
Virtual Imtruments: Object-
Oriented Program Synthesis

K.S. Bhsudcar, J.K. Peckol
John Fluke Mfg. Co., Inc.

J .L Beug, Califemia
POlytechnic State Untvmity

Abs t rac t

Virtual Instruments t is an experimental programming
environment for developing electronic test and measurement
(T&IVO applications. Intended users are test engineers, who
me not pr(qFammcrs, but computer literate domain special-
ists. Unlike traditional prosranuning environments, that
provide weak support for a broad range of applications, vir-
tual instruments provides strong support for • specific appli-
cation. The programming paradigm is bottom-up synthesis
of layers of virtual machines m called virtual instruments

using human interface models from the application
domain, so that anftwarc development occurs without writ-
ing code. The object-oriented view of the wodd has proven
a natural fit. Implementation was in Berkeley Smalltalk on
• SUN workstation.

Overv iew

This paper reports on an experimental programming
environment to support eleclrnnic test and measurement
if&M) applications software development. Although T&M
mftware is • major industry, previous investigations of the
field have been motiv~_!~ mere by market research for pro-
duct development than by technical considerations. Since it
has not attracted the attention of computer scientists, there
has been little, if any, formal research on how T&M
software differs from other kinds of software.

Our own work originated in market studies for product
development, but branched off into more formal research.
We observed that test engineers describe the writing of
T&M software as difficult, but, given suitable test

tThe mtedal presented in Otis paper is included in a pandinR
prom.

Permission to copy without fee all or part of this material is stunted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear.
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

© 1986 ACM 0-89791-204-7/86/0900-0303 75¢

instruments, are able to pe~orm the tests manually. We
therefore wanted to investigate programming environments
based on the manual testing paradigm. We were interested
in the differences between T&M softwKe and other
software, and why there had not been significant advm~s
in T&M software tools, analogous to the word processors
and aprendsheets of other domains.

Our experimental environment, called Vh'tual Instruments,
provides • human interface modeled on T&M instrument
front panels: each virtual instrument has • functional v/ram/
[font panel. Instrument front panels are familiar to the test
engineer for immediate control of instrument functionality.
In addition to this immediate control, our virtual instru-
ments have the ability to emit code corresponding to their
virtual front panel settings. This facilitates programmed
control of instrument functionality with the same front
panels. By also providing ways to encapsulate information,
pass parameters, etc., we eliminate the formal coding step.
The same uniform human interface exteads to debugging as
well.

In the following text, wc express our views on elecmmic
test and measurement applications, refer to related prior
work, describe our contribution, illustrate the use of virtual
instruments with an example, outtinc the implementation in
Smalltalk-80, discuss results achieved, and suggest future
research.

Electronic Test and Measurement Applications

A typical T&M program is one to test an electronic circuit
by evaluating responses to suitable stimuli. A typical
configuration consists of • computer (called • controller),
and • collection of electronic test and mca~urement iustru-
mcnts, connected to a bus, such as the industry standsnl
IEEB-488 bus.

in the commercial arena, such applications are typically
written in variations of BASIC, usually augmented with
instrument control primitives. ATLAS and FORTRAN are
commonly used in the aerospace / military world. Program-
ming environments are primitive: for example, screen-
oriented editors became popular only • few years ago. Pre-
vious attempts to study the market in order to provide better
environments had concluded that, despite universal com-
plaints about the time to develop applications soflwm~

September 1986 OOPSLA '86 Proceedings 303

customers did not want anything more sophisticatedl We
believe the reasons me:

• Programs are authored by test engineers, who are
subject matter specialists with little formal
knowledge of computer science. Even though fami-
liarity exists with word processing and spread sheet
software, without additional training, better program-
ruing environments are more confusing than helpful.
BASIC is easy to learn.

• Programs are tedious, but conceptually simple.
While programs tens of thousands of lines long are
not uncommon, they do not employ complex data or
control sU~ctures, manipulate symbolic information,
execute recursive algorithms, make complex deci-
sions, etc. Whether this is a cause or a symptom is
not entirely certain, but it is an observed fact. The
structural simplicity of test programs made our work
easier.

• Being interpreted, most BASIC implementations pro-
vide an immediacy that suits the empirical,
"software development by experimentation", tech-
niques that are typically employed. This is important
because the correct stimulus is usually experimentally
developed. The correct responses have to be
"learned" by applying the stimulus to, and measur-
ing the response of a circuit known to be good.

• Software bugs are less likely to result from logic
errors then from applying the wrong stimulus or test-
ing against an incorrect expected response. When a
bug is encountered, it is desirable to experimentally
determine the correct stimulus / response, correct the
program and proceed, in this respect, debugging
needs are more akin to artificial intelligence expert
systems development than to traditional software
development.

• Traditional programming environments usually sup-
port top-down programming. For test engineers,
bottom-up programming is more intuitive.

We also observed that most attempts at developing pro-
gramming environments attempted to support a broad range
of applications, and the requirement for generality appeared
to compromise the level of support. We wondered if, by
limiting our scope to T&M applications, we could provide
sConger support for software development than that avail-
able in the more general environments.

Related Prior Work
Within any field are individuals who have acquired exper-
tise through extensive experience. Although these experts
may not be trained in formal design techniques, they solve
problems effectively using pragmatic methods. To allow
such experts to apply familiar skills to the unfamiliar task
of software development, an environment is needed that
permits the user to concentrate on the problem solution
rather than the implementation language.

Traditional attempts to develop more productive program-
rain 8 envisvummts have focused on application breadth

[TEI81] [RIC78] [BAR84]. With such technique& the
range of application domains is diverse. Usually, such
flexibility is gained only through the sacrifice of problem
solving power in specific domains because tools and aids
must be general purpose. We took the opposite approach
and investigated a restricted domain. This allowed us to
provide stronger support with more specialized tools, aids,
and methodologies to allow task experts to solve domain
specific problems with familiar tools. Expert system
development shells are another example of pmgrammlng
environments with strong support for narrow domains
[HAY84].

Our work builds on Tannenbaum's [TAN76] interpretion of
a computer as a hierarchy of virtual machines (the
micropmgramming level to the problem oriented language
level). In Tannenbaum's model, the language of each suc-
cessive virtual machine becomes increasingly more power-
ful and is the machine language for the next machine. One
measure of the power of an instruction is the number of
resulting actions at the circuit level [BEL71].

With such an interpretation, a program written in the
language of the lowest level virtual machine (the hardware
or circuit level) can command any set of actions that the
hardware is capable of executing. However, writing pro-
grams as sequences of binary bits is cumbersome and error
prone. At successively higher levels, programs become
more task specific, thus, it becomes increasingly easier to
accomplish more specialized tasks. Spreadsheet programs
are one example, in that only a minuscule subset of possible
programs can be executed, but it is easy to accomplish a
specific task that fits the paradigm.

Vir tua l I n s t r u m e n t s
Like others before us, we concluded that programming
environments for traditional software development w e e not
suited to test end measurement needs. We wanted to
demonstrate the feusibiHty of an environment to dramati-
cally improve software development times for our specific
application domain. We were also interested in the possi-
bility of building a specialized programming environment
above the Smalltalk-80 environment. We decided that our
requirements were:

• Encapsulation and knowledge hiding. Our beliefs
told us that these were key ingredients of any pro-
grammlng environment.

• Minimal syntax. We decided that procedure calls or
messages were semantically adequate for our need___.
(in any case, we did not want to invent one more
language), but that we would need keywe~ parame-
ters. (The Smalltalk-80 message syntax was a lmnst
ideal.)

• Interactive execution and debugging of code frag-
ments.

• Bottom-up software development. This fits nicely
with the previous requirement.

• Graphical human interfuce models, -familiar to the
~ t engineer.

304 OOPSLA '86 Proceedings Sepffimber 1986

• Ease of implementation and experimentation. Since
our objective was research, we wanted to minimize
implementation effort, and maximize our ability to
experiment with different ideas.

Our contribution Ues in the invention of two concepts: v/r-
tual insWumosts with virtual front panels, and virtual
instrumost 57nll~esis.
Since test engineers are experts at dealing with test instru-
ments, we decided to mimic test insCuments on the com-
puter. The test engineer could then manipulate these virtual
instruments. Virtual instruments can control real instru-
ments through an interface such as the IEEE-488 interface.
A virtual instrument is similar to a device driver, except
that it also has a human interface. For example, • virtual
instrument disk controller could have a knob to select the
track, another to select the cylinder, a display for data, and
a Read/Write function selection. This could be operated by
setting the cylinder, track and function controls and sending
it a "do i t" command, via • pop-up menu or a soft key.

Every such instrument is an instance of • corresponding
class, and its virtual front panel providcs thc test engineer
with • human interface that s/he is familiar with and can

control. The engineer can adjust the "knobs" on the vir-
tual front panel by using • mouse, and command the virtual
instrument to "do i t": i.e. perform its intended operation
and display the results, if any, on "gauges" and other out-
put devices. Virtual front panels are also, therefore, a use-
ful debugging aid for typical test program bugs.

Test program generation can be achieved by sleight of
band. After seuing up a virtual instrument to his/her satis-
faction, a test engineer can issue a "generate code" com-
mand to cause the virtual instrument to emit code
corresponding to its current virtual front panel setting.
Thus, software generation can, in theory, be accomplished
without cvcr requiring the test engineer to "write code".
In fact, there exist many commercial T&M products that
support this paradigm in different ways.

However, this basic paradigm is too restrictive and tedious
even for test and measurement applications! Our experi-
ence with the commercially available systems indicates that
they are most useful for dcmonslxation purposes and for the
novice. In our virtual instrument synthesis paradigm,
instead of using the generated code directly as the test
software, we use it to build, or symhesize a new virtual

I
I

J D i j i t e l I
I Iluttimetnr I

4 - - . ÷
I Oisitst l
I Nu t t i u t t r I

J C o m p l e t e S o e r d J
J T e s t e r l

I
I

I L i n e e r i t y I
I T e s t e r I
+-I I-*

I
I

÷ ~ [- ÷

I F r e q u e n c y l
I E e s p o n s e H e t e r I
÷ j ÷

I
I

÷ [. ÷

I Caln Meter I
I I
+ - I I - +

I
I

I F u n c C l o n l
I Cenereror l

I

I

I uP K e r n e t J
I T e s t e r I

. ÷

I
t
I

I H ~ c r o s y s r . e m l
I T r o u b l e s h o o t e r I

I
V I R T U A L

R~L
I I

. I + + I
I F u n c t i o n [I H i c r o s y e c e m I
I ¢ e n e r l t o r I [T r o u b L e s h o o t e r I

Virtual Instruments in a Beard Test Program

F i g u r e 1

September 1986 OOPSLA '86 Proceedings 305

instrument e l m . Once synthesis is complete, instances of
the syntheslzed virtual instrument can, in turn, be used to
synthesize higher level virtual instruments. This provides
information encapsulation. Furthermore, since external
access to a virtual instrument is only through its virtual
front panel, hiding is also accomplished.

The virtual instrument synthesis paradigm extends to all
levels of abstraction in the test program. For example, con-
sider an amplifier where the gain is controlled by a
microprocessor. A complete test program to determine the
frequency response would measure the gain of the amplifier
through a range of frequencies. By varying the gain and
measuring the frequency response at each gain level, the
linem'/ty of the amplifier can he tested. By then testing the
microprocessor kernel u well (the RAM, ROM, etc.), •
complete test program is synthesized. However, at each
stage, the human interface paradigm is that of dealing with
a ru t instrument (of course, much detail has been glossed
over, but the essence of the technique is simple). Thus,
given • digital mult/meter and a function generator, the test
engineer knows how to measure gain. Given • gain meter
and an ability to sweep it over • range of frequencies, s/be
knows how to measure frequency response, and so on, to
implement a test program for the complete circuit board
(see Figure I). This approach extracts the implied func-
tional modularity that normally would never leave the test
engineer's brain, and transfers it to the actual test software.
The benefits extend beyond faster software development to
software maintainability, portability and code sharing.

An Example

This example illustrates the synthesis of • new virtual
instrument called Gainmeter, to measure gain, just as •
voltmeter measures voltage. Measuring gain involves
applying • stimulus (specified by an amplitude and a
quency), and measuring the response (specified by output
voltage). Gain is then computed as

20 logs= (output voltage ÷ stimulus amplitude)

Gain meters do not exist in practice, but making a
measurement is a meaningful encapsulation Of iufommtion.
In Virtual Instruments, this encapsulation can he insure-
tiated as • virtual instrument with • virtual front panel
This is more meaningful to a test engineer than • ~mdlflooal
gain(amplitude, frequency) function, especially so
because this uniform human interface model occurs at eve~7
level of absU'action.

The figures in this example are photographs of the screen of
a SUN workstation executing Berkeley Smalltalk-II0.
Smalltalk-80 features such as pop-up menus, mouse buttoa
colors, and the distinction between classes and instances are
described in [GOLg3] and [GOLg4].

Figure 2 shows an initial "power-up" screen, in the Gen-
erator list window is • list of all virtual iuslrumanta
classes. The Instrument list window is • list of current
virtual machine instances, initially empty.

Typically, the first step is to create required instances of
each class. Each class has an inherited method to mlm~

Figure 2

306 OOPSLA '86 Proceedings September 1986

uniquely named instances of itself (each with its own virtual
front panel). This feature, like most features, is accessed
via a pop-up menu. Figure 3 shows the screen after creat-
ing such instances. (Since this was a research project, we
decided to explore the limits of the technique. Conse-
quently, even arithmetic operations are performed by virtual
instruments: for example, to compute a logarithm, one can
set the number and base on the front panel, and "run" the
instrument to compute the logarithm.)

Before synthesizing a virtual instrument, a class must be
created for it. This skeletal class includes all inherited
methods for the overall behavior of an instrument. The
subsequent synthesis only requires the definition of the front
panel and the generation of steps used to perform its opera-
tion, the runMe method. Creating a new class is accom-
pfished via a pop-up menu (the user is prompted for a
name). This adds the new class to the Generator list. The
user can then select a pop-up menu option synthesize. This
creates a synthesizing Galnmeter window, as shown in
Figure 4. This window is divided vertically into three
regions. The three panes of the top region are used to
define the front panel of the new virtual instrument class.
The middle region displays the code, as it is being gen-
erated. The bottom region, in conjunction with the middle
region is used to specify arguments for messages.

A front panel definition consists of names of front panel
item& a type associated with each name, whether the item
is an input, an output, or both, and the type of display
(gauge, dial, etc.) to be used for the item. Methods for
accessing each item are automatically generated. Figure 5

shows the display after the front panel is specified for class
Galnmeter. Also in the figure, the value of amplitude in
the virtual instrument instance aSIgnalGeneratorl$ has
been set (this can be done in two ways: the mouse red but-
ton can be used to "drag" the pointer, or a new value can
be explicitly typed), Experimentation to empirically deter-
mine required front panel values can occur at any time,
resulting in environment modelessness.

A mouse yellow button menu item, generate, inserts the
code to invoke aSIgnaIGeneratorl5 at run time as a step in
the Gainmeter runMe method (Figure 6). The generated
code selects the signal generator, sets the front panel item&
frequency and amplitude, to their current values, and runs
aSignaIGeneratorlS. A variable (ql) is created to store
the value, if any, returned by the signal generator runMe
method.

Since it is desired to use a Galnmeter's own front panel
item, atFreq, instead of the current value, 1325, as the fre-
quency input to aSIgnalGeneratorl$, the user then selects
t frequency: 1325 in the middle region, and self atFreq in
the bottom region. A yellow button menu item is used to
effect the change. Similarly, self InLevel is asu~is!~ with
amplitude. Figure 7 shows the display after making these
changes.

This process of generating steps continues. Since the test
engineer knows how to make a gain measurement using
actual instruments, s/he performs these steps, and the code
is generated automatically. Conceptually, the only increase
in complexity arises from having to associate previously

Figure 3

S~ember 1986 OOPSLA '86 Proceedings 307

Figure 4

computed results with message arguments, and even this is
reasonably intuitive. Figure 8 shows the display after all
steps have been generated.

The initial, skeletal code for the Gainmeter runMe method
contains a dummy place holder
"se l f myValue: self myValue for the value to be returned.
A final change to the code is to rttum q$ (the variable with
the value returned by aMultlpllerl4). The method can then
be compiled, and an instance of Gainmeter can be created.
This instance, aGalnMeterl , can be used just like any
other instrument (Figure 9). (An earlier implementation
automatically, and transparently, recompiled the method at
each stage, but this was too slow, even for experiments-
~n.)

The virtual front panels for the other instruments can now
be closed, leaving just the gain meter. This improves exe-
cution speed, and makes for a cleaner display. A timed
virtual front panel can be re-opened at any time, via(a yel-
low button menu item in the Instrument list window.
Opening closed virtual front panels automatically displays
the current values. Since values displayed on virtual instru-
ment front panel are the key program variables, and since
virtual front panels can aim be used to modify these same
variables, this extends the uniform human interface model
to debugging as well. Debugging is mndeless and can hap-
pen at any time: there is no need to "compile with the
debug flag" or to perform any other ritual.

Design Considerations

The two common design paradigms are top-down and
bottom-up (or perhaps, mort appropriately, sWategy and lac-
tic driven) depending upon whether one moves from the
general to the specific or vice versa. A strategy driven
methodology is rich in internalized knowledge, knowledge
that represents a general understanding of problem and
domain. However, such knowledge can be difficult m
vocal/ze. Strategy driven solutions can be characterized as
a process of progressive or stepwise refinement [WIRTI]
[TAUT7] (similar to forward chaining) in which a hierarchic
decomposition of the problem proceeds through decreasing
levels of abstraction. Such methods tend to favor
knowledge monotonicity and can be fragile with uncertain
knowledge. As a result, some form of truth maintenance or
backlracking is required.

In contrast, a tactics driven problem solving approach
emphasizes knowledge externalization. Domain experts are
usually familiar with detailed information and have an intui-
tive or heuristic understanding of conceptual inter-
relationships. Such a methodology encourages incremental
development and learning. Solutions tend to be iterative
(similar to backward chaining) and robust with uncertain
and non-monotonic knowledge.

Virtual Instruments allows a domain expert to work from
the pragmatic level to the solution level. It is bottom-up
mftware development by virtual machine conslruction,
applied to the domain of electronic test equipment.

308 OOPSLA '86 Proceedings September 1986

Figure 5

Various programming methodologies or paradigms were
considered as possible candidates for implementation. Each
is examined briefly.

The pure procedural approach (distinguished from methods
using embedded, attached, or hidden procedures) is the
most familiar. The basic procedural methodology implies
that the problem mlver has a broad understanding of the
task to be solved. Such a tacit requirement suggests that
the method can be particularly fragile at knowledge boun-
daries [REIS0] or under change, thus reducing its power as
a tool for Incremental development. Further, futu?e
modifien must have an understanding of procedure inter-
oals.

A rule based paradigm is more supportive of incremental
knowledge and program development than procedural
methods. A potentially significant limitation, however,
exists in the amount of time spent searching the system
knowledge base. The success of the methodology is
slrongly dependent upon the robustness of the inference
engine and conflict set resolution algorithm. As with pro-
cedurai methods, most present day rule based systems exhi-
bit fragile behavior at knowledge boundaries, performing
best in domains characterized by shallow knowledge
[PRE85]. Furthermore, the implemcntor usually requires a
domain expert and the assistance of a knowledge engineer
(for extracting knowledge from the domain export).

The technique of using parameter access to Irigger pro-
cedural invocation has evolved from such languages as
Simula [DAH66] and more recently (with the notion of pro-
eedural aUachmenO from some of the frame languages such

as KRL [STE86]. Commonly referred to today u access
oriented programming, such methods can provide a power-
ful interface between the user and an underlying program.
A demand driven formalism supports incremental
knowledge acquisition and program development and can
form the basis for "learn-by-watching" software genera-
tion. Potentially, program execution speed can also be
improved because the control mechanism need not devote
time to monitoring for changes in designated variables.

The development environments available for the virtual
inslruments project were the VAX 11/780 [tm Digital
Equipment Corporation] and SUN 2/50, both executing
Unix [tin AT&T]. Available language choices for imple-
mentation were MAINSAIL [tm XIDAK, inc.], LISP with
Emacs, Icon, and Smalltalk-80 (available only on the SUN).
Smalltalk-80 was selected because object oriented tech-
niques in general, and Smalltalk-80 in particular, naturally
support many of the criteria established for the development
of a virtual instruments programming environment.

• Encapsulation and knowledge hiding are especially
well supported through the object discipline. The
ability to define an external interface to a virtual
instrument independent of the internal implementa-
tion is essentially free with object-oriented program-
ruing. For example, the definition of an instrument
can be improved internally, but higher level inslru-
taunts need know nothing about iL

• The message syntax of Smalltalk-80 providea a pro-
gram syntax that is easily understood by the test
engineer. We did not have to invent a new language

September 1986 OOPSLA '86 Proceedings 309

Figure 6

or 8 new syntax:

The underlying capability to invoke the Smalltalk-80
compiler dynamically and to create and send mes-
sages dynamically makes it easy to interactively exe-
cute and debug code fragments. The encapsulation
provided by virtual instruments and their front panels
provides a convenient and intuitive means for the test
engineer to have this capability.

Bottom-up software development in ordinary
environments requires that programmers write
"drivers" for lower level modules as they are
developed. However, the object management capa-
bility and lack of artifacts like linking removes the
need for drivers. Virtual insu'uments can be accessed
from higher level virtual instruments, but Smalltalk-
80 makes it easy to implement the direct access.

The classes that ere part of the standard Smalltalk-80
distribution provide a rich set of primitives with
which to build graphical human interfaces.

The goal of ease of implementation and experimenta-
tion is also naturally satisfied. Abstract superclasses
with inheritance provide an ideal mechanism for pro-
viding basic behavior for virtual instruments, and
nutking available display devices for virtual front
panels (for example, virtual instruments can use new
types of display devices as and when these are
created).

Implemen ta t ion in Smal l ta lk

The software was implemented by Jim Beug. In practice,
Smalltalk-80 proved to be a very amenable vehicle for
implementing Virtual Instrument& Much of the code was
written by studying existing Smalltalk-80 classes, and
adapting our software to fit existing classes, or by copying
and modifying existing classes to make new classes. For
example, SelectlonInLlstView proved widely applicable.
and front panel gauges and rooters evolved from
ClockVlew.

Each virtual instrument class is a Smalltalk-80 subclass of
class Vlrtuailnstrument. Each virtual instrument is an
instance of its class. Class methods in class Generator
provide the ability to create and delete virtual instruments
and classes of virtual instruments (i.e. to admlnism the
Generator list and Instrument list window functions in the
example). Instrument synthesis was implemented by
instances of Generator, so that. theoretically, synthesis of
more than one instrument can occur at any time, although
support for this in our experimental implementation is best
descr/bed as weak. Each instance of Generator manipu-
lares the definition (i.e. the variables and methods) of its
virtual instrument class, for example, to create and delete
methods and front panel items.

A virtual instrument must respond in three primary ways.
First, it must have a means to display and change its set-
tings. This is accomplished via the virtual front panel
Second, thae must be a way to use it: to provide s
stimulus, measure a respom~ perform s test, or

310 OOPSLA '86 Proceedings Septl)n/~ 1986

Figure 7

do what it is expected of it. To accomplish this, all virtual
instruments respond to a runMe method. Third, a virtual
instrument must be able to emit code to set its front panel
and then run it. All virtual instruments inherit a generate
method to accomplish this.

Each front panel item is an instance of class Parameter-
Blok Is/el. A front panel item is identified by name, by
type, whether an input, output, or both, the current value
and a view. Each virtual instrument has two methods for
each front panel item, one to access and one to modify the
item.

Gauges, meters and the like arc implemented using the stan-
dard Smalltalk Model-View-Controller idiom. Views use
virtual instruments as models. Controllers use the red but-
ton to modify input parameters, for example, by dragging
bars in bar graphs. Yellow button menus are used to con-
tml instrument behavior, and are inherited by the instrument
from class VlrtuaIlnstrument. The standard system blue
button menu is used for closing, framing, etc.

The inherited generate method emits a line of code to
select the virtual instrument, then examines the front panel
items, and, for each item, emits a line of code to set it to its
current value. Finally, it emits a line of code to send the
instrument the runMe message. This code must be inserted
into the instrument being synthesized, and appropriate
entries made in the third region of the synthesizing win-
dow, so that arguments can replace the current front panel
vMues.

Implementation of the software took IO-12 weeks.
Smalitalk-80 has a significant learning curve, and an
estimated one third of that time was spent becoming
proficient. Once this barrier was overcome, however, pro-
gramming was easy, and, date we say it, even fun?

Resul t s

The software proved too slow for use in any real applica-
tion. On a SUN 2/50 with 4M bytes of memory and no
local disk, a gain "measurement" took 1-2 seconds. To be
completely fair to the Smalltalk-80 implementation, it must
b¢ said that the software was written for ease of
modification, rather than efficiency. Even with 4M of
memory, them was considerable paging (it occasionally ran
out of virtual memory!), and not having a local disk prob-
ably slowed it down further. Re-implemented for efficiency
on faster hardware with a better Smalltalk-80 implementa-
lion, i t would have been more usable. We bc.,ieve at least
an order of magnitude speed-up to be essential for i t to be
usable. We decided therefore, not to attempt to drive
hardware with this implementation. Thus, in the Galnme-
ter example, the SlgnalGenerator and Voltmeter were
merely code stubs.

However, the implementation provided sufficient functional-
ity for successful demonstrations of the concept to engineers
and managers alike. Most of them believed that virtual
instrument synthesis was indeed a viable way to develop
test programs and that it had flexibility and extensibility
appropriate to the application domain. Apart from

Septem~r 1986 OOPSLA '86 Proceedings 311

Figure g

execution speed, the utility of the present implementation is
limited by the availability of front panel primitives and
base-level virtual instruments, and insufficient robustness.
It should be noted that nothing precludes making the
present implementation complete. However, since the slow
speed of execution is a major obstacle, we felt that our
energies would be better directed towards providing full
functionality in a future, faster, implementation.

The only fully developed display devices for the front panel
are various species of bar graphs and panel meters. A felly
functional software package must provide a full complement
of such devices. For example, a frequency response meter
should display a plot of the gain as a function of frequency.
Use of a presently available device, such as a bar graph,
would diminish the utility of the frequency response meas-
urement, because the user needs the plot, rather than a
series of instantaneous measurements.

A more complete set of base level virtual instruments is
required. One aspect of providing a more complete set of
base level instruments is to provide support for switching,
frequency measurement, etc. The lowest level of virtual
instruments (see Figure 1) limits the functionality that can
be achieved by a test program: instrument synthesis does
not edd new stimulus / response capabilities to the system.
Hence, the available set of base level instruments limits
utility. The other aspect of a more complcte set is support
for control structures like looping, No control structures are
created during virtual insu'ument synthesis; in fact, few con-
trol stntctures are required in T&M applications. However,
some elementa~ structures are needed, for example, to

make a frequency response meter sweep a range of frequen-
cies. When a virtual machine class is created, it can be
created by copying another virtual machine class. There-
fore, the recommended way to create a frequency response
meter class is by cloning a dummy class that implements •
loop without a body. Since instrumentation appticatlo~
require exotic variants of basic control structures (such as
loops with geometric steps, instead of arithmetic steps), the
available set of dummy classes limits the utility of our
implementation.

Owing to bugs in our software and in Berkeley Smalltalk-
80, the implementation was less robust than desired. Bugs
in software are inevitable, but there were bugs in Berkeley
Smalltalk that interfered with our ability to find and fix
bugs in our code.

Shortcomings notwithstanding, it is our opinion that the
utility of virtual instrument synthesis for T&M software has
been demonstrated. More philosophically, it demonstrates
the viability of the alternative approach to making comput-
crs more usable: that of strong support in a narrow domain,
rather than the traditional weaker support in a broader appli-
cation domain.

Suggestions for Future Work

There are three major directions for future work: extendle4]
the domain, enhancing capabilities, and building mum
efficient implementations. Domain extensions examine how
the philosophy can be applied to other areas. Continued
research on capabilities involves making the system more

312 OOPSLA '86 Proceedings September 1986

Figure 9

powerful in the domain of electronic test equipment. Work
to improve efficiency considers the modifications necessary
for production use. The following discussion examines
each alternative, with possible domain extensions con-
sidered first.

Electronic test equipment provided us with an appropriate
domain for formulating and investigating issues in program-
ruing philosophy. Our ideas are, however, not intrinsically
linked to the domain, and extend to virtual applications gen-
eration in several interesting ways.

Areas such as electronic manufactcrers and grocery stores
can, at first, appear to be unrelated, but, a deeper under-
standing of the domains often reveals common elements in
both problem statement and methods of solution. People in
the two example businesses are faced with the problem of
invento~ control. Such overlap occurs both with the need
to ensure adequate supply of raw material (such as elec-
tonic components or fresh vegetables) and the need to
make certain that the finished product (fabricated systems or
bagged groceries) is delivered promptly. Experts in both
domains should be able to evolve functional models of their
processes using familiar methods and jargon yet ultimately
produce similar underlying code.

Virtual generation of applications extends naturally to
domains in which there may be no prior art. It should be
possible to expand the approach to allow designers to incre-
mentally formulate logical extensions to existing physical
machines or to create powerful new ones. Such logical
machines could serve as interactive artificial laboratories for
experiment= that may otherwise be too volatile, hazardons,

or expensive.

A slzong isomorphism exists between software and
hardware. By extending the notion of object oriented pro-
gramming to hardware, the virtual instruments (or virtual
applications) development environment can provide a
powerful mechanism for research into dynamic computer
architectures. By mapping each virtual appfications object
onto its own processor in a multiprocessing network it
should be possible to configure a loosely coupled MIMD
processing system. The system would be coarse grained at
the sub-problem level. Such a system could be dynamically
reconfigurable and implemented to allow demand driven
construction (and dismantling) of constituent virtual
machines.

In virtual inst~ments, the user "teaches" the computer.
One extension of the capabilities of virtual instruments is to
learn autonomously without teaching. With the present
implementation, each new instrument must be explicitly
created and configured by the user. By designing daemons
to monitor applications activity and to autonomously gen-
erate new instruments, it should be possible to create a sys-
tem whose organization improves with experience. Such •
system would entail the autonomous creation of classes and
methods and thereby support both generalization and spe-
cialization of instruments.

Vertical inheritance, as reflected in generalization and spe-
cialization, describes one set of virtual instrument inter-
relationships. A second kind of inheritance can be seen in
horizontal or lateral relationships. Lateral inheritance
defines the inheritance of properties between objects usually

September 1986 OOPSLA '86 Proceedings 313

considered to be unrelated, i.e. recognition of common pro-
perties without f~H inheritance. By permiuiNi such inheri-
umce, knowledge gained in one domain can be applied to
similar problems in a different domain. Thus, for example,
a subset of the methods evolved in an adaptive process con-
trol system may be applicable to the problem of speech
understanding.

By developing specialized virtual instruments, it should be
possible to create communities of experts that co-operate to
solve problems. Such experts can be created statically or
allowed to evolve or learn with experience. Problem solu-
tion can proceed in several ways. The process of negotia-
tion through the interchange of massages among instrument
objects can lead to an optimized (according to a selected
metric) problem solution. Alternatively, a mmllar exchange
of messages can result in shared knowledge. Such synergy
of effort can result in the interchange of methods and lead,
over time, to the development of specialized collecUons of
knowledge or skill pools.

The present virtual instruments implementation is designed
as a research vehicle. When the methodology is extended
for casual use, a number of modifications should be incor-
porated. Currently, the system is "expert friendly", perfor-
tmmce in the presence of errors and faults is less than
optimal. Extending the existing rules for monitoring and
raising faults and including sophisticated fault handlers will
conlribute to making the human interface more robust.

The execution speed of the current implementation is margi-
nally adequate for limited research, in a practical applica-
tion environment, such. performance will be unacceptable.
Several possibilities for such improvement exist. One is to
optimize the underlying code for the existing (or a faster)
hardware vehicle. Several other possibilities are to execute
the method either on a device such as the Berkeley SOAR
[UNG84] processor, or the Tektronics 4406, or to imple-
ment directly in silicon.

Finally, research should be conducted into incorporating
various other programming paradigms into the virtual
instrumanta enviroumenL Among these lure included both
the rule based and aeceas oriented metbnds.
Bibliography

[BAR84] Bmtow, David R., Shrobe, Howard E., Sen-
dewall, Erik, lnteracti~ Pro&rammin8 Environ-
ments McGraw-Hill Book Company, 1984.

[BEL71] Bell, C. Gordon and Newell, Allen, Computer
Swuctures: Readings and F.zan~les McGraw-Hill
Book Company, 1971.

[DAH66] Dahl, OJ., and Nygaard, K. SlMULA - An
ALGOL-Based Simulation Language, CommJ~-
co, ions of the ACM, Vol. 9, pp. 671-678, 1966.

[GOL83] Goldberg, Adele and Robson, David, Smalltalk.
80 The Language and its Implementation
Addison-Wesley Publishing Company, 1983.

[GOL84] Goidberg. Adele, Smalltalk-80 The Interactive
Progranm6ng Em, ironment Addison-Wesley Pub-
Kshing Company, 1984.

[trAY84]

[PRE85]

[gEl80]

[eic78]

[sr~86]

[TAN76]

[TAU77]

ITEi81]

[UNG84]

[win71]

Hayes-Roth, Frederick, Waterman, Donald A.,
and Lenak Douglas B., B~dlding E~ert Systuns
Addison-Wesley Publishing Company, 1984.

Prerau, David S., Selection of an Appropriate
Domain for an Expert System, ,4/ Maga:h~,
Vol. vii, No. 2, pp. 26-30, Summer 1985.

Reiter, R., A Logic for Default Reasoning,
Artifgial Intdli&ence, Vol. 13, pp. 81-132,
[980.

Rich, Charles and Shrobe, Howard E., Initial
Report on a LISP Programmer's Apprentice,
IEEE Transactions on Software En&in~ring,
Vol. SE-4, No. 6, pp. 456-467, November 1978.

Stefik, Mark J., Bobrow, Daniel G., and Kahn,
Kenneth M., Integrating Access Oriented Pro-
gramming into a Multiparadigm Environment.
IEEE $oj~are, pp. 10-18, January 1986.

Tanenbaum, Andrew S., Structured Computer
Organization Prentico-Hall, Englewood Cliffs,
New Jersey, 1976.

Tausworth, Robert C., Standardized Development
of Computer Software Prentice-Hall, Inc., Rngle-
wood Cliffs, New Jersey, 1977.

Teitelman, Warren and Mssinter, larry, The
Interlisp Programming Environment, IEEE Corn.
puter, Vol. 14, No. 4, pp. 25-34, April 1981.

Ungnr, David; Blau, Ricki; Foley, Peter; Sam-
pies, Daln; and Patterson, David, An~hitecture of
SOAR: Smalltalk on a RISC, llth Annual Sym-
posium on Computer Architecture, June 4-7,
1984, Ann Arbor, Michigan.

Wirth, N. Program Development by Stepwise
Refinement, C m a 6 o ~ of t&e ACM, VoL
14, No. 4, pp. 221-227, 1971.

314 OOPSLA '86 Proceedings Sepwmber 1986

