicit data structures, and does

909



not handle some necessary constructs to program execution,
such as I/O operations. The model translator performs code
synthesis of these low-level constructs.

We have designed translation algorithms to generate reac-
tive systems (RS). Often, execution of an RS is infinite. RS
are a problem class where there is finite state machine (FSM)
capturing events thrown by internal or external actors. After
an event is caught, some data processing is performed ac-
cordingly to the FSM next state function, and usually the
FSM control is returned to the environment. RS are widely
employed in real embedded systems, mainly in control ori-
ented applications. This work has two main contributions:
• Devising and implementing translation algorithms be-

tween Alloy and Java for control oriented RS applica-
tions;

• Proposing of an integrated design-flow for OO embed-
ded software development automation based in a formal
method.

3. EXPERIMENTAL RESULTS
Solution estimates of physical properties have been obtained
for a Drink Vending Machine Java code generated from its
Alloy model, compatible with the FemtoJava instructions
set. This application is control oriented, being composed of
two operations: inserting coins into the machine and buy-
ing a drink. The generated Java code contains two collec-
tions: one storing inserted coins and the other representing
the drink storage. Figure 2 presents the results obtained for
solution estimates of physical properties for five different so-
lutions of the Vending Machine. Each solution has the same
FSM; the only variation between them is the assignment of
distinct data structures to the two existing collections. These
five generated solutions contain the following pairs of data
structures representing the coin and drink storage, respec-
tively: #1:(Linked List, Linked List), #2:(Linked List, Map),
#3:(Linked List, Set), #4:(Set, Map) and #5:(Set, Set). In the
experiments we have used the Javalution (3) data structures
library because it is entirely written in Java, enabling DE-

Figure 2. Physical estimates for distinct solutions

SEJOS tool to estimate physical properties of the generated
solutions. These results are explained by Equation 1.

Energy = Poweraverage ∗ Cycles/Frequency (1)

Frequency and average power are constant over all solu-
tions. These results together with Equation 1 show that only
by varying used data structures, there are significant de-
sign tradeoffs between solutions, due to the variation in total
number of cycles. Clearly, solutions #4 and #5 take advan-
tage of not using linked lists, reducing algorithmic complex-
ity from O(n) to O(1) when accessing data. This behavior
is explained by the intensive elements insertion and deletion
operations over object collection.

4. RELATED WORK
ForSyDe (4) is a framework for modeling and synthesizing
embedded systems which uses Haskell as specification lan-
guage. Although adopting a language with well defined se-
mantics, ForSyDe lacks formal verification and design space
exploration. Its main advantage is its tailored deployment of
software and hardware, often called co-design.

In addition to integrated hardware and software co-
design, Metropolis provides formal verification based on
PROMELA specifications and on the SPIN model checker
(5). It also provides execution trace simulation, requiring
less effort and time to check system integrity than model
checking, however without formal correctness. Metropolis
does not offer integrated design space exploration and solu-
tion estimation.

5. FUTURE WORK
The next step is the model translator extension to support
the Synchronous Data Flow (SDF) (6) model of computa-
tion. To do so, we need to define a SDF Alloy library and the
translation algorithms to it. With SDF it will be possible to
perform solution selection by means of models of computa-
tion, leveraging current solution exploration techniques.

References
[1] Mattos, J. C. B., and Carro, L. 2007. Object and Method Ex-

ploration for Embedded Systems Applications. 20th SBCCI,
Brazil. ACM Press, New York. p. 318-323.

[2] Ito, S. A., Carro, L. and Jacobi, R. P. 2001. Making Java
work for microcontroller applications. IEEE Design & Test
of Computers, 18 (5), p. 100-110.

[3] Dautelle, J. 2007. Fully Deterministic Java. AIAA SPACE
2007 Conference and Exposition, California, p. 18-20.

[4] Sander, I. and Jantsch, A. 2004. System Modeling and Trans-
formational Design Refinement in ForSyDe. IEEE TCAD, 23
(1), p. 17-32.

[5] Balarin, F., et.al. 2003. Metropolis: An Integrated Electronic
System Design Environment. Computer, 36 (4), p. 45-52.

[6] Lee, E. A. and Messerschmitt, D. G. 1987. Synchronous Data
Flow. Proceedings of the IEEE, 75 (9), p. 1235-1245.

910


