
��������	�
�����
��������
��
���������
���������

����������	�
�

��
��������
���
�
��������������������	�
�
���
���������
�
��������������������� !""#$��%&'&�	����

(�
�)����&*+��&���&���

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features –Control structures, frameworks.

General Terms
Languages, Design.

Keywords
Reflection, granule-oriented programming, program grinding,
code granulation space, object-oriented programming.

1. INTRODUCTION
A program will become obsolete or less effective in solving
domain problems due to many reasons. One of the main reasons
can be the fact that the program becomes unfit to its context. A
program’s context can be the descriptions of the program’s
runtime environment, the meta-strategies in its domain, and/or the
architectural features of the machines it runs on, etc. The
“unfitness” phenomena exist in many complex systems, cause
them terminate the life cycles prematurely, or decrease the
performance and accuracy in problem solving. In existing
programming systems, from the perspective of language
expressivity, little attention has been paid to this unfitness
problem.

One “unfitness” phenomenon most frequently may happen while a
program is forced to solve a new problem in the domain. A
program is normally designed for solving a particular domain
problem. When it is required to solve another problem in the
domain, it may result the program to work improperly. In this
case, the system becomes obsolete, that is, it has reached to the
end of its life cycle. Normally, a new program will be applied to
solve current domain problem. Note that the program is viewed as
an implementation of a system in this paper.

Another unfitness phenomenon happens when the program faces
new runtime support systems such as improved memory
management, selected communication means, or even an adopted
new machine, etc. This kind of unfitness is often related to
architecture features. So the invariable agreement between
program and its context will make premature end of the program’s
life cycle, or lead an improperly continuous execution with
inaccuracy or low efficiency.

One of the explanations for which the unfitness phenomena
happen is that the existing programming languages have their
expressive abilities being limited in describing the agreement of a
program and its context explicitly. We should add some facilities
to the programming language so that the unfit parts can be
localized. In other words, the program should be able to access to,
interact with its context to deal with unfitness.

This conclusion has led us to develop a concept we call granule-
oriented programming, GOP in short. GOP is an evolvement
metaphor, in which the programs can be “ground” into code
ingredients in order to localize unfit parts of a program as
explicitly as possible. The code ingredients can be “compounded”
into program components, called code granules. The family of
code granules can be organized as a granulation space in which
we can control the unfitness from multi-level abstraction means,
such as zooming-in or zooming-out. In GOP, we pay attention to
code granules, their evolution from one program to another.
Granules can be layered through one or more lower level granules
being compounded into high-level granules. We believe that
programming on the zooming-in and zooming-out along with
granulation layers in the granulation space is important to localize
unfitness.

2. UNFITNESS
The basic limitation of a programming language is that the context
of the program cannot be easily programmed as domain problem
solving does. In other words, the context cannot be seen at the
programming stage. Here the term, the context of the program, is
employed to indicate all the things that are related to how the
program is being processed in programming phrase and how the
program runs in execution phrase. This context is defined as a
collection of all functionalities that support the program to solve
the domain problems. In classical programming, programmers are
forced to use language facilities to express how to solve domain
problems at the language abstraction level. There is an invariable,
no doubtful and static agreement between the program and its
context. In other words, the programmer may say that it is not
his/her responsibility when he/she faces the above difficulties. For
instance, a logic programmer may say that keeping the memory
reference locality in logic programming should be the compiler’s
work or the operating systems’ responsibility. But in reality, it is
hard to control the memory reference locality from outside of the
program, especially for the requirement of some knowledge
representation, such as frames, although some garbage collection
algorithms tend to localize object representation in memory.

Copyright is held by the author/owner(s).
OOPSLA’04, Oct. 24–28, 2004, Vancouver, British Columbia, Canada.
ACM 1-58113-833-4/04/0010.

128

The agreement between a program and its context will be broken
down in many situations, for instance, new problem solving in the
domain is considered, or new supporting system is adopted, etc. A
concrete example about the invariable agreement between a
program and its context is remote object invocation. There is
normally an invariable agreement between remote object and the
client program, keeping the consistence of name binding,
parameter passing. This agreement is beyond the program’s
known. Now we assume the remote object is modified for some
reason, for instance, an extra parameter is added to the interface of
a method of the object; therefore, the agreement cannot be kept
any more. This may cause an exception to the client program in
most cases, although the program still does not know the change.
In this example, the remote object invocation is viewed as the
context of the client program. It is lack of such facilities in the
programming languages that the context of the program
(coordination with the remote object) is programmable during the
life cycle of the program. Obviously, the program will be in the
state of unfitness while the agreement is broken down.

Some special cases of unfitness can be fixed by program online
upgrade mechanism [1] to a limited extent. In above example, the
agreement should be extended to cover the concern of remote
object modification. Then client program can be designed in a
polymorphism style, which can adapt to the notification of remote
object update.

However, due to the lack of adequate means in the language
expressivity, there are still some cases in that programming on the
context of a program is beyond the program’s ability to process.
For example, for distributed computing there is a local data
processing system, which uses remote data access, and obtains
data from some data centers. Along with different performance
variance of the networks and the servers that the system is using,
data processing algorithms easily become unfit to data access
because, as a theoretical strategy, data processing should match
the data access rate precisely for low overhead. However, in
reality, it is hard to know either how data access rate varies, or all
available alternatives that balance the data processing and data
access.

A natural thinking about a solution to the unfitness problem is to
localize unfit code ingredients, and provide alternatives for them
in programming. Suppose a program P0 fits context T0. After T0 is
transited, P0 does not fit the new context T1. One needs to design
another program that fits either T1 or T1−T0. One can use P1 in
place of P0 for context T1, or compound P0 and P1 such that P0 is
for context T0∩T1 and P1 is for context T1−T0. In this paper, the
compound of P0 and P1 is the program one pursues for the context
T1. Moreover, we treat the programs P0 and P1 as two families of
granules, so they can be also denoted as G0 and G1, respectively.
All the granules of G0 and G1 have the fitness/unfitness problem
as what programs P0 and P1 have.

We believe this unfitness phenomenon hooks up the complexity
of most existing complex software systems. The concern, that how
granules fit their contexts in the execution of the program, is at the
heart of much of the complexity in those software systems. The
objective of granule-oriented programming is to provide an
operational way to deal with unfitness in complex systems. More
specifically, GOP allows the programmers first capture the
primary problem solving cases in the domain, express each of

them as code granules, and then compound them into granular
output code.

2.1 A Methodology
We propose a methodology of granule-oriented programming as
shown in Figure 1. The concept of primary problem solving, PPS
in short, is employed to express an incremental effort in
programming. In other words, programmers capture a context
snapshot of a domain, and write out a program that has an
invariable agreement with this determined context. On the other

hand, programmers can also derive code from some basic PPS
cases. We suppose that all PPS cases are coded in separate
programs or program segments, and they may be written in
different languages, respectively.

When not only a PPS case is programmed originally, but also a
new PPS program is derived from some basic PPS cases, a
fundamental observation is that programs can be ground into
pieces. By program grinding, programmers are able to find code
ingredients from every PPS cases and to do code similarity
analysis between them.

It is intuitive to think an ingredient as a piece of code, such as a
function, a procedure, a class, or a method. The objective of
program grinding is to locate unfit things by code similarity
analysis. We hope that the similar code ingredients can be
compounded into granules. The granules that are directly derived
from code ingredients are called base granules. Base granules can
be compounded to form high-level granules. For example, the
granules derived from PPS cases can be compounded into a high-
level granule, which can be the solution of a more complex PPS
case. We can achieve the compounding by some predefined
granulation facilities such as add class or add method.

An example in parallel programming shows that program grinding
is reasonable in this situation. In parallel programming, a problem
can be decomposed into a group of tasks using Ian Foster’s
PCAM (partition, communication, aggregation, and mapping)
methodology. The produced tasks can be viewed as granules with
concurrency coherence. Mapping the aggregated granules onto

Code
Grinding

Granule
Compounding

Granular
Output Code

Programming
Languages

Primary Problem
Solving Cases

Code
Ingredients

Figure 1. The basic elements of a GOP system.

129

processing elements in a parallel system can be viewed as a kind
of granule compounding, by which the group of granules that are
mapped onto one processing element can be viewed as a high-
level granule. The goal of such granulation of the program is to
gain load balance.

3. CODE GRANULATION SPACE
The code granulation space is dedicated to primary problem
solving in a domain, which is an expression of the program in
multiple-abstraction framework. The goal of building code
granulation space for PPS cases is to localize unfitness in a well-
formed and multi-layered framework. We believe that for a given
domain, the code granulation space of every PPS can be merged
into a complete code granulation space of the domain. From this
viewpoint, the code granulation space of every PPS is a partial
space of the complete one the domain has. A programmers’
responsibility is to make a step forward to the complete space
from the current PPS cases.

3.1 An Example
we present a granular output code for three cases of primary
problem solving in a simple and classical problem domain, sorting
using quicksort. As a GOP example, this sorting domain is
just used for demonstrating how unfitness phenomenon occurs
and the significance the granules are formed.

Though the problem domain is simple, the combination of
matching sorting algorithms to their contexts is large. As an
example, we just choose three PPS cases as follows.

PPS0. Data are read from an input file and sorted in main memory
using quicksort. The results are written to an output file.

PPS1. Data are read from a serial port (or a stream) and sorted in
main memory using quicksort. The results are written to an
output file. In this problem, we suppose the data access is
significantly slow, so it may be better to sort currently arrived data
while waiting for the rest data. A final merge needs to be carried
out for all the intermediate sorting results.

PPS2. Data are read from an input file and sorted in bounded
physical memory (no virtual memory is allowed). Partition of that
data file may be required because of the limited memory size. As a
result, an external merge of all the intermediate sorting results is
required to generate a final result.

The contexts of these three PPS cases are different. Context0,
initially corresponding to PPS0, is defined as an infinitive
memory support and a fast data input/output access. Context1,
initially corresponding to PPS1, is defined as an infinitive
memory support and a slow data input. Context2, initially
corresponding to PPS2, is defined as a limited memory support
and a fast data access. The contingency Table 2 shows the
combinations of PPS cases and contexts, which shows that the
unfitness phenomenon can easily happen in the system.

Each PPS program is assumed that it fits its own context. PPS0,
PPS1 and PPS2 fit context0, context1 and context2, respectively.
Moreover, PPS2 fits context0, because PPS2 program must be
able to run in the context of PPS0 case. This can be explained in
detail as the fact that if a program can run in a bounded memory
then it must be run in an infinitive memory. However, PPS0 does
not fit context1 because the PPS0 program reads data in high

speed from an input file, but not from a slow port. Data come
from the port may not have a steady transmit speed, and thus
decreases the PPS0 performance. A PPS0 program will run
successfully in the context2 if the memory size of context2
happens to be not less than the requirement of the execution of the
program. However, the PPS0 program generally does not fit
context2. All the other situations are analyzed in Table 1.

Table 1. Fitness of PPS cases to contexts

Context0
y Inf. Mem.
y File I/O

Context1
y Inf. Mem.
y Slow Access

Context2
y Bounded Mem.
y File I/O

PPS0 Fits Data source,
Performance

Fits special cases;
Unfits general cases

PPS1 Data source,
Performance Fits Fits special cases;

Ufits general cases

PPS2 Fits Data source,
Performance Fits

3.2 Some Issues
Similarity detection. The main objective of program grinding is to
localize unfitness by similarity analysis between primary problem
solving cases for a domain. Therefore, similar code ingredients are
more general than dissimilar ones.

Context distribution. As described above, the goal of context
distribution is to determine which PPS granule that locates inside
the whole granulation space is associated with which part of the
context of the PPS. A general idea about context distribution is
that each granule is only responsible for nice fitness to its own
context.

Zooming-in/zooming-out. Zooming-in and zooming-out are basic
mechanisms to describe how the low-level granules are
compounded into the high-level granules in code granulation
space. In the example, the granule <producer:> is
compounded by the granule <read_port:> and
<mutual_write:>. The zooming-in/out between lower level
{<read_port:>, <mutual_write:>} and upper level
{<producer:>} can be defined as following code:

{ int tmp;
while(!(<read_port:data,port>)){

 <mutual_write:lock,data,buffer>;
notify();

}
}

4. RELATED WORK
Lots of existing work appears to be based on intuitions similar to
those underlying granule-oriented programming.

Aspect-oriented programming. AOP makes it possible to define
additional implementation to run at certain well-defined points in
the execution of the program, namely dynamic crosscutting
mechanism, which is based on a small but powerful set of
constructs [3]. AOP stresses the separation of concerns in
programming, by means of advice and pointcut, a method-like
construct, which is comparable to the CLOS method combination

130

framework. The goal of AOP is to make it possible to deal with
crosscutting aspects of a system’s behavior as separately as
possible. AOP provides a means of program grinding by which
the code ingredients can be classified according to the aspects
they belong. As the result, these code ingredients can be
compounded and therefore form a granulation space where each
aspect will be a granule at some level.

Object-oriented programming. OOP provides powerful language
constructs for organizing a program as a group of communicating
objects. For example, classes, methods, and inheritance hierarchy
are helpful to describe the system’s building blocks and
relationship between them; the message-passing mechanism is
useful to realize the behavioral relationship between objects.
Classes and methods can be special cases of code ingredients and
granules in GOP. And sub-classing and message passing can be
special cases of granulation.

Reflection. Reflection is a powerful mechanism of some of the
programming languages, which supports the program to deal with
its own facilities in the course of domain problem solving.
Reflective programming languages provide language constructs or
facilities to deal with the program’s context in more explicitly
than non-reflective languages. Great efforts have been done on
reflective language design, such as 3-Lisp [4], the CLOS
metaobject protocol, and some work on prolog, Java, Smalltalk,
and C++ reflective mechanism extensions, etc. For example, the
sub-classing mechanism and the method combination framework,
provided by a reflective object-oriented language, could be
processed by the program that is written in exactly the same
language. In this case, we can say the unfitness phenomenon has
been explored in a certain extent with reflective facilities in these
languages.

Some other languages. Component-based design [5] is a
methodology that tries to find the system’s common behavior and
then generalizes them into the reusable components. Reusable
components provide similar functionality as granules to localize
special behavior and separate them with the other part of the
system.

Generative Programming [2] provides a means for developing
programs that synthesize other programs. The goal of generative
programming is to replace manual search, adaptation, and
assembly of components with the automatic generation and
configuration of components on demand. This idea is similar to
GOP that a program can be partially derived from the existing
programs.

5. FURTHER DISCUSSION
We observe that the unfitness problems occur in many complex
systems. The unfitness may cause the program work improperly.
To analyze this phenomenon, a concept, the context of the
program, is employed to describe all functionalities that support
the program solving domain problems. The unfitness phenomenon
is then explained as that the program does not fit its context
dynamically. In normal programming, there is an invariable
agreement between the program and its context, so the
programmer is forced to obey it unconsciously. This static
agreement is the source of unfitness phenomenon, and may cause

the program terminate prematurely or run improperly. These
contextual requirements imply that a program should be
programmed in an innovative way in which not only the program
itself but also its context can be programmed.

The expressivity of granule-oriented programming is that
programs can be ground into code ingredients for localizing
unfitness, and some of these ingredients can be compounded into
a new program. GOP assumes that domain problems can be
solved using a gradually generated program. This means the
domain can be described partially by some primary problem
solving cases. The generated program by grinding-compounding
can be viewed as a new PPS of the domain. Therefore, GOP is an
evolvement metaphor.

A code granulation space is an expression of a program in
multiple-abstraction framework. It is used to localize unfitness in
a well-formed and multi-layered framework. Zooming-in and
zooming-out between multiple layers in the granulation space are
helpful to explore the unfitness phenomenon.

Some code granules can evolve from one primary problem solving
case to another, which are more generic, that is, they have been
reused by more primary problem solving cases in the domain.
Case studies on granule-oriented programming show that the
fitness of a program to its context can be expressed with the
fitness of the program granules to their contexts, respectively.

Some of future directions of granule-oriented programming are:
practice and application of granule-oriented programming;
foundations of program grinding, code granulation space, and
granule compounding; development of granule-oriented
programming toolkit; technologies of granule-oriented software
development; etc.

6. ACKNOWLEDGMENTS
The author would like to thank Ms. Yan Zhao for English
improvement of this paper. Also thank to anonymous referees for
their comments and suggestions on this paper.

7. REFERENCES
[1] Chaudron, M. R. V. and Laar, F.V. An upgrade mechanism

based on publish/subscribe interaction. In Workshop on
Dependable On-line Upgrading of Dist. Systems,
COMPSAC 2002, (Oxford, England), Aug. 2002.

[2] Czarnecki, K. and Eisenecker, U.W. Generative
programming – methods, tools, and applications, Addision-
Wesley, 2000

[3] Kiczales, G. Hilsdale, E., Hugunin, J., Kerstn, M., Palm, J.
and Griswold, W. An Overview of AspectJ. In proc.
European Conference on Object-Oriented Programming,
2001, Springer-Verlag LNCS 2072.

[4] Smith, B.C. Reflection and Semantics in LISP. In
Proceedings of the Symposium on Principles of
Programming Languages (POPL). ACM. (1984) 23-35

[5] Szyperski, C. Component Software – Beyond Object-
Oriented Programming, 2nd Ed., Addison-Wesley, ACM
Press, 2002

131

