
How Do Teams Shape Objects? - How Do Objects Shape Teams? 

Panel Session 

Steven Fraser, Kent Beck, Grady Booth, Derek Coleman, Jim Coplien, Richard Helm, and Kenny Rubin 

Background 
Each panelist was asked to provide his definition 
of team and a position statement reflecting on: 

Resolved: That Teams AfSect Objects, 
But Objects Do Not Affect Teams. 

For the purpose of initial positions, panelists were 
grouped by the chair as: 

For the proposition: 
Derek Coleman, Jim Coplien, and Kenny Rubin 

Against the proposition: 
Kent Beck, Grady Booth, and Richard Helm 

Steven Fraser 
Panel Chair 

Bell-Northern Research Ltd., 
Ottawa, Ontario, Canada. 

sdfraser@bnr.ca 

Teamwork is the most important key to success in 
almost all software projects. What makes a good 
team (roles, organization, education, communi - 
cation bandwidth, management, process, etc.) 
remains an open question in many situations. To 
quote Gerald Weinberg from Understanding the 
Professional Programmer (Dorset House, 1988): 
The simple fact is, that we don’t know how to 
assess the “d@culty” inherent in any meaningful 
problem. In every useful experiment on program- 
ming so far performed, where several program - 
mers or teams worked on the “Same “problem, 
there have been variations of 10 to I or more in 
performance. Usually 30 to I or 50 to I is a more 
typicalfigure. My own conclusion [Weinberg’s] 

from this is that in many cases the concept of 
‘problem difjculty ” makes no sense as a measure- 
ment. The dtfftculty seems to be a relationship be- 
tween the problem and the approach to solving it. 

The goal of this panel is to examine how teams 
affect objects and how objects affect teams. Why 
should a chicken-and-egg challenge be worthy of 

debate? Two related questions at the heart of the 
matter arise: Firstly, is there a team organization 
that can facilitate object system development? 
Secondly, is there an object organization that 
makes teams more effective? The assumption is 
that insight into these questions will improve the 
state of the practice. 

According to Peter Senge et. al. (The Fifth 
Discipline Fieldbook, Doubleday 1994) the word 
team can be traced back to the Indo-European 
word “deuk” (to pull); it has always included a 
meaning of ‘pulling together. ” . . . We [Senge, et. 
al.] define “teams” as any group ofpeople who 
need each other to accomplish a result. 

Tasks performed by a team can be characterized 
broadly as generation (planning), selection 
(decisions), negotiation (trade-offs), and execution 
(implementation). Effective team performance is 
dependent on a collective strategy, group 
motivation, and focused capability that matches 
skills, roles, and responsibilities to the set of tasks. 

Biography 
Steven Fraser is on staff at Bell-Northern Re- 
search’s Computing Research Laboratory in 
Ottawa. He is currently on assignment in Pitts - 
burgh at the Software Engineering Institute (SET) 
collaborating with the Application of Software 
Models project on the development of domain 
engineering techniques. 

Since joining BNR in 1987, Fraser has contributed 
to the ObjecTime project, an 00-based CASE- 
Design Tool and to the BNR BCS software 
development process. Fraser completed his 
doctoral studies at McGill University in Electrical 
Engineering. He holds a Master’s degree from 
Queen’s University at Kingston in applied Physics 
and a Bachelor’s degree from McGill University in 
Physics and Computer Science. Fraser is an avid 
photographer and opera buff. 

468 



Kent Beck 
FirstClass Software 

70761.1216@compuserve.com 

The most important remaining barrier to pro - 
grammer productivity is the bandwidth of human 
communication. I am exploring an approach to 
improving communication called patterns, which 
encode common usage in simple phrases. Objects 
are an ideal target for patterns because they en- 
courage deferring some design decisions until 
much later than other programming methods. 

Biography 
Kent Beck has 10 years of experience in objects. 
He is best known for his contributions to the CRC 
object finding technique and for applying pattern 
designing and building objects. 

Grady Booth 
Rational Software Corporation 

egb@rational.com 

For the purpose of this debate, let me broadly de- 
fine “team” to include those members of an orga- 
nization that are either directly responsible for 
writing software or for supporting those who do. 
Thus, my definition would include programmers, 
analysts, toolsmiths, program managers, quality 
assurance personnel, testers, writers, designers, 
and architects. Quite intentionally, this definition 
includes anyone who has an impact upon the suc- 
cess or failure of a software project, particularly as 
it relates to creating tangible products and to miti- 
gating software risks. 

I first concede the point that teams affect objects. 
Software folklore, backed up by a few legitimate 
studies involving some hairy mathematics, clearly 
shows that the structure of a software product - 
either good or bad - is directly impacted by the 
structure of the team that created it. Consider, for 
example, one Really Large object-oriented project 
whose analysts were housed in one building, and 
whose developers were housed in another. I for 
one was not surprised to see this project turn into a 
classic case of software meltdown. Similarly, the 
hyper productive projects I’ve encountered are all 
characterized by having an open, elegant, and 
high-energy team structure - and their software 
products reflect these same characteristics. 

However, it is painfully evident that objects affect 
teams (and, not to reduce this debate to personal 
attacks, my esteemed opponents in this debate are 
clearly pond scum if they consider otherwise). 

Consider the structure of an organization that de- 
velops software for a mainframe COBOL applica- 
tion, versus one that develops software in C++ or 
Smalltalk for a client/server application. In the 
successful project, there exist very different roles 
and responsibilities among the members of each of 
these teams. Indeed, there are certain roles in the 
object-oriented project that have no analog in the 
non-object-oriented one. For example, a typical 
object-oriented project will include architects (who 
invent clusters of classes and mechanisms), ab- 
stractionists (who are skilled at discovering classes 
and objects), and application engineers (who take 
the components developed by the architect and the 
abstractionists and assemble them into applica- 
tions). 

I’ll state my point even more directly: attempting 
to develop a complex object-oriented software 
system with a non-object-oriented team will add 
significant risk to the success of any project. 

Biography 
Grady Booth is Chief Scientist at Rational. He has 
been with the company since its foundation in 
1980. Booth has pioneered the development of 
object-oriented analysis and design methods. His 
work centers primarily around complex software 
systems. Booth is the author of three books 
published by Benjamin - Cummings, including 
Software Engineering with Ada and Software 
Components with Ada. As a derivative work to his 
second book, Booth developed foundation class 
libraries written in Ada and C-t-t. His third book, 
titled Object-Oriented Analysis and Design, 
describes the theory, notation, process, and 
pragmatics of object- oriented technology. He is 
currently working on a fourth book, dealing with 
the management of object-oriented projects. He 
has also published more than 75 technical articles 
on object-oriented technology and software 
engineering. Booth has lectured on these topics at 
numerous conferences and workshops in the 
United States, Europe, and the Pacific Rim. 

Booth is a Distinguished Graduate of the United 
States Air Force Academy, where he received his 
B.S. in Computer Science in 1977. He received an 
M.S.E.E. in Computer Engineering from the 
University of California at Santa Barbara in 1979. 
Booth is a member of the American Association 
for the Advancement of Science, the Association 
for Computing Machinery, the Institute of 
Electrical and Electronic Engineers, and Computer 
Professionals for Social Responsibility. 

469 



Derek Coleman 
Hewlett-Packard Laboratories 

Palo Alto California 
dc@hplsrd.hpl.hp.com 

From experience, I believe teams are more impor- 
tant than objects for getting successful software 
development. Establishing a shared vision and 
putting the organization in place to make it happen 
is worth an awful lot of class frameworks - 
whoever wrote them. 

Most of us are in the business of delivering prod- 
ucts, thus products, too, count more than objects. 
Products might be built from objects, but most cus- 
tomers do not care much about objects. Because 
object teams should focus on product delivery, the 
old roles are still applicable - the analyst who de- 
fines the required product; the designer who builds 
the architecture and the implementer who codes 
the architecture. 

Prototyping is a good reason for using objects, but 
prototyping was not invented by objects. So again, 
object teams adopt the old roles: the analyst proto - 
typer who helps resolve what the customer wants 
and the design prototyper who makes “proof of 
concept” models for difficult technical issues. We 
should not forget the other key role: the person 
who makes sure that prototypes are not delivered 
as products! 

Software reuse is a much vaunted reason for 
adopting object technology - but one can get reuse 
without objects. Plans which call for asset produc- 
ing teams and asset consuming teams are very 
ambitious. Unless the domain is very well under- 
stood it is hard to produce a stable set of really 
reusable object classes. Even then a large invest- 
ment is required to ensure that the objects are truly 
generic and of high enough quality. Then there is 
business problem of how to get the return on that 
investment. Finally, even if all these issues are un- 
der control, when push comes to shove, product 
schedules have a tendency to override asset pro- 
duction. 

Probably the most practical form of reuse is the in- 
cremental development and delivery of product 
families, i.e. reuse constrained by the schedule of 
delivering products. Incremental delivery relies on 
having a clear definition of each product release 
and then using the product release schedule to 
drive the scheduling of the architecture design and 
the code production. 

To plan a product-family planning the features of 
each release need to be precisely specified early on 
during OOA. (Note: A feature is a stimulus-re- 
sponse pair such that if the user provides a stimu- 
lus then the product responds by changing its state 
and outputting a response.) Precise specifications 
of features allows them to be prioritized and 
grouped together to constitute the releases. 

Features have dynamic behavior which has to be 
mapped on to object interactions (the “key mech- 
anisms”, contracts, etc.) during OOD. Thus an in- 
cremental delivery team must work with a notion 
of architecture that includes object interactions as 
well as the usual class hierarchy or relationship 
model. Of course, if the software is to be multi- 
process then each process must also be specified 
by the architecture. 

To keep the development on track the architecture 
must be always visible to the whole team. Its de- 
velopment needs to be the responsibility of the 
system architect role whose job it is to maintain 
the architecture and ensure that it remains consis- 
tent and that all changes are propagated to other 
team members. 

So whichever way I look at it - it seems that it is 
the team that affects objects and not the other way 
around. In fact, an even stronger form of the 
proposition might hold: “teams are in business to 
deliver products, product plans drive architectural 
development and the architecture affects the ob- 
jects”. 

Biography 
Derek Coleman holds a B.Sc (Physics) and an 
M.Sc (Computer Science) from the University of 
London. He is manager of the Application 
Engineering Department of Hewlett Packard 
Laboratories, Palo Alto. 

Before relocating to Palo Alto in 1994, Derek was 
a project manager in the HP Labs Bristol Research 
Centre in UK, where he led a team researching 
into object-oriented analysis and design tech- 
niques. He is a co-author of Object-oriented 
Development: the Fusion method published by 
Prentice-Hall in 1993. Derek is an active member 
of the object-oriented research community and is 
the author of many papers on software engineering 
and formal methods. 

470 



Organization and Objects: Are They Separable? 
James 0. Coplien 

AT&T Bell Laboratories 
cope@research.att.com 

A team is a group of people who work together 
toward a common goal, driven by a complemen- 
tary set of instincts and talents. As we use the term 
in software, these people are closely coupled to 
each other. 

I acknowledge a wide variety of design techniques 
and programming languages that support a spec- 
trum of design approaches that we collectively call 
“the object paradigm,” but they all build on encap - 
sulation, instantiation, and polymorphism, and 
usually on inheritance. A class is a unit of 
encapsulation; an object is an instantiation of a 
class. The power of the object paradigm is in the 
abstraction it provides through inheritance, and the 
polymorphism that makes inheritance invisible at 
run time. 

Objects appear to be neither empirically sufficient 
nor necessary for teams. In our organizational 
studies done by AT&T, we have seen highly pro- 
ductive teams that use object-oriented techniques 
(such as Borland’s QPW effort), but have seen 
equally productive teams that use vanilla C. We 
have also seen object-oriented efforts that lack ef- 
fective teamwork. 

To echo Beck’s position, communication is key to 
effective teams. With the advent of objects came 
the promise of well-documented interfaces that 
communicated behavioral intent while hiding im- 
plementation details. Experience has shown that 
design is more subtle than that. Abstractions be- 
yond objects dominate the subtleties of design. 
These include the mechanisms of Booth, the id- 
iomatic forms of handle/body classes, iterators, 
and the like, and the patterns of message flow in a 
multi-process or distributed systems. I believe 
many of these abstractions can be effectively 
communicated as patterns. 

Software architecture supports organizational 
communication only to the extent it leverages 
Conway’s law: that the software and organization 
structures are mirror images. But human commu- 
nication and sociological grouping have many 
limitations and quirks for which there are no soft- 
ware drivers. We have found that people can main- 
tain about 5 long-term relationships (collaborators) 
in a development organization. We find character- 
istically even patterns of coupling in productive 

organizations, with no centralized control and no 
bottlenecks. We find that good organizations have 
characteristic ‘shapes’ of role grouping. In short, 
we understood good organizations by their 
patterns, too. 

If you step back and look at these organizational 
principles, they may look familiar as OOD rules- 
of-thumb, if you substitute objects for people. And 
they are! But the reason they make such good rules 
of thumb for software design is because of what 
they portend for the people writing the software; 
the objects don’t care about such things. For this 
reason, I believe that suitable organizational pat- 
terns are key to effective teams. In a given project, 
these patterns might mirror Beck’s software pat - 
terns, but the focus should be on the people issues. 
Such patterns comprise not only lines of commu - 
nication, but aspects of the reward and value sys - 
tern as well. For example, can the organization 
learn and introspect? This is reminiscent not only 
of the reflection work in the 00 community, but 
also of Frank Buschmann’s use of reflection in his 
patterns. 

Biography 
Jim Coplien is a member of the Software 
Production Research Department at AT&T Bell 
Laboratories, where he does research in patterns of 
world-wide software development organizations. 
He is also known for his exposition of advanced 
design and programming techniques in Advanced 
C+ + Programming Styles and Idioms. He writes a 
software pattern column for the C++ Report. 

Richard Helm 
DMR Group. 

1200 McGill College Ave., 
Montreal. QC H3B 4G7. Canada 

lmcrihe@LMC.ericsson.se 

Approaches to organizing teams include organiza- 
tion by deliverable to be produced, or organization 
by specialization and specific activities. Deliver- 
able-based teams encourage cross fertilization, 
accountability, responsibility for deliverables 
across development phases, creativity, and team 
stability. 

Object-oriented technology impacts deliverable 
based team structure because of the deliverables 
unique to object-oriented development. Analysis 
and design object models, class hierarchies, tool 
kits, and frameworks for example are appropriate 
deliverables around which to organize a team. 

471 



Designs based on frameworks can have a large 
impact on team structure. Typically some team 
members will be responsible for the design and 
implementation of the key framework abstract 
classes, their interfaces and the patterns of behav- 
ior of contracts between them. Once the design 
and implementation of the framework proceeds 
then there is an opportunity to develop “stripes” of 
functionality in parallel by other team members. A 
deliverable becomes a set of sub-classes of frame- 
work classes with each adding some part of a 
larger functionality. For example, in a direct 
manipulation graphical editing framework such as 
HotDraw or Unidraw, a team member can be made 
responsible for implementing the stripe consisting 
of the Circle class and all Tools, Commands and 
Manipulators that operate on and are appropriate 
to Circles. New functionality will often appear as 
subclasses of the framework and can generally be 
developed in isolation from other team members 
developing parallel stripes. 

A disadvantage of deliverable-based organizations 
is that it can require management of deliverables 
that are larger than activity-based deliverables. 
Deliverables requiring months of effort are harder 
to monitor than the activities that produce the de- 
liverable. Object-technology helps in that the ob- 
ject-oriented systems often are decomposable into 
relatively small pieces. Classes and methods are 
good examples. Indeed the benefits of encapsula- 
tion and polymorphism and well defined interfaces 
carry over to team structure. A well designed sys- 
tem which has well defined interfaces, the classes 
are encapsulated etc., encourage teams which are 
independent, and “encapsulated”. 

However, the distribution, atomization, and local - 
ization of control flow into classes in 00 designs 
pose the danger that the “global flow” of the appli- 
cation is not anyone’s deliverable. This is impor- 
tant, particularly when designing frameworks. The 
application’s control flow, and the interfaces and 
relationships between, and functionality of, classes 
which participate in this flow of control are key to 
the ultimate flexibility, evolution and reuse of a 
design. Use cases are also distributed across mul- 
tiple classes. Care must be taken to ensure there 
are team members who are assigned to these de- 
liverables. If not, the “soul” of the application may 
be lost. Some deliverables span classes and team 
members; team members may be responsible for 
parts of many classes. This gives potential for 
conflicts and “hot-spots” as multiple team 
members have responsibility for a single class. 

Biography 
Richard Helm has been working with object-tech- 
nology for the past five years. Currently, Richard 
is a Senior Technology Consultant specializing in 
object-technology with DMR Group, an intema- 
tional information technology and strategy consult- 
ing firm. Prior to DMR, Richard was a research 
staff member at IBM’s T.J. Watson Research 
Center in New York, investigating object-oriented 
design and reuse, and setting research directions 
for object-technology. Richard has numerous in- 
ternational publications in object- technology and 
was a member of the ACM OOPLSA program 
committee in 1992. Richard has a Ph.D. and a 
B.Sc. in computer science from the University of 
Melbourne, Australia. 

Kenneth S. Rubin 
ParcPlace Systems 

krubin@parcplace.com 

I have worked with clients over the past six years 
to create and manage their project teams. In 
addition, as part of writing our book, Succeeding 
with Objects: Decision Frameworks for Project 
Management, we have conducted 39 case study 
interviews of projects and teams that have used 
object-oriented technology. These experiences are 
the background for my position. 

A team is a group of people who work together in 
a coordinated way to meet a clear set of goals and 
objectives. A team has a purpose, to carry-out the 
activities of a project. Just as there are many dif- 
ferent types of projects, so are there many different 
types of teams to carry out these projects. The 
purpose of the team guides the decisions about the 
team roles, management approach, communica- 
tions, and structure. Within an organization the 
following decisions should be made regarding 
teams: 

l decide which teams are needed 
l identify the roles needed on each team 
l decide on the style for managing each team 
l determine inter/intra-team communication 

mechanisms 
l decide on the structure for each team 
l find team members. 

I have seen four types of teams commonly em- 
ployed on object-oriented projects: 

Application Team. A team responsible for the 
analysis, design, implementation, delivery, and 
sometimes maintenance of an application that 

472 



fulfills a contractual obligation with either an in- 
ternal or external client. 

Framework Team. A team dedicated to the con- 
struction of reusable frameworks and components 
to support one or more application projects. 

Cross Project Team. A team whose purpose is to 
facilitate the sharing of project artifacts among a 
collection of simultaneous projects. 

Reuse Team. A team that is responsible for exe- 
cuting the organization’s reuse process model. 

In addition, within and across these team we have 
seen the following new team member roles: 

Analysis Prototyper. Develops the executable pro - 
totypes during the analysis phase. 

Design Prototyper. Develops the executable proto - 
types during the design phase. 

Object Technology Expert. Provides object-ori- 
ented technology expertise at several levels. 

Object Coach. General resource, available to an- 
swer all team members’ questions about the use of 
object-oriented technology in the project. 

Framework Designer. Determines the architecture 
for a general description of parts and how they in- 
teract to form applications within a specific do- 
main. 

Reuse Evaluator. Determines whether or not soft- 
ware components have been designed for broad 
applicability. 

Reuse Manager. Has overall responsibility for the 
reuse process model. 

Reuse Administrator. Responsible for identifying 
and acquiring new reusable assets for the corporate 
or project library. 

Reuse Librarian. Responsible for certifying, clas- 
sifying and storing new reusable assets into the 
corporate or project library. 

Reuse Expert. Creates, maintains and updates 
reusers of the reusable assets. 

Biography 
Kenny Rubin is Manager of Methodology 
Development at ParcPlace Systems where he man- 
ages the development of ParcPlace’s Object 
Behavior Analysis and Design (OBA/D),and 
Project Management Methodologies and Tools. 
Previously, he was Manager of Professional 
Services at ParcPlace where he directed 
ParcPlace’s consulting and training business. 

Kenny has co-authored a book on managing 
object-oriented software projects and has 
numerous other publications on the topics of 
managing object-oriented projects, object-oriented 
analysis and design, artificial intelligence and 
human-computer interaction. He has publicly 
spoken on these topics over 100 times at major 
corporations and conferences around the world. In 
addition, he is a member of the Editorial Board of 
Object Magazine and the OMG OOA/OOD SIG, 
as well as a faculty member of the Stanford 
University Western Institute in Computer Science 
(WIGS). 

Kenny received his B.S. in Computer Science 
from the Georgia Institute of Technology and his 
MS. in Computer Science from Stanford 
University. 

473 


