
Programming with Explicit Metaclasses in Smalltalk-

Jean-Pierre Briot and Pierre Cointe

Equipe Mixte Rank Xerox France - LITP,
Universite Pierre et Marie Curie,

4 place Jussieu, 75005 Paris, France

briot/pc@rxf.ibp.fr.uucp

Abstract
This paper discusses the introduction of

explicit metaclasses ZI la ObjVlisp into the
Smalltalk- language. The rigidity of
Smalltalk metaclass architecture motivated
this work. We decided to implement the
ObjVlisp model into the standard Smalltalk-
80 system. The resulting combination
defines the Classtalk platform. This
platform provides a full-size environment
to experiment with class-oriented
programming by combining implicit
metaclasses a la Smalltalk and explicit
metaclasses 2 la ObjVlisp. Obviously, these
experiments are not limited to the Smalltalk
world and will be useful to understand and
practice the metaclass concept advocated by
modern object-oriented languages such as
ObjVlisp and CLOS.

1 Introduction
Uniformity is one of the main advantages

of Object-Oriented Programming
[Goldberg&Robson83]. Therefore in the
sub-field of class-oriented languages, an
increasing number of people claim that
classes must be considered as “first class
objects” [Cointe87], i.e. described by true
and appropriate classes, called metaclasses.

1.1 Metaclasses are Useful
It has already been argued that

metaclasses are useful both at the user’s
and at the implementor’s levels to describe
and extend the class architecture.

Permission to copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commercial advantage,

the ACM copyright notice and the title of the publication and its date appear,

and notice is given that copying is by permission of the Association for

Computing Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

0 1989 ACM 089791-333.7/89/OOlO/O419 $1.50

For the implementor, metaclasses are the
means to describe and parameterize the
object system itself, for instance to tailor
the implementation [Cointe&Graube88],
describe and extend the language in a
circular way [Bobrow&Kiczales88]
[Attardi&al89], and control the execution
process [Malenfant&al89]. In short to
describe and control the implementation of
objects at the user’s level.

For the user, metaclasses define the class
me thuds, which allow to send messages to
classes, e.g. the messages to create new
objects, and the instance variables at the
class level, which enable the user to
parameterize classes [Cointe87].

1.2 Metaclasses in Smalltalk
Historically, Smalltalk was the first

language to introduce metaclasses. At the
implementation level, they define the
kernel of the architecture (in Smalltalk-80,
the metaclasses of the Kernel-Classes category)
in an object-oriented manner. But at the
user’s level, metaclasses have been hidden.
When a class is defined, a new metaclass is
automatically created by the system. This
implicit metaclass is anonymous,
unsharable and strongly coupled with its
private instance.

This separation between the
implementor’s level and user’s level results
in an architecture which is not fully
uniform. This choice was probably made in
order to make things easier for the
beginner, but complicated the general
architecture of the class system in such a
way that it became very difficult to
understand it. Consequently people
working in the field of learnability of
object-oriented programming claim that
the Smalltalk metaclasses complicate
unnecessarily the model and that they
should be removed or at least highlighted

October 1-6, 1989 OOPSLA ‘89 Proceedings 419

[Borning&OShea87]. Nevertheless, taking
the decision to remove metaclasses can lead
to removing classes too, and to defining
prototype-based Smalltalk languages
[Ungar&Smith87].

1.3 Metaclasses in ObjVlisp & CLOS
On the contrary, many people have been

looking for uniform and explicit
metaclasses. Such systems are Loops,
ObjVlisp, CLOS and others. We proposed the
ObjVlisp model [Briot&Cointe87] which
supports a simple, clean and minimal
architecture for explicit metaclasses. The
Common Lisp Object System (CLOS)
[Bobrow&Kiczales88] has also been designed
along such an architecture.

Meanwhile ObjVlisp has the drawback of
its minimality. It does not have enough
class libraries to allow realistic
experiments with end-users. CLOS is a much
richer language but there are currently
few implementations and its programming
environment is still under development.

1.4 Motivations
A previous study [Cointe88] convinced us

that the Smalltalk language was extensible
enough to support another metaclass
system. Because we think Smalltalk- is
currently the most complete and flexible
object-oriented programming
environment, we decided to introduce the
uniform architecture of ObjVlisp
metaclasses into it. This integration must be
complete in order to experiment with
(meta)class-oriented programming while
still reusing standard Smalltalk- class
libraries. The resulting system, named
Classtalk, provides libraries of metaclasses
which the programmer may combine as
buliding blocks to design an unlimited
number of metaclass levels.

1.5 Outline of the Paper
Section 2 discusses the limitations of the

Smalltalk- metaclass architecture,
namely the private class/metaclass
“module” and the non-uniform protocol of
instantiating objects. Section 3 reviews how
the ObjVlisp and CLOS architectures fill
these gaps. Section 4 discusses two
alternatives to integrate the ObjVlisp
architecture into Smalltalk-80, then
describes in detail one implementation.
Section 5 describes how we extend the
standard Smalltalk- programming

environment to provide a specific one
suitable for Classtalk’s explicit metaclasses.
Section 6 introduces a basic library of
metaclasses. Section 7 explains how we
merge the Borning&Ingalls’ multiple
inheritance scheme into Classtalk. Section 8
gives an example of metaclass combination.
In section 9 we present our implementation
of uniform creation. Section 10 discusses
the new issues raised by this work before
concluding.

2 The Smalltalk- Arcanes

2.1 Kernel Metaclasses
Like ObjVlisp or CLOS, Smalltalk- uses a

set of explicit metaclasses in order to
describe classes. We call them kernel
classes. Class describes standard classes
(classes which are not metaclasses), and
Metaclass describes metaclasses. To express
the common properties of standard classes
and metaclasses, they are both direct
subclasses of ClassDescription, itself a subclass
of Behavior. The inheritance hierarchy of the
kernel classes is shown below. The instance
variables are enclosed within 0.

Object ()
Behavior (superclass methodDict format subclasses)

ClassDescription (instanceVariables organization)
Metaclass (thisClass)
Class (name classPool sharedPools)

Note the structural difference between a
class and a metaclass. A metaclass uses the
backward pointer thisclass to memorize its
private metaclass, while a class has name,
classPool and sharedPools variables.

2.2 User’s Metaclasses
Besides this primitive kernel

architecture, the Smalltalk’s designers
chose to hide the metaclass architecture
from the user and to provide an implicit
and automatic metalevel for standard
classes.

When a new class is defined, e.g. class
Actor, the system automatically creates a
classlmetaclass module. This means that the
system first creates a new implicit
metaclass and then instantiates it in order
to create the class which will be its sole
instance. Such an implicit metaclass is
anonymous and is only reachable by
sending the message class to the class it
describes, e.g. Actor class. The browser
connects the definitions of the class and of

420 OOPSLA ‘89 Proceedings October 1-6, 1989

its metaclass through the instance/class switch
view of the browser.

The user may define methods at the
metaclass level. These methods describe
messages which may be sent to the class
itself, and are named class methods. In
order to extend the structure of standard
classes, the user may also define instance
variables at the metaclass level.
Nevertheless these variables have no
specific names and are not part of the
Smalltalk terminology. They must not be
mistaken for class or pool variables which
implement shared variables.

2.3 The Implicit Class/Metaclass
Module

Being implicitly created by the system,
the inheritance and instantiation of
metaclasses should obey some implicit
rules. To provide the same inheritance rule
for class and instance methods, the
inheritance hierarchy of metaclasses is
parallel to the inheritance hierarchy of
classes. In order to have the same structure
and behavior for all implicit metaclasses,
each of them is created as an instance of
Metaclass. Smalltalk- connects the metaclass
inheritance hierarchy to the class
hierarchy by declaring the most general
metaclass, Object class, a subclass of Class:

Object ()
Actor ()
Behavior (superclass methodDict format subclasses)

ClassDescription (instancevariables organization)
Metaclass (thisClass)
Class (name classPool sharedPools)

Object class ()
Actor class ()
Behavior class ()

ClassDescription class ()
Metaclass class ()
Class class ()

Nevertheless the implicit class/metaclass
module provides too rigid a coupling
between a class and its metaclass. This leads
to limitations in the expressiveness of the
1 anguage as illustrated by the following
example.

2.4 The abstract Class Counter-
Example

“Abstract class: a class that specifies
protocol, but is not able to fully implement
it; by convention, instances are not created
of this kind of classes.”
[Goldberg&Robson83]

A simple example of abstract class
appears when one tries to model complex
numbers as objects. Two representations
are useful for complex numbers, namely
Cartesian and polar coordinates. Therefore
we define two classes, respectively Cartesian
and Polar to implement them. The abstract
class Complex factors the common behavior,
for instance computing arithmetic. In the
inheritance hierarchy figure, methods are
enclosed within c>.

Complex () c+ - * / conjugate modulus negated>
Cartesian (x y) <x y rho theta printOn:>
Polar (rho theta) <x y rho theta printOn:>

The problem is to model the general
behavior of an abstract class, and more
precisely, to ensure that such a class
cannot create instances. The obvious way is
to forbid instantiation by redefining the
standard method for creation (in fact
allocation) in order to raise an error. This
standard method is named new and belongs
to class Behavior. It should be redefined as a
class method. Therefore we need to
introduce a standard class, named Abstract. Its
only purpose is to provide a metaclass.

!Abstract class methodsFor: ‘(forbidden) allocation’!
new

self error: ‘no instance, I am an abstract class’! t

Then Complex is defined as a subclass of
Abstract:

Object <...>
Abstract <>

Complex c...>
Cartesian <...>
Polar <...>

Behavior<... new new: . ..>
ClassDescription <...>

Metaclass c...>
Class c...>

Object class c...>
Abstract class <new>

Complex class <x:y: rho&eta:>
Cartesian class <x:y:>
Polar class <rho:theta:>

Because Complex is defined as a subclass of
Abstract, its metaclass Complex class inherits the
redefinition of the method new owned by
Abstract class. Unfortunately, classes Cartesian
and Polar both inherit from Complex.
Consequently their corresponding
metaclasses also inherit the forbidden
instantiation. Thus, they become abstract
classes too, and it will be impossible to

October l-6, 1989 OOPSLA ‘89 Proceedings 421

create any complex number, The rule for
implicit inheritance of metaclasses does not
match our intuition.

A pragmatic solution is to change
explicitly the inheritance rule by updating
the instance variable superclass, which
specifies the inheritance link. Therefore
we declare the most general metaclass, i.e.
Object class, as the new superclass:

Cartesian class superclass: Object class.
Polar class superclass: Object class

This is an ad hoc solution and which
lacks modularity since we need to redefine
inheritance for eve ry subclass. The
complete solution, given in section 3.2, uses
explicit control of inheritance a n d
instantiation of classes.

2.5 Non Uniform Creation
Smalltalk provides two primitive methods

to allocate objects. These methods, named
new and new: are owned by the kernel class
Behavior. Method new allocates objects whose
structure is defined by named instance
variables (such as Cartesian) whereas new:

allocates objects whose structure is defined
by indexed variables (such as Array). Every
object in the system, except rockbottom
objects such as numbers, is created by
calling one of these allocators.
Consequently allocation of objects is
(almost) uniform. However, their
initialization is not.

When an object is allocated, the values
associated to its instance variables get the
default initial value nil. In order to initialize
these variables, no standard method is
provided, and therefore one needs to define
explicitly an initialization method. For
instance, we define such a method which
initializes Cartesian instances:

!Cartesian methodsFor: ‘initializing’!
setX: xValue setY: yValue

x- xValue.
y _ yValue! !

If we want to combine allocation and
initialization into a single message for
creation, we have to define the following
class method:

!Cartesian class methodsFor: ‘creation’!
x: xValue y: yValue

“self new se02 xValue setY: yValue! !

Such initialization and creation methods
are in most cases specific to each class,
because their selectors are built from the
names of the instance variables. However,
there is a method to create standard classes.
All standard classes share the same
structure (instance variables defined or
inherited by Class) and are created by the
method subclass:instanceVariableNames:...category:. But
this assumption does not stand anymore
when adding new instance variables at the
class level (see section 6.4).

3 The ObjVlisp & CLOS Alternative
The complete solution to the previous

limitations has already been presented in
[Cointe87]. Classes must be em
uni formlv created as instances of some
other classes called metaclasses.

ObjVlisp and CLOS are two systems which
propose such an architecture. ObjVlisp is
also minimal in the sense of being self-
defined by only two classes: the root of the
instantiation tree (Class), and the root of the
inheritance tree (Object). Class, being an
object, must itself be described by (and
must be an instance of) some class. The
minimal solution proposed in
[Briot&Cointe87] defines Class as an instance
of itself. This self-instantiation ensures a
complete uniformity and self-description
(reflexivity) of the kernel.

3.1 Explicit Metaclasses
An ObjVlisp metaclass is a class which

can have access to the standard allocation
message by owning it p1 by inheriting it.
Class, as the holder of the standard allocation
method allocateInstance, is the first metaclass of
the system. In order to inherit this standard
allocator, a new metaclass is always created
as a subclass of a previous one. As opposed
to Smalltalk-80, there is no difference
between classes and metaclasses.
Consequently, the two metaclasses of
Smalltalk- (Cl ass and Metaclass) are merged
into one (Class).

3.2 Abstract Class Revisited
In ObjVlisp, as opposed to Smalltalk-80,

there is no implicit link between a class
and its private metaclass. Consequently a
same metaclass can be used (shared) to
describe different classes. The ObjVlisp
solution to the abstract class problem is
summarized by the following architecture:

422 OOPSLA ‘89 Proceedings October 1-6, 1989

Class
instance of

AbstractClass
subchss of

Cartesian Polar

There are three steps to this solution:

l create the new metaclass describing all
abstract classes. AbstractClass is an instance
and a subclass of the first metaclass Class.
AbstractClass redefines the allocation methods
new (and new:) in order to signal an error,

Class newName: #AbstractClass
superclass: Class
insta.nceVariableNames: ”
category: ‘Metaclass-Library’!

!AbstractClass methodsFor: ‘(forbidden) allocation’!
new

self error: ‘no instance, I am an abstract class’!
new: n

self error: ‘no instance, I am an abstract class’! !

l create a new abstract class Complex,
instance of AbstractClass and subclass of Object,

AbstractClass newName: #Complex
superclass: Object
instanceVariableNames: ”
category: ‘Numeric-Complex’!

l create the two classes Cartesian and Polar as
instances of Class and subclasses of Complex,

Class newName: #Cartesian
superclass: Complex
instanceVariableNames: ‘x y ’
category: ‘Numeric-Complex’!

Class newName: #Polar
superclass: Complex
instanceVariableNames: ‘rho theta ’
category: ‘Numeric-Complex’!

3.3 Uniform Creation
In ObjVlisp and CLOS, the creation of

objects is uniform. It is achieved by

combination of an allocation and an
initialization method:

creation = allocation + initialization

Class holds the standard allocation method,
named allocateInstance, and the standard
creation method, named makeInstance:. There
are two standard initialization methods,
both of them named initializeInstance:. The first
one is owned by Object and defines standard
initialization of objects. The second one,
owned by Class, defines initialization of
classes. Initializing classes is more complex
and includes for instance compiling static
inheritance of instance variables.
Consequently this second initialization
method specializes (and calls) the most
general initialization method owned by
Object. Here is the inheritance hierarchy of
the ObjVlisp kernel:

Object <initializeInstance:>
Class <allocateInstance initializeInstance: makeInstance:>

Compared with Smalltalk, the ObjVlisp
makeInstance: method includes parameters for
object initialization, which it transmits to
the initializeInstance: method, whereas the
Smalltalk- method new is a simple allocator
(equivalent to allocateInstance) and not a
complete creation method.

4. Classtalk: ObjVlisp in Smalltalk-
Implementing ObjVlisp in Smalltalk-

raises two problems:
. introducing an explicit class

architecture not limited to an automatic
coupling between a class and its metaclass,

. introducing a unified method of
creation which takes into account both the
allocation and the initialization procedures.

Smalltalk- is extensible enough to
propose a clean solution to the first
problem. But its somewhat limited syntax
makes it difficult to find a simple solution to
the second problem. The result of our
implementation, a subworld of explicit
(meta)classes embedded into the standard
Smalltalk- system, was named Classtalk,
because the class concept is at its core.

4.1 Creating Classes Explicitly
In order to create a class as an explicit

instance of a metaclass we introduce the
new creation message:

October 1-6, 1989 0OPSl.A ‘89 Proceediqs 423

newName:superclass:instanceVariableNames:category:. It?+

keywords are taken from ObjVlisp while
retaining the Smalltalk- syntax and
conventions. As advocated by ObjVlisp, class
and pool variables are suppressed for the
sake of simplicity. This new creation
message is sent to the metaclass, i.e. the
creator, and not to the superclass, as in
standard Smalltalk-80. This follows the
principle of creating every object as an
instance of a class.

4.2 Implementation Alternative
We have to ask ourselves which metaclass

should own this new creation method. More
generally the question is: “How do we
transpose the ObjVlisp kernel into the
Smalltalk- architecture?“. At the
implementation level, two answers may be
given:

. identifying (merging) the ObjVlisp
kernel, classes Class and Object, with the two
corresponding Smalltalk- classes,

l grafting ObjVlisp by adding to the
Smalltalk- kernel a new metaclass, named
Classtalk, defined as a subclass of ClassDescription.

4.2.1 Merging
Class already owns the standard method

subclass:instanceVariableNames:...category: for
creating standard Smalltalk classes. By
identifying the ObjVlisp metaclass Class with
the Smalltalk- class Class, the method
newName:... category: becomes also a method of
Class:

Class csubclass:...category: . . . newName:...category:>
Object class <...>

Behavior class c...>
ClassDescription class <>

Class class c...>

Class is both the instance and an indirect
superclass of its metaclass Class class. This
provides an implicit self-description of
Class. But, as opposed to ObjVlisp, this self-
description is partial, because Class class is
not eaual to Class.

4.2.2 Grafting
The grafting scheme makes it more

difficult to express the self-instantiation of
the first metaclass (Classtalk). Nevertheless
we can change the implicit rule of
Smalltalk metaclass inheritance to make
Classtalk class a direct subclass of Classtalk:

Classtalk class superclass: Classtalk

We obtain two different inheritance
trees: one for the structure and one for the
behavior:

Object ()
Behavior (superclass methodDict format subclasses)

ClassDescription (instanceVariables organization)
Metaclass (thisClass)
Classtalk (name category)
Class (name classPool sharedPools)

ObjectClass ()
Behavior class ()

ClassDescription class ()
Classtalk class ()

Object <...>
Behavior <... new . ..>

ClassDescription <...>
Metaclass o
Class <... subclass:...category: . ..z=
Classtalk <newName:...category:>

CIasstalk class -z>

The grafting scheme allows a precise
definition of Classtalk classes. Unused
instance variables such as classPool and
SharedPools are no longer defined.
Nevertheless the instance variable name and
some methods of Class need to be copied into
Classtalk.

Both solutions are almost equivalent. In
this paper we chose the grafting scheme,
in order to easily distinguish between
Smalltalk and Classtalk classes.

4.3 Explicit Creation of Classes
The implementation of the method

newName: . ..category. to create Classtalk classes
follows the standard implementation of
class creation. It includes a dispatch by the
type of the superclass (with named or
indexed variables). As in standard
Smalltalk-80, the “auxiliary method”
newName:environment:...category: shares a common
implementation between classes with
named or indexed instance variables.

To focus on the semantics of these two
methods, we give their definitions without
the type dispatcher and without the pieces
of code related to the management of the
programming environment (syntax check,
changes management...) which are
replaced by comments:

424 OOPSLA ‘89 Proceedings October 1-6, 1989

!Classtalk methodsFor: ‘Classtalk - class creation’!
newName: n superclass: s instanceVariableNames: i

category: c
‘Dispatch along classes with indexed variables.”

*self
newName: n
environment: Smalltalk
superclass: s
othersupers: nil
instanceVariableNames: i
variable: false
words: true
pointers: true
category: c!

newName: n environment: e superclass: s
othersupers: o instanceVariableNames: i
variable: v words: w pointers: p category: c
I newClass “,,.” I
“Syntax checking and redefinition management.”
“(1) Allocation of the new class."
newclass self new.
“(2) Initialization of the new class - I.”
newclass

superclass: s
methodDict: MethodDictionary new
format: -8 192
name: n
organization: ClassOrganizer new
instVarNames: (Scamper new ScanFieldNames: i)
ClassPool: nil
sharedPools: nil.

“(3) Specification of remaining superclasses.”
o isNil ifFalse: [newClass othersupers: 01.
“(4) Initialization of the new class - 2.”
newclass

format: newclass allInstVarNames size
variable: v
words: w
pointers: p.

“Environment management.”
ObjVlispOrganization classify: newclass name

under: categoryString asSymbol.
“Hierarchy updating and change management.”
“(5) Compilation of multiple inheritance.”
o isNil ifFalse: [newclass copyMethods].
*newClass! !

l as suggested by ObjVlisp a class creation
is realized in two stages: allocation (1) and
initialization (2 & 4). The new class
allocated (temporary variable newclass) is
defined explicitly as an instance of a
previous metaclass: self new (1). AS in

standard Smalltalk-80, the initialization
process takes place in two successive steps:
(2) and (4).

. to organize Classtalk classes in a
specialized browser we introduce a new
organizer, the global variable
ObjVlispOrganization which is coupled with the
Classtalk browser.

l the method newName:environment:..category:
introduces a parameter prefixed by the
keyword othersupers:. It specifies an unused
array of superclasses (calling value is nil).
Meanwhile, this allows this method to be
reused when introducing multiple
inheritance (see section 7).

l expressions (3) and (5) are evaluated
only in the case of multiple inheritance.
(3) assigns the array of remaining
superclasses. (5) calls the management of
multiple inheritance provided by the
standard extension of Smalltalk-
[IngallsBorning82]. This will recompile the
methods or generate conflicting methods
when needed.

5 The Classtalk Environment
The Smalltalk- standard browser may

confuse the programmer when browsing
on Classtalk classes. When the instance/class
switch is set to class, the browser shows the
explicit metaclass, and not an implicit one
as in standard Smalltalk-80. Moreover the
template and the definition printed in the
browser do not reflect the Classtalk
definition.

Therefore we designed a browser
specifically dedicated to Classtalk classes.
The differences lie in the removal of the
instance/class switch and the adjustment of
templates and definitions in order to make
clear the Classtalk way of creating classes.

This browser is also interfaced with a
generic tree editor [Wolinski89] in order to
browse both the instantiation and the
inheritance graphs.

October I-6, 1989 OOPSLA ‘89 Proceedings 425

. . .u-,.
Metaclasr-Library

. * . ..\
f[fli:~~FiS t a ck i exampl ri:lv

. :
Multiple-Inheritance StringStack

i .

Metaclass-Combinati TypedStack
------* superclar

methodD
Access-Ex --------_--_

format .~,. ,.~~~~ ,.............:
[Typed-Stack-Kx : ** . subclass\

AccessClass

MetaAccessClass

AbstractClass

MetaTypedClass

Abstra,.,dClass

MetaAccersClass- AccessClass

AbstractClass

Class

MetaMu.,.eClass- Multip.,,eClass T

PublicClass
AutolnitClass

MemoClass

6 Library of Metaclasses
This new browser was helpful to develop a

library of Classtalk metaclasses. Our idea is
to reuse them as building blocks to define
more complex metaclasses by combining
them with both the instantiation and
inheritance mechanisms.

In this section we propose to introduce
and explain some of them. Let us recall the
creation rule for these metaclasses: c ac h
btalk metaclass is a subclass of another
exnlicit metaclass. Our naming convention
is that they end up with Class.

Classtalk

6.1 AbstractClass
This metaclass models abstract classes, i.e.

non-instantiable classes, as defined and
used in section 3.2.

6.2 AutoInitClass
This metaclass models classes which

provide their instances with automatic
initialization.

In order to get automatic initialization of
objects, every Smalltalk- programmer has
at least once redefined the class method new.
To avoid code duplication, we model this
behavior in the specific metaclass
AutoInitClass. A class instance of AutoInitClass has
the folIowing behavior: after being created
a new object will automatically receive the
message init:

Classtalk newName: #AutoInitClass
superclass: Classtalk
instanceVariableNames: ”
category: ‘Metaclass-Library’!

! AutoInitClass methodsFor: ‘allocation’!
new

“super new init! !

6.3 MemoClass
This metaclass models classes which

memorize the collection of all their
instances by using an explicit backpointer.

OOPSLA ‘89 Proceedings October 1-6, 1989 426

This backpointer is implemented by a new
instance variable instances added at the
metaclass level. Its value is an ordered
collection remembering all the instances
which are created.

This variable needs to be initialized to an
empty collection before starting to create
instances. In order to provide automatic
initialization, we define MemoClass as an
instance of AutoInitClass:

AutoInitClass newName: #MemoClass
sllperclass: Classtalk
instanceVariableNames: ‘instances ’
category: ‘Metaclass-Library’!

!MemoClass methodsFor: ‘init’!
init

instances _ OrderedCollection new! !

!MemoClass methodsFor: ‘allocation’!
new

“Method add: returns the object added.”
4nstances add: super new! !

!MemoClass methodsFor: ‘accessing’!
instances

hstances! !

6.4 TypedClass
This metaclass models classes which are

parameterized by a type [Cointe87].
TypedClass introduces the new instance

variable type and two associated accessor
methods. In order to provide an explicit
initialization of this variable, we need to
extend and specialize the standard Classtalk
message for creating classes. The new
creation method newName:...type:category:
combines the standard newName:...category: with
the assignment of the type. Meanwhile, the
definition of this new method led us to
introduce the new metaclass MetaTypedClass

whose only goal is to hold this extended
creation method. A non-uniform
initialization forces us to reintroduce the
class/metaclass module:

Classtalk newName: #MetaTypedClass
superclass: Classtalk
instanceVariableNames: ”
category: ‘Metaclass-Library’!

MetaTypedClass newName: #TypedClass
superclass: Classtalk
instanceVariableNames: ‘type ’
category: ‘Metaclass-Library’!

!TypedClass methodsFor: ‘accessing’!
type

“type!

type: aClass
type _ aclass! !

!MetaTypedClass methodsFor: ‘creation’!
newName: n superclass: s InstanceVariableNames: i

type: aClass category: c
*(self newName: n superclass: s instanceVariableNames: i

category: c)
type: aClass! !

6.5 AccessClass
This metaclass models classes which may

provide automatic (read-write) accessors to
their instance variables.

Another repetitive programming
problem lies in the definition of accessor
methods. Their selectors are usually
associated with the instance variables to
which they give access. In order to relieve
the programmer from this routine, we
propose the metaclass AccessClass which
describes how to generate automatically
such accessors. The programmer can
specify which instance variables will be
public (i.e. with accessors) by using the
declaration public:.

The following example is the Classtalk
solution to the example described in
[Goldberg&Robson83], pages 289-290:

AccessClass newName: #Record
superclass: Object
instanceVariableNames: ‘name address ’
public: ‘name ’
category: ‘Access-Example’!

Like TypedClass, the specialization of the
creation message leads to introduce a new
metaclass, named MetaAccessClass, to define the
extended creation method.

This method, named newName:...public:category:,

will compose the standard newName:...category:

method with the call of the method to
generate accessors. This method, named
makeIvAccessOn:, is owned by AccessClass. A
scanner parses the string specifying public
variables into an array which becomes the
parameter of the message:

Classtalk newName: #MetaAccessClass
superclass: Classtalk
instanceVariableNames: ”
category: ‘Metaclass-Library’!

!MetaAccessClass methodsFor: ‘creation’!
newName: n superclass: s instanceVariableNames: i

public: p category: c
*(self newName: n superclass: s instanceVariableNames: i

category: c)
makeIvAccesKh (Scanner new scanFieldNames: p)! !

October 1-6, 1989 OOPSLA ‘89 Proceedings 427

MetaAccessClass newName: #AccessClass
superclass: Classtalk
instanceVariableNames: ”
category: ‘Metaclass-Library’!

method we have to introduce a metaclass,
namely MetaMIClass:

!AccessClass methodsFor: ‘access generation’!
makeIvAccessOn: ivNameArray

ivNameArray isNil ifFalse:
[ivNameArmy do: [:ivString I

self compile: ivstring , Z h’ withCRs , ivstring
classified: #accessing;
compile: ivString , ‘: aValue\ ’ withCRs . .

’ aValue’
classifieX?#E..&Gg]]! !

7 Multiple Inheritance
We described examples from the library

of metaclasses. The programmer may
combine them by using instantiation and
inheritance. In non trivial cases, simple
inheritance may be not enough. Therefore

introduce multiple inheritance ’
zlf&stalk, while reusing most of the standa:
Smalltalk- extension for multiple
inheritance.

Classtalk (name category)cnewName:superclass:...category:>
MetaMIClass () aewName:superclasses:...category:>

MIClass (othersupers) <.. .>

The method to create classes with
multiple superclasses is named
newName:superclasses:instanceVariableNames:category:. Its

syntax and implementation are similar to
those of the standard Classtalk method
newName:superclass:instanceVariableNames:category:.

8 A Developed Example: Typed Stacks

7.1 MI In Smalltalk-
The strategy proposed *

[Ingalls&Borning82] is to keep the sinili
inheritance scheme working. In case of
multiple inheritance the first superclass
continues to be the standard superclass,
while others are stored in the metaclass of
the class. These remaining superclasses are
referenced by the new instance variable
othersupers, which is introduced by the kernel
class MetaclassForMultipleInheritance:

To emphasize the Classtalk methodology
we develop the parameterized stacks
example. Our goal is to define stacks whose
parameter of the push: method is
typechecked. To make the demonstration
easier, and to show how we may reuse
standard libraries, we suppose that a class
Stack has been previously defined, e.g. as a
subclass of primitive class Array extended
with an index. Note that Stack can be either a
Classtalk class either a Smalltalk- class.

The class architecture we want to discuss
is summarized by the following figure and
steps:

AbstractClass

Metaclass (thisClass)
MetaclassWithMultipleInheritance (otherSupers)

When creating a class with multiple
superclasses, the methods which cannot be
reached by the standard single inheritance
lookup are recompiled into the method
dictionary of the new class. If several
methods with a same selector may be
reached, conflicting inherited methods are
automatically generated. To solve the
problem, the conflicts need to be resolved
by the programmer.

7.2 MI In Classtalk

IntegerStack StringStack

I
IntegerStack(1 2) StringStack(‘ok’)

l to express the different types of stacks
(IntegerStack, StringStack...), each type of stack is
defined as a parameterized class (i.e. an
instance of TypedClass),

When modeling multiple inheritance in l to express the common behavior (and
Classtalk we define the instance variable structure) of typed stacks, we introduce the
othersupers directly at the class level (and no at abstract class TypedStack,
the metaclass level). Consequently we . to maintain consistency between
introduce the metaclass MIClass to define this TypedS tack and its subclasses (Integers tack,
new instance variable. As with metaclasses StringStack...), TypedStack must be also
TypedClass and AccessClass, to extend the creation parameterized,

428 OOPSLA ‘89 Proceedings October 1-6, 1989

l TypedS tack having to be both abstract and
parameterized, we introduce the metaclass
AbstractTypedClass, which is a subclass of both
AbstractClass and TypedClass, and therefore an
instance of MIClass, Conflicting methods,
namely new (and new:), should be redirected to
AbstractClass.

MIClass newName: #AbstractTypedClass
superclasses: ‘AbstractClass TypedClass ’
instanceVariableNames: ”
category: ‘Metaclass-Combination’!

!AbstractTypedClass methodsFor: ‘conflicting methods’!
new

“self AbstractClassnew! !

AbstractTypedClass newName: #TypedStack
superclass: Stack
instanceVariableNames: ”
category: ‘Stack-Collection’!

! TypedS tack methodsFor: ‘operations’!
push: x

(x isKindOfi self class type)
ifliue: [super push: x]
ifFalse: [self error: ‘wrong type’]! !

TypedClass newName: #IntegerStack
superclass: TypedStack
instanceVariableNames: ”
type: Integer
category: ‘Stack-Collection’!

9 Class/Metaclass Module vs Uniform
Creation

9.1 Limitations of the Classtalk
Library

The Smalltalk- class/metaclass module
is split by Classtalk into two explicit
components. On the one hand, this allows an
unlimited level of metaclasses and provides
the user with more freedom. But on the
other hand, we need to define
(meta)metaclasses to define extended class
creation methods each time we add some
new instance variable, e.g. metaclasses
MetaTypedClass and MetaAccessClass.

The class/metaclass module rem ains
necessary when defining extended creation
messages, as in standard Smalltalk-80. But
Smalltalk- takes care of implicitly
creating a metaclass to support the class
method, whereas in Classtalk the
programmer has the burden to explicitly
defining the class method.

Another limitation of non-uniform
creation is illustrated by next example. We
want to model classes whose all instance
variables are public. Therefore we define

PublicClass as an instance of AutoInitClass and a
subclass of AccessClass. Its init method
generates accessors for all instance
variables:

AutoInitClass newName: #PubticClass
superclass: AccessClass
instanceVariableNames: ”
category: ‘Metaclass-Library’!

!PublicClass methodsFor: ‘init’!
init

self makeIvAccessOn: instanceVariables! !

Unfortunately this scheme does not work.
The method init is called during the process
of allocation (method new redefined in
AutoInitClass) and before creation of the class
(method newName:...category:). Consequently
instancevariables is as yet initialized (value nil)
and no accessing method is generated.

A solution is to redefine newName:...category:
in order to call the init method. But init will
be called twice (once at allocation time and
once at creation time), because of non
uniformity.

In summary, programming with explicit
metaclasses requires an uniform creation
protocol.

9.2 Uniform Creation in Classtalk
Uniform creation, method create:, is defined

as the combination of standard allocation
(basicNew) and a generic uniform
initialization initialize:. In order to be usable
by all classes, Smalltalk- or Classtalk ones,
create: is defined by Behavior:

!Behavior methodsFor: ‘creation’!
create: initArray

*self basicNew initialize: initArray! !

There are two initialization methods: one
for (meta)classes, owned by Classtalk, and
another for objects, defined by Object.
Initialization of classes specializes
initialization of general objects (use of
pseudo-variable super):

!Classtalk methodsFor: ‘initialization’!
initialize: initArray

super initialize i&Array.
self environment: Smalltalk

variable: false
words: true
pointers: true
category: category! !

The method environment:...category: is defined as
equivalent to the method

October 1-6, IQ69 OOPSLA ‘89 Proceedings 429

newName:environment:...category: and handles
initialization of the class. We suppose that
category is defined as an instance variable of
Classtalk in order to transmit its value
through the initialization process.

9.3 General Initialization
The method initializeInstance: owned by Object

initializes instance variables of every
object. Because their names and number is
defined for each class, this method should
accept a variable number of arguments.
Unfortunately Smalltalk- syntax does not
allow selectors with variable arity.
Therefore, we need to group the arguments
into a single data structure, such as array.
The creation of a Cartesian complex would
look like:

Cartesian create: #(y 2 x 1)

This follows the strategy of CommonLisp-
like keywords, which may be reordered at
will, as opposed to explicit and ordered
keywords in Smalltalk-80.

9.4 Implementation
The main problem is to evaluate the

arguments associated to instance variables.
One solution is to extend Smalltalk-

syntax in order to suI)Qort dynamic creation
of arrays, by using some macro-method or
macro-character analog to Lisp’s backquote.

Another solution is to evaluate the
arguments through explicit calls to the
compiler. For each instance variable, the
standard method instVarAt:put: assigns the
variable with the value computed by the
compiler:

! Object methodsFor: ‘initialize-release’!
initialize: initArray

I i max ivNames aContext acompiler I
initArray isNil ifFalse:
[i- 1.
max _ i&Array size.
ivNames _ self class allInstVarNames.
aContext _ thiscontext sender sender.
acompiler _ Compiler new.
[i c max] whileTrue:

[self instVarAt: (ivNames indexOf: (initArray at: i)
ifAbsent: [self error:

‘unknown instance variable: ’ , (initArray at: i) printstring])
put: (aCompiler

evaluate: (i&Array at: i+l) printstring
in: aContext
to: aContext receiver
notifying: self
ifFail: [self error:

‘compilation of initialize failed’]).
i-i+2]]! !

9.5 Classtalk Library Revisited
We redefine the metaclass TypedClass and its

instance IntegerStack to show this
simplification. Defining MetaTypedClass is no
more necessary:

Classtalk create: #(
name #TypedClass
superclass Classtalk
instancevariables ‘type’
category ‘Metaclass-Library’)!

TypedClass create: R(
name #IntegerStack
superclass TypedS tack
instancevariables ”

type Integer
category ‘Stack-Collection’)!

The good version of PublicClass uses a
redefinition of the initialize: method.
AutoInitClass is no more necessary:

Classtalk create: #(
name #PublicClass
superclass AccessClass
instancevariables ”
category ‘Metaclass-Library’)!

!PublicClass methodsFor: ‘init’!
initialize: initArray

super initialize: initArray.
self makeIvAccessOn: instancevariables! !

10 Future Work
Experimenting with Classtalk revealed the

following limitations:

Methodology
The Smalltalk methodology suggests to

define examples of a class as class methods.
Classtalk metaclasses are no longer
implicitly private to a class. Consequently
we need to provide another approach, for
example by adding an instance variable at
the class level.

ClasslMetaclass Compatibility
Defining explicit metaclasses raises the

issue of compatibility between a class and its
metaclass, i.e. the mutual hypotheses about
the instance variables and methods they
define [Graube89]. This may lead to non-
triviai problems when reusing standard
Smalltalk- classes. For instance, if
defining Stack as a subclass of OrderedCollection.

OrderedCollection defines the private
initialization method setIndices. The allocation
method of OrderedCollection class is redefined in
order to automatically ensure the
initialization:

430 OOPSLA ‘89 Pmcecdings October l-6, 1989

!OrderedCollection class methodsFor: ‘instance creation’!
new: anhteger

*(super new: anhteger) sethdices! !

If the metaclass of typed stacks, i.e.
metaclass AbstractTypedClass, does not provide
such redefinition, stacks won’t be properly
initialized.

Smalltalk- automatically ensures such
compatibility, thanks to the rule for parallel
inheritance hierarchies. By splitting the
Smalltalk- implicit class/metaclass
module, we leave this responsibility to the
programmer. We intend to provide
automatic checking for such conditions.

(No) Method Combination
The example of typed stacks may be

further extended by adding memoization
ability to typed stacks. When creating a
subclass of AutoInitClass and MemoClass. we
encounter a combination problem. Choosing
the right new to solve the conflict is not
enough. We need a real combination of the
two inherited behaviors. Unfortunately,
method combination is not available in the
standard Smalltalk- extension for multiple
inheritance. We will study such
improvement.

Conclusion
In this paper we pointed out the

limitations of the metaclass architecture of
Smalltalk-80. We introduced explicit
metaclasses and uniform creation B la
ObjVlisp to alleviate these problems. The
resulting system provides a platform to
experiment and apply metaclass-oriented
methodology with the help of the Smalltalk-
80 libraries and environment.

We thank Francis Wolinski for providing
his generic tree editor that we interfaced
with the Classtalk environment.

Bibliography
[Attardi&al89] G. Attardi, C. Bonini, M.-R.

Boscotrecase, T. Flagella and M. Gaspari,
Me talevel Programming in CLOS,
ECOOP’89, Cambridge University Press,
July 1989.

[Bobrow&Kiczales88] D.G. Bobrow and G.
Kiczales, The Common Lisp Object System
Metaobject Kernel: A Status Report, ACM
Conference on Lisp and Functional

Programming (LFP’88), pages 309-3 15,
July 1988.

[Borning&OShea87] A. Borning and T.
O’Shea, Deltatalk: An Empirically and
Aesthetically Motivated Simplification of
the Smalltalk- Language, ECOOP’87,
LNCS, No 276, pages l-10, Springer-
Verlag, June 1987.

[Briot&Cointe87] J.-P. Briot and P. Cointe, A
Uniform Model for Object-Oriented
Languages Using The Class Abstraction,
IJCAI’87, Vol. 1, pages 40-43, August 1987.

[Cointe87] P. Cointe, Metaclasses are First
Class: the ObjVlisp Model, OOPSLA’87,
pages 156-167.

[Cointe&Graube88] P. Cointe and N. Graube,
Programming with Metaclasses in CLOS,
First CLOS Users and Implementors
Workshop, Xerox Part, Palo Alto CA, USA,
pages 23-29, October 1988.

[Cointe88] P. Cointe, A Tutorial Introduction
to Metaclass Architectures as Provided
by Class Oriented Languages,
International Conference on Fifth
Generation Computer Systems (FGCS’88).
Vol. 2, pages 592-608, Icot, Tokyo, Japan,
November-December 1988.

[Goldberg&Robson83] A. Goldberg and D.
Robson, Smalltalk-80: the Language and
its Implementation, Series in Computer
Science, Addison Wesley, 1983.

[Graube89] N. Graube, Metaclass
Compatibility, in same volume.

[Ingalls&Borning82] D.H.H. Ingalls and A.H.
Borning, Multiple Inheritance in
Smalltalk-80, Proceedings of the National
Conference on Artificial Intelligence,
pages 234-237, USA, August 1982.

[Malenfant&al89] Malenfant, G. Lapalme and
J. Vaucher, ObjVProlog: Metaclasses in
Logic, ECOOP’89, Cambridge University
Press, July 1989.

[Ungar&Smith87] D. Ungar and R.B. Smith,
Self: The Power of Simplicity, OOPSLA’87,
pages 227-242.

[Wolinski89] F. Wolinski, Le Systeme MV2C:
Modelisation et Gtne’ration d’lnterfaces
Womme-Machine, Report 89138, Laforia,
UniversitC Pierre et Marie Curie, Paris,
April 1989.

October 1-6, 1989 OOPSLA ‘89 Proceedings 431

