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Abs t rac t  

Virtual Instruments t is an experimental programming 
environment for developing electronic test and measurement 
(T&IVO applications. Intended users are test engineers, who 
me not pr(qFammcrs, but computer literate domain special- 
ists. Unlike traditional prosranuning environments, that 
provide weak support for a broad range of applications, vir- 
tual instruments provides strong support for • specific appli- 
cation. The programming paradigm is bottom-up synthesis 
of layers of virtual machines m called virtual instruments 

using human interface models from the application 
domain, so that anftwarc development occurs without writ- 
ing code. The object-oriented view of the wodd has proven 
a natural fit. Implementation was in Berkeley Smalltalk on 
• SUN workstation. 

Overv iew 

This paper reports on an experimental programming 
environment to support eleclrnnic test and measurement 
if&M) applications software development. Although T&M 
mftware is • major industry, previous investigations of the 
field have been motiv~_!~ mere by market research for pro- 
duct development than by technical considerations. Since it 
has not attracted the attention of  computer scientists, there 
has been little, if any, formal research on how T&M 
software differs from other kinds of software. 

Our own work originated in market studies for product 
development, but branched off into more formal research. 
We observed that test engineers describe the writing of 
T&M software as difficult, but, given suitable test 
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instruments, are able to pe~orm the tests manually. We 
therefore wanted to investigate programming environments 
based on the manual testing paradigm. We were interested 
in the differences between T&M softwKe and other 
software, and why there had not been significant advm~s 
in T&M software tools, analogous to the word processors 
and aprendsheets of other domains. 

Our experimental environment, called Vh'tual Instruments, 
provides • human interface modeled on T&M instrument 
front panels: each virtual instrument has • functional v/ram/ 
[font panel. Instrument front panels are familiar to the test 
engineer for immediate control of instrument functionality. 
In addition to this immediate control, our virtual instru- 
ments have the ability to emit code corresponding to their 
virtual front panel settings. This facilitates programmed 
control of instrument functionality with the same front 
panels. By also providing ways to encapsulate information, 
pass parameters, etc., we eliminate the formal coding step. 
The same uniform human interface exteads to debugging as 
well. 

In the following text, wc express our views on elecmmic 
test and measurement applications, refer to related prior 
work, describe our contribution, illustrate the use of virtual 
instruments with an example, outtinc the implementation in 
Smalltalk-80, discuss results achieved, and suggest future 
research. 

Electronic Test and Measurement Applications 

A typical T&M program is one to test an electronic circuit 
by evaluating responses to suitable stimuli. A typical 
configuration consists of • computer (called • controller), 
and • collection of electronic test and mca~urement iustru- 
mcnts, connected to a bus, such as the industry standsnl 
IEEB-488 bus. 

in the commercial arena, such applications are typically 
written in variations of BASIC, usually augmented with 
instrument control primitives. ATLAS and FORTRAN are 
commonly used in the aerospace / military world. Program- 
ming environments are primitive: for example, screen- 
oriented editors became popular only • few years ago. Pre- 
vious attempts to study the market in order to provide better 
environments had concluded that, despite universal com- 
plaints about the time to develop applications soflwm~ 
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customers did not want anything more sophisticatedl We 
believe the reasons me: 

• Programs are authored by test engineers, who are 
subject matter specialists with little formal 
knowledge of computer science. Even though fami- 
liarity exists with word processing and spread sheet 
software, without additional training, better program- 
ruing environments are more confusing than helpful. 
BASIC is easy to learn. 

• Programs are tedious, but conceptually simple. 
While programs tens of thousands of lines long are 
not uncommon, they do not employ complex data or 
control sU~ctures, manipulate symbolic information, 
execute recursive algorithms, make complex deci- 
sions, etc. Whether this is a cause or a symptom is 
not entirely certain, but it is an observed fact. The 
structural simplicity of test programs made our work 
easier. 

• Being interpreted, most BASIC implementations pro- 
vide an immediacy that suits the empirical, 
"software development by experimentation", tech- 
niques that are typically employed. This is important 
because the correct stimulus is usually experimentally 
developed. The correct responses have to be 
"learned" by applying the stimulus to, and measur- 
ing the response of a circuit known to be good. 

• Software bugs are less likely to result from logic 
errors then from applying the wrong stimulus or test- 
ing against an incorrect expected response. When a 
bug is encountered, it is desirable to experimentally 
determine the correct stimulus / response, correct the 
program and proceed, in this respect, debugging 
needs are more akin to artificial intelligence expert 
systems development than to traditional software 
development. 

• Traditional programming environments usually sup- 
port top-down programming. For test engineers, 
bottom-up programming is more intuitive. 

We also observed that most attempts at developing pro- 
gramming environments attempted to support a broad range 
of applications, and the requirement for generality appeared 
to compromise the level of support. We wondered if, by 
limiting our scope to T&M applications, we could provide 
sConger support for software development than that avail- 
able in the more general environments. 

Related Prior Work 
Within any field are individuals who have acquired exper- 
tise through extensive experience. Although these experts 
may not be trained in formal design techniques, they solve 
problems effectively using pragmatic methods. To allow 
such experts to apply familiar skills to the unfamiliar task 
of software development, an environment is needed that 
permits the user to concentrate on the problem solution 
rather than the implementation language. 

Traditional attempts to develop more productive program- 
rain 8 envisvummts have focused on application breadth 

[TEI81] [RIC78] [BAR84]. With such technique& the 
range of application domains is diverse. Usually, such 
flexibility is gained only through the sacrifice of problem 
solving power in specific domains because tools and aids 
must be general purpose. We took the opposite approach 
and investigated a restricted domain. This allowed us to 
provide stronger support with more specialized tools, aids, 
and methodologies to allow task experts to solve domain 
specific problems with familiar tools. Expert system 
development shells are another example of  pmgrammlng 
environments with strong support for narrow domains 
[HAY84]. 

Our work builds on Tannenbaum's [TAN76] interpretion of 
a computer as a hierarchy of virtual machines (the 
micropmgramming level to the problem oriented language 
level). In Tannenbaum's model, the language of each suc- 
cessive virtual machine becomes increasingly more power- 
ful and is the machine language for the next machine. One 
measure of the power of an instruction is the number of 
resulting actions at the circuit level [BEL71]. 

With such an interpretation, a program written in the 
language of the lowest level virtual machine (the hardware 
or circuit level) can command any set of actions that the 
hardware is capable of executing. However, writing pro- 
grams as sequences of binary bits is cumbersome and error 
prone. At successively higher levels, programs become 
more task specific, thus, it becomes increasingly easier to 
accomplish more specialized tasks. Spreadsheet programs 
are one example, in that only a minuscule subset of possible 
programs can be executed, but it is easy to accomplish a 
specific task that fits the paradigm. 

Vir tua l  I n s t r u m e n t s  
Like others before us, we concluded that programming 
environments for traditional software development w e e  not 
suited to test end measurement needs. We wanted to 
demonstrate the feusibiHty of an environment to dramati- 
cally improve software development times for our specific 
application domain. We were also interested in the possi- 
bility of building a specialized programming environment 
above the Smalltalk-80 environment. We decided that our 
requirements were: 

• Encapsulation and knowledge hiding. Our beliefs 
told us that these were key ingredients of any pro- 
grammlng environment. 

• Minimal syntax. We decided that procedure calls or 
messages were semantically adequate for our need___. 
(in any case, we did not want to invent one more 
language), but that we would need keywe~ parame- 
ters. (The Smalltalk-80 message syntax was a lmnst 
ideal.) 

• Interactive execution and debugging of code frag- 
ments. 

• Bottom-up software development. This fits nicely 
with the previous requirement. 

• Graphical human interfuce models, -familiar to the 
~ t  engineer. 
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• Ease of implementation and experimentation. Since 
our objective was research, we wanted to minimize 
implementation effort, and maximize our ability to 
experiment with different ideas. 

Our contribution Ues in the invention of two concepts: v/r- 
tual insWumosts with virtual front panels, and virtual 
instrumost 57nll~esis. 
Since test engineers are experts at dealing with test instru- 
ments, we decided to mimic test insCuments on the com- 
puter. The test engineer could then manipulate these virtual 
instruments. Virtual instruments can control real instru- 
ments through an interface such as the IEEE-488 interface. 
A virtual instrument is similar to a device driver, except 
that it also has a human interface. For example, • virtual 
instrument disk controller could have a knob to select the 
track, another to select the cylinder, a display for data, and 
a Read/Write function selection. This could be operated by 
setting the cylinder, track and function controls and sending 
it a "do i t"  command, via • pop-up menu or a soft key. 

Every such instrument is an instance of • corresponding 
class, and its virtual front panel providcs thc test engineer 
with • human interface that s/he is familiar with and can 

control. The engineer can adjust the "knobs"  on the vir- 
tual front panel by using • mouse, and command the virtual 
instrument to "do i t":  i.e. perform its intended operation 
and display the results, if any, on "gauges" and other out- 
put devices. Virtual front panels are also, therefore, a use- 
ful debugging aid for typical test program bugs. 

Test program generation can be achieved by sleight of 
band. After seuing up a virtual instrument to his/her satis- 
faction, a test engineer can issue a "generate code"  com- 
mand to cause the virtual instrument to emit code 
corresponding to its current virtual front panel setting. 
Thus, software generation can, in theory, be accomplished 
without cvcr requiring the test engineer to "write code". 
In fact, there exist many commercial T&M products that 
support this paradigm in different ways. 

However, this basic paradigm is too restrictive and tedious 
even for test and measurement applications! Our experi- 
ence with the commercially available systems indicates that 
they are most useful for dcmonslxation purposes and for the 
novice. In our virtual instrument synthesis paradigm, 
instead of using the generated code directly as the test 
software, we use it to build, or symhesize a new virtual 
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Virtual Instruments in a Beard Test Program 

F i g u r e  1 
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instrument e l m .  Once synthesis is complete, instances of 
the syntheslzed virtual instrument can, in turn, be used to 
synthesize higher level virtual instruments. This provides 
information encapsulation. Furthermore, since external 
access to a virtual instrument is only through its virtual 
front panel, hiding is also accomplished. 

The virtual instrument synthesis paradigm extends to all 
levels of abstraction in the test program. For example, con- 
sider an amplifier where the gain is controlled by a 
microprocessor. A complete test program to determine the 
frequency response would measure the gain of the amplifier 
through a range of  frequencies. By varying the gain and 
measuring the frequency response at each gain level, the 
linem'/ty of the amplifier can he tested. By then testing the 
microprocessor kernel u well (the RAM, ROM, etc.), • 
complete test program is synthesized. However, at each 
stage, the human interface paradigm is that of dealing with 
a ru t  instrument (of course, much detail has been glossed 
over, but the essence of the technique is simple). Thus, 
given • digital mult/meter and a function generator, the test 
engineer knows how to measure gain. Given • gain meter 
and an ability to sweep it over • range of frequencies, s/be 
knows how to measure frequency response, and so on, to 
implement a test program for the complete circuit board 
(see Figure I). This approach extracts the implied func- 
tional modularity that normally would never leave the test 
engineer's brain, and transfers it to the actual test software. 
The benefits extend beyond faster software development to 
software maintainability, portability and code sharing. 

An Example 

This example illustrates the synthesis of  • new virtual 
instrument called Gainmeter, to measure gain, just as • 
voltmeter measures voltage. Measuring gain involves 
applying • stimulus (specified by an amplitude and a 
quency), and measuring the response (specified by output 
voltage). Gain is then computed as 

20 logs= (output voltage ÷ stimulus amplitude) 

Gain meters do not exist in practice, but making a 
measurement is a meaningful encapsulation Of iufommtion. 
In Virtual Instruments, this encapsulation can he insure- 
tiated as • virtual instrument with • virtual front panel 
This is more meaningful to a test engineer than • ~mdlflooal 
gain( amplitude, frequency ) function, especially so 
because this uniform human interface model occurs at eve~7 
level of absU'action. 

The figures in this example are photographs of the screen of  
a SUN workstation executing Berkeley Smalltalk-II0. 
Smalltalk-80 features such as pop-up menus, mouse buttoa 
colors, and the distinction between classes and instances are 
described in [GOLg3] and [GOLg4]. 

Figure 2 shows an initial "power-up" screen, in the Gen- 
erator list window is • list of  all virtual iuslrumanta 
classes. The Instrument list window is • list of current 
virtual machine instances, initially empty. 

Typically, the first step is to create required instances of 
each class. Each class has an inherited method to mlm~ 

Figure 2 
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uniquely named instances of itself (each with its own virtual 
front panel). This feature, like most features, is accessed 
via a pop-up menu. Figure 3 shows the screen after creat- 
ing such instances. (Since this was a research project, we 
decided to explore the limits of the technique. Conse- 
quently, even arithmetic operations are performed by virtual 
instruments: for example, to compute a logarithm, one can 
set the number and base on the front panel, and "run" the 
instrument to compute the logarithm.) 

Before synthesizing a virtual instrument, a class must be 
created for it. This skeletal class includes all inherited 
methods for the overall behavior of an instrument. The 
subsequent synthesis only requires the definition of the front 
panel and the generation of steps used to perform its opera- 
tion, the runMe method. Creating a new class is accom- 
pfished via a pop-up menu (the user is prompted for a 
name). This adds the new class to the Generator list. The 
user can then select a pop-up menu option synthesize. This 
creates a synthesizing Galnmeter window, as shown in 
Figure 4. This window is divided vertically into three 
regions. The three panes of the top region are used to 
define the front panel of  the new virtual instrument class. 
The middle region displays the code, as it is being gen- 
erated. The bottom region, in conjunction with the middle 
region is used to specify arguments for messages. 

A front panel definition consists of names of front panel 
item& a type associated with each name, whether the item 
is an input, an output, or both, and the type of display 
(gauge, dial, etc.) to be used for the item. Methods for 
accessing each item are automatically generated. Figure 5 

shows the display after the front panel is specified for class 
Galnmeter. Also in the figure, the value of amplitude in 
the virtual instrument instance aSIgnalGeneratorl$ has 
been set (this can be done in two ways: the mouse red but- 
ton can be used to "drag" the pointer, or a new value can 
be explicitly typed), Experimentation to empirically deter- 
mine required front panel values can occur at any time, 
resulting in environment modelessness. 

A mouse yellow button menu item, generate, inserts the 
code to invoke aSIgnaIGeneratorl5 at run time as a step in 
the Gainmeter runMe method (Figure 6). The generated 
code selects the signal generator, sets the front panel item& 
frequency and amplitude, to their current values, and runs 
aSignaIGeneratorlS. A variable (ql) is created to store 
the value, if any, returned by the signal generator runMe 
method. 

Since it is desired to use a Galnmeter's own front panel 
item, atFreq, instead of the current value, 1325, as the fre- 
quency input to aSIgnalGeneratorl$, the user then selects 
t frequency: 1325 in the middle region, and self atFreq in 
the bottom region. A yellow button menu item is used to 
effect the change. Similarly, self InLevel is asu~is!~  with 
amplitude. Figure 7 shows the display after making these 
changes. 

This process of generating steps continues. Since the test 
engineer knows how to make a gain measurement using 
actual instruments, s/he performs these steps, and the code 
is generated automatically. Conceptually, the only increase 
in complexity arises from having to associate previously 

Figure 3 
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Figure 4 

computed results with message arguments, and even this is 
reasonably intuitive. Figure 8 shows the display after all 
steps have been generated. 

The initial, skeletal code for the Gainmeter runMe method 
contains a dummy place holder 
"se l f  myValue: self myValue for the value to be returned. 
A final change to the code is to rttum q$ (the variable with 
the value returned by aMultlpllerl4). The method can then 
be compiled, and an instance of Gainmeter  can be created. 
This instance, aGalnMeterl ,  can be used just like any 
other instrument (Figure 9). (An earlier implementation 
automatically, and transparently, recompiled the method at 
each stage, but this was too slow, even for experiments- 
~n.) 

The virtual front panels for the other instruments can now 
be closed, leaving just the gain meter. This improves exe- 
cution speed, and makes for a cleaner display. A timed 
virtual front panel can be re-opened at any time, via( a yel- 
low button menu item in the Instrument list window. 
Opening closed virtual front panels automatically displays 
the current values. Since values displayed on virtual instru- 
ment front panel are the key program variables, and since 
virtual front panels can aim be used to modify these same 
variables, this extends the uniform human interface model 
to debugging as well. Debugging is mndeless and can hap- 
pen at any time: there is no need to "compile with the 
debug flag" or to perform any other ritual. 

Design Considerations 

The two common design paradigms are top-down and 
bottom-up (or perhaps, mort appropriately, sWategy and lac- 
tic driven) depending upon whether one moves from the 
general to the specific or vice versa. A strategy driven 
methodology is rich in internalized knowledge, knowledge 
that represents a general understanding of problem and 
domain. However, such knowledge can be difficult m 
vocal/ze. Strategy driven solutions can be characterized as 
a process of progressive or stepwise refinement [WIRTI] 
[TAUT7] (similar to forward chaining) in which a hierarchic 
decomposition of the problem proceeds through decreasing 
levels of abstraction. Such methods tend to favor 
knowledge monotonicity and can be fragile with uncertain 
knowledge. As a result, some form of truth maintenance or 
backlracking is required. 

In contrast, a tactics driven problem solving approach 
emphasizes knowledge externalization. Domain experts are 
usually familiar with detailed information and have an intui- 
tive or heuristic understanding of conceptual inter- 
relationships. Such a methodology encourages incremental 
development and learning. Solutions tend to be iterative 
(similar to backward chaining) and robust with uncertain 
and non-monotonic knowledge. 

Virtual Instruments allows a domain expert to work from 
the pragmatic level to the solution level. It is bottom-up 
mftware development by virtual machine conslruction, 
applied to the domain of electronic test equipment. 
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Figure 5 

Various programming methodologies or paradigms were 
considered as possible candidates for implementation. Each 
is examined briefly. 

The pure procedural approach (distinguished from methods 
using embedded, attached, or hidden procedures) is the 
most familiar. The basic procedural methodology implies 
that the problem mlver has a broad understanding of the 
task to be solved. Such a tacit requirement suggests that 
the method can be particularly fragile at knowledge boun- 
daries [REIS0] or under change, thus reducing its power as 
a tool for Incremental development. Further, futu?e 
modifien must have an understanding of procedure inter- 
oals. 

A rule based paradigm is more supportive of incremental 
knowledge and program development than procedural 
methods. A potentially significant limitation, however, 
exists in the amount of time spent searching the system 
knowledge base. The success of the methodology is 
slrongly dependent upon the robustness of the inference 
engine and conflict set resolution algorithm. As with pro- 
cedurai methods, most present day rule based systems exhi- 
bit fragile behavior at knowledge boundaries, performing 
best in domains characterized by shallow knowledge 
[PRE85]. Furthermore, the implemcntor usually requires a 
domain expert and the assistance of a knowledge engineer 
(for extracting knowledge from the domain export). 

The technique of using parameter access to Irigger pro- 
cedural invocation has evolved from such languages as 
Simula [DAH66] and more recently (with the notion of pro- 
eedural aUachmenO from some of the frame languages such 

as KRL [STE86]. Commonly referred to today u access 
oriented programming, such methods can provide a power- 
ful interface between the user and an underlying program. 
A demand driven formalism supports incremental 
knowledge acquisition and program development and can 
form the basis for "learn-by-watching" software genera- 
tion. Potentially, program execution speed can also be 
improved because the control mechanism need not devote 
time to monitoring for changes in designated variables. 

The development environments available for the virtual 
inslruments project were the VAX 11/780 [tm Digital 
Equipment Corporation] and SUN 2/50, both executing 
Unix [tin AT&T]. Available language choices for imple- 
mentation were MAINSAIL [tm XIDAK, inc.], LISP with 
Emacs, Icon, and Smalltalk-80 (available only on the SUN). 
Smalltalk-80 was selected because object oriented tech- 
niques in general, and Smalltalk-80 in particular, naturally 
support many of the criteria established for the development 
of a virtual instruments programming environment. 

• Encapsulation and knowledge hiding are especially 
well supported through the object discipline. The 
ability to define an external interface to a virtual 
instrument independent of the internal implementa- 
tion is essentially free with object-oriented program- 
ruing. For example, the definition of an instrument 
can be improved internally, but higher level inslru- 
taunts need know nothing about iL 

• The message syntax of Smalltalk-80 providea a pro- 
gram syntax that is easily understood by the test 
engineer. We did not have to invent a new language 

September 1986 OOPSLA '86 Proceedings 309 



Figure 6 

or 8 new syntax: 

The underlying capability to invoke the Smalltalk-80 
compiler dynamically and to create and send mes- 
sages dynamically makes it easy to interactively exe- 
cute and debug code fragments. The encapsulation 
provided by virtual instruments and their front panels 
provides a convenient and intuitive means for the test 
engineer to have this capability. 

Bottom-up software development in ordinary 
environments requires that programmers write 
"drivers" for lower level modules as they are 
developed. However, the object management capa- 
bility and lack of artifacts like linking removes the 
need for drivers. Virtual insu'uments can be accessed 
from higher level virtual instruments, but Smalltalk- 
80 makes it easy to implement the direct access. 

The classes that ere part of the standard Smalltalk-80 
distribution provide a rich set of primitives with 
which to build graphical human interfaces. 

The goal of ease of implementation and experimenta- 
tion is also naturally satisfied. Abstract superclasses 
with inheritance provide an ideal mechanism for pro- 
viding basic behavior for virtual instruments, and 
nutking available display devices for virtual front 
panels (for example, virtual instruments can use new 
types of display devices as and when these are 
created). 

Implemen ta t ion  in Smal l ta lk  

The software was implemented by Jim Beug. In practice, 
Smalltalk-80 proved to be a very amenable vehicle for 
implementing Virtual Instrument& Much of the code was 
written by studying existing Smalltalk-80 classes, and 
adapting our software to fit existing classes, or by copying 
and modifying existing classes to make new classes. For 
example, SelectlonInLlstView proved widely applicable. 
and front panel gauges and rooters evolved from 
ClockVlew. 

Each virtual instrument class is a Smalltalk-80 subclass of 
class Vlrtuailnstrument. Each virtual instrument is an 
instance of its class. Class methods in class Generator 
provide the ability to create and delete virtual instruments 
and classes of virtual instruments (i.e. to admlnism the 
Generator list and Instrument list window functions in the 
example). Instrument synthesis was implemented by 
instances of Generator, so that. theoretically, synthesis of  
more than one instrument can occur at any time, although 
support for this in our experimental implementation is best 
descr/bed as weak. Each instance of Generator manipu- 
lares the definition (i.e. the variables and methods) of its 
virtual instrument class, for example, to create and delete 
methods and front panel items. 

A virtual instrument must respond in three primary ways. 
First, it must have a means to display and change its set- 
tings. This is accomplished via the virtual front panel 
Second, thae must be a way to use it: to provide s 
stimulus, measure a respom~ perform s test, or 
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Figure 7 

do what it is expected of it. To accomplish this, all virtual 
instruments respond to a runMe method. Third, a virtual 
instrument must be able to emit code to set its front panel 
and then run it. All virtual instruments inherit a generate 
method to accomplish this. 

Each front panel item is an instance of class Parameter-  
Blok Is/el. A front panel item is identified by name, by 
type, whether an input, output, or both, the current value 
and a view. Each virtual instrument has two methods for 
each front panel item, one to access and one to modify the 
item. 

Gauges, meters and the like arc implemented using the stan- 
dard Smalltalk Model-View-Controller idiom. Views use 
virtual instruments as models. Controllers use the red but- 
ton to modify input parameters, for example, by dragging 
bars in bar graphs. Yellow button menus are used to con- 
tml instrument behavior, and are inherited by the instrument 
from class VlrtuaIlnstrument.  The standard system blue 
button menu is used for closing, framing, etc. 

The inherited generate method emits a line of code to 
select the virtual instrument, then examines the front panel 
items, and, for each item, emits a line of code to set it to its 
current value. Finally, it emits a line of code to send the 
instrument the runMe message. This code must be inserted 
into the instrument being synthesized, and appropriate 
entries made in the third region of the synthesizing win- 
dow, so that arguments can replace the current front panel 
vMues. 

Implementation of the software took IO-12 weeks. 
Smalitalk-80 has a significant learning curve, and an 
estimated one third of that time was spent becoming 
proficient. Once this barrier was overcome, however, pro- 
gramming was easy, and, date we say it, even fun? 

Resul t s  

The software proved too slow for use in any real applica- 
tion. On a SUN 2/50 with 4M bytes of memory and no 
local disk, a gain "measurement" took 1-2 seconds. To be 
completely fair to the Smalltalk-80 implementation, it must 
b¢ said that the software was written for ease of 
modification, rather than efficiency. Even with 4M of 
memory, them was considerable paging (it occasionally ran 
out of virtual memory!), and not having a local disk prob- 
ably slowed it down further. Re-implemented for efficiency 
on faster hardware with a better Smalltalk-80 implementa- 
lion, i t  would have been more usable. We bc.,ieve at least 
an order of magnitude speed-up to be essential for i t  to be 
usable. We decided therefore, not to attempt to drive 
hardware with this implementation. Thus, in the Galnme- 
ter example, the SlgnalGenerator and Voltmeter were 
merely code stubs. 

However, the implementation provided sufficient functional- 
ity for successful demonstrations of the concept to engineers 
and managers alike. Most of them believed that virtual 
instrument synthesis was indeed a viable way to develop 
test programs and that it had flexibility and extensibility 
appropriate to the application domain. Apart from 
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execution speed, the utility of the present implementation is 
limited by the availability of front panel primitives and 
base-level virtual instruments, and insufficient robustness. 
It should be noted that nothing precludes making the 
present implementation complete. However, since the slow 
speed of execution is a major obstacle, we felt that our 
energies would be better directed towards providing full 
functionality in a future, faster, implementation. 

The only fully developed display devices for the front panel 
are various species of bar graphs and panel meters. A felly 
functional software package must provide a full complement 
of such devices. For example, a frequency response meter 
should display a plot of the gain as a function of frequency. 
Use of a presently available device, such as a bar graph, 
would diminish the utility of the frequency response meas- 
urement, because the user needs the plot, rather than a 
series of instantaneous measurements. 

A more complete set of base level virtual instruments is 
required. One aspect of providing a more complete set of 
base level instruments is to provide support for switching, 
frequency measurement, etc. The lowest level of virtual 
instruments (see Figure 1) limits the functionality that can 
be achieved by a test program: instrument synthesis does 
not edd new stimulus / response capabilities to the system. 
Hence, the available set of base level instruments limits 
utility. The other aspect of a more complcte set is support 
for control structures like looping, No control structures are 
created during virtual insu'ument synthesis; in fact, few con- 
trol stntctures are required in T&M applications. However, 
some elementa~ structures are needed, for example, to 

make a frequency response meter sweep a range of frequen- 
cies. When a virtual machine class is created, it can be 
created by copying another virtual machine class. There- 
fore, the recommended way to create a frequency response 
meter class is by cloning a dummy class that implements • 
loop without a body. Since instrumentation appticatlo~ 
require exotic variants of basic control structures (such as 
loops with geometric steps, instead of arithmetic steps), the 
available set of dummy classes limits the utility of our 
implementation. 

Owing to bugs in our software and in Berkeley Smalltalk- 
80, the implementation was less robust than desired. Bugs 
in software are inevitable, but there were bugs in Berkeley 
Smalltalk that interfered with our ability to find and fix 
bugs in our code. 

Shortcomings notwithstanding, it is our opinion that the 
utility of virtual instrument synthesis for T&M software has 
been demonstrated. More philosophically, it demonstrates 
the viability of the alternative approach to making comput- 
crs more usable: that of strong support in a narrow domain, 
rather than the traditional weaker support in a broader appli- 
cation domain. 

Suggestions for Future Work 

There are three major directions for future work: extendle4] 
the domain, enhancing capabilities, and building mum 
efficient implementations. Domain extensions examine how 
the philosophy can be applied to other areas. Continued 
research on capabilities involves making the system more 
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powerful in the domain of electronic test equipment. Work 
to improve efficiency considers the modifications necessary 
for production use. The following discussion examines 
each alternative, with possible domain extensions con- 
sidered first. 

Electronic test equipment provided us with an appropriate 
domain for formulating and investigating issues in program- 
ruing philosophy. Our ideas are, however, not intrinsically 
linked to the domain, and extend to virtual applications gen- 
eration in several interesting ways. 

Areas such as electronic manufactcrers and grocery stores 
can, at first, appear to be unrelated, but, a deeper under- 
standing of the domains often reveals common elements in 
both problem statement and methods of solution. People in 
the two example businesses are faced with the problem of 
invento~ control. Such overlap occurs both with the need 
to ensure adequate supply of raw material (such as elec- 
tonic components or fresh vegetables) and the need to 
make certain that the finished product (fabricated systems or 
bagged groceries) is delivered promptly. Experts in both 
domains should be able to evolve functional models of their 
processes using familiar methods and jargon yet ultimately 
produce similar underlying code. 

Virtual generation of applications extends naturally to 
domains in which there may be no prior art. It should be 
possible to expand the approach to allow designers to incre- 
mentally formulate logical extensions to existing physical 
machines or to create powerful new ones. Such logical 
machines could serve as interactive artificial laboratories for 
experiment= that may otherwise be too volatile, hazardons, 

or expensive. 

A slzong isomorphism exists between software and 
hardware. By extending the notion of object oriented pro- 
gramming to hardware, the virtual instruments (or virtual 
applications) development environment can provide a 
powerful mechanism for research into dynamic computer 
architectures. By mapping each virtual appfications object 
onto its own processor in a multiprocessing network it 
should be possible to configure a loosely coupled MIMD 
processing system. The system would be coarse grained at 
the sub-problem level. Such a system could be dynamically 
reconfigurable and implemented to allow demand driven 
construction (and dismantling) of constituent virtual 
machines. 

In virtual inst~ments, the user "teaches" the computer. 
One extension of the capabilities of virtual instruments is to 
learn autonomously without teaching. With the present 
implementation, each new instrument must be explicitly 
created and configured by the user. By designing daemons 
to monitor applications activity and to autonomously gen- 
erate new instruments, it should be possible to create a sys- 
tem whose organization improves with experience. Such • 
system would entail the autonomous creation of classes and 
methods and thereby support both generalization and spe- 
cialization of instruments. 

Vertical inheritance, as reflected in generalization and spe- 
cialization, describes one set of virtual instrument inter- 
relationships. A second kind of inheritance can be seen in 
horizontal or lateral relationships. Lateral inheritance 
defines the inheritance of properties between objects usually 
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considered to be unrelated, i.e. recognition of common pro- 
perties without f~H inheritance. By permiuiNi such inheri- 
umce, knowledge gained in one domain can be applied to 
similar problems in a different domain. Thus, for example, 
a subset of the methods evolved in an adaptive process con- 
trol system may be applicable to the problem of speech 
understanding. 

By developing specialized virtual instruments, it should be 
possible to create communities of experts that co-operate to 
solve problems. Such experts can be created statically or 
allowed to evolve or learn with experience. Problem solu- 
tion can proceed in several ways. The process of negotia- 
tion through the interchange of massages among instrument 
objects can lead to an optimized (according to a selected 
metric) problem solution. Alternatively, a mmllar exchange 
of messages can result in shared knowledge. Such synergy 
of effort can result in the interchange of methods and lead, 
over time, to the development of specialized collecUons of 
knowledge or skill pools. 

The present virtual instruments implementation is designed 
as a research vehicle. When the methodology is extended 
for casual use, a number of modifications should be incor- 
porated. Currently, the system is "expert friendly", perfor- 
tmmce in the presence of errors and faults is less than 
optimal. Extending the existing rules for monitoring and 
raising faults and including sophisticated fault handlers will 
conlribute to making the human interface more robust. 

The execution speed of the current implementation is margi- 
nally adequate for limited research, in a practical applica- 
tion environment, such. performance will be unacceptable. 
Several possibilities for such improvement exist. One is to 
optimize the underlying code for the existing (or a faster) 
hardware vehicle. Several other possibilities are to execute 
the method either on a device such as the Berkeley SOAR 
[UNG84] processor, or the Tektronics 4406, or to imple- 
ment directly in silicon. 

Finally, research should be conducted into incorporating 
various other programming paradigms into the virtual 
instrumanta enviroumenL Among these lure included both 
the rule based and aeceas oriented metbnds. 
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