
Strategies for Scientific Prototyping in Smalltalk

Sandra S. Walther, Center for Computer Aids For Industrial Productivity,
Richard L. Peskin, Dept. of Mechanical and Aerospace Engineering,

Rutgers University, Piscataway, NJ 08855 - 1390 +

Abstract
This paper describes the design of a scientific proto-
typing environment in Smalltalk and discusses imple-
mentation strategies to achieve high performance in-
teractive modeling of computationally intensive phys-
ical problems. Classes for scientific visualization, in-
cluding contour plotting and 3D surface represen-
tations which incorporate the model-view-controller
paradigm are presented. Techniques for inclusion of
user primitives written in C to support computation-
ally intense methods are described in detail in their
current implementation on advanced Smalltalk work-
stations (SUN4, Ardent Titan, Tektronix 4317).

1 Introduction

Scientific computing, notably numerical modeling and
simulation, is anchored in a thirty year old software
tradition. It is now documented that this comput-
ing methodology is hindering computation as a tool
for experimentation and discovery [l]. While paral-
lel computers and supercomputers are advancing the
potential for faster scientific computation, the cum-
bersome software environments provided for these fa-
cilities tend to be a limiting factor to effective use. For
the past three years we have been developing an alter-
native to the traditional environment; for an overall
review of the program see [2].

Specifically, we are designing an interactive system
that will promote rapid prototyping of new numeri-
cal models and the analysis of these models. Since
the objective of the scientific simulation process is to
model the behavior of the physical system, it is natural
to select an overall software environment which is in-
trinsically behavioral, i.e. an object-oriented environ-
ment. Smalltalk- provides a mature object-oriented
environment, is fairly complete with tools for scien-

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1989 ACM 089791-333-7/89/0010/0159 $1.50

tific computing (numerical classes, graphics, etc.), and
offers a potential alternative to traditional scientific
computing software. As important, Smalltalk greatly
accelerates our own development process.

Thus, we are constructing an interactive environ-
ment for scientific computing based on Smalltalk-80t.
There are many functions such a system must per-
form, including automatic translation of user based
problem specification (e.g. partial differential equa-
tions) to run-time code, interactive graphical input
and output, interactive model modification, etc. This
paper will concentrate on Smalltalk implementation
strategies for two of the important functional areas,
graphics and model prototyping. Areas such as the
knowledge-based automatic programming sub-system
(actually written in Prolog) are described elsewhere in
the literature [3]. Of primary concern are the strate-
gies employed to effect a balance between the need to
maintain a high level of user accessibility to his scien-
tific model classes and the need to maintain an accept-
able interactive performance level. This latter require-
ment often demands integrating Smalltalk with higher
performance environments through addition of user
primitives, interfaces to “back-end” high performance
(e.g.parallel) computers, or a combination thereof.

2 Interface for Scientific Modeling

2.1 Scientific Visualization Classes

The first prerequisite of a scientific interface is the
capacity to represent numerical information in tradi-
tional graphic formats, namely, two dimensional xy
plots, contour plots, and three dimensional surface
plots. The numerical information is computed in float-
ing point (double or single precision) and may be con-
veyed to a graphing utility directly as it is computed
or it may be read in as a file after being downloaded
from a separate computing facility. Ideally, the user
should be able to manipulate the visualization interac-
tively. Prior to adopting Smalltalk as its visualization
environment, the graphics interface group had been
developing libraries of device-independent 2D and 3D

October 1-6, 1989 OOPSLA ‘89 Proceedings 159

VisuaiizationObjects
Models)

Display Behaviors
(views)

Controllers

Object View MouseMenuControiier
DataModel DataView DataViewControIler

DataSurface Contour-View ContourViewControIler
DataContour LogisticEquationView
PrimitiveSurface DataSurfaceView DataSurfaceViewController

Flag FlagView FiagViewController
LogisticEquation
Oscillator

Figure 1: Graphical interface Classes for Scientific Modeling

graphics functions, written in C, which formed the
basis of a set of interactive graphing tools for scien-
tific and engineering data analysis (xytool, stream-
tool, contourtool, surfacetool, modeltool) that were
implemented under SunViews and Xwindows on a va-
riety of workstations and as a “front end” to sev-
eral parallel computing facilities. [5] While not yet
object oriented in implementation, each tool was or-
ganized logically around a set of viaualization behav-
iors; the 2d graphing methods knew how to present
xy data according to the Graphics Kernel Standard;
the 3d graphing methods knew how to present xyz
data, using standard transformation and perspective
techniques [6],as three dimensional shapes. These be-
haviors were device independent in the sense that they
were entirely encapsulated from the drawing and dis-
play functions through which the consequences of their
operations were made visible. They were decoupled
from the event management facilities of the interfacing
environment (SunViews or Xwindows) as well. This
functional distinction between the graphic object (the
data), its manifestation as a drawable, displayable en-
tity in a particular device environment, and the user
control mechanisms (mouse and/or keyboard inter-
play with the ongoing representation) mapped easily
to the model-view-controller paradigm of Smalltalk,
the apparatus through which changes in the behavior
of the “phenomenon model” can be reflected imme-
diately in the graphics display and user requests to
cause changes in the model can be indicated through
graphic events.

to the display or drawing methods of a view which
has scheduled a controller to handle interaction with
the user AND with the rest of the system event man-
agement. Figure 1 shows the present classification.
DataModel is the class that comprises the basic 2D
graphing methods. (GKS compatible). DataView has
the display methods supporting these 2D presentation
methods. DataSurface is the class that comprises ba-
sic 3D graphing methods, inheriting from DataModel
such graphing methods as are common to them both
(e.g., normalizing data, scaling data and clipping to a
viewport, calculation of tic values on an axis). Data-
SurfaceView (subclass of View) has the display meth-
ods supporting 3D presentation methods. DataCon-
tour comprises methods for the presentation of 3D
data as two dimensional cross sections. The view sup-
porting its display needs, ContourView, is a subclass
of DataView. Each view class has a controller to man-
age its own red button and yellow button activities.

The prototyping of this basic scientific repertoire in
Smalltalk evolved in the following manner. The data
(the object being visualized) plays the role of model

The current version of these tools uses a view de-
sign featuring a set of subviews serving as SelectionIn-
List control panels and a subview serving as the graph-
ics area. A class method openWithPaneZsOn specifies
the view layout and the names of the list collection and
selection handlers that appear in and manage the pan-
els. The list collection itself and the methods named
in it are actually methods of the model rather than of
the view. This makes it very easy to use the same view
method with a variety of models, since each model can
tailor the command panels to its own needs. Any ob-
ject that wants some numbers graphed can declare an
instance of DataModel , DataSurface or DataContour
and make use of the desired graphing methods. Or,
a computational model can be subclassed directly off

160 OOPSLA ‘89 Proceedings October 1-6, 1989

-1.25 -0.63 0.0 0.63 1.28

Figure 2: Smalltalk screen showing graphics utilities. Clockwise from top: a Model (LogisticEquation)
in xytool format; Contourtool; Surfacetool; xytool running a phase plot.

one of these visualization classes so that the graphic
behavior can be inherited or modified. In figure 1, Lo-
gisticEquation, Oscillator, and Flag are examples of
such models. In addition, each of the above described
views provides a class method to open an instance of
itself as a standalone tool that can access and dis-
play precomputed data files. A spreadsheet version
based on Huggable Views allows a model or a collec-
tion of models to open a composite view in which each
subview can be an instance of a different view class.
Figure 2 shows a sampler of these tools. Figure 3
shows the spreadsheet opened on a model partitioned
for parallel computation.

An earlier iteration subclassed each visualization
object according to the type of storage convenient to
its transmission as a data collection. In that ver-
sion, graphic objects based on xy data were created
as instances of class DataSet, itself a subclass of Or-

deredCollection while xyz data sets were created as
instances of Matrix, a column/row collection behav-
ior subclass of Object. Upon further development, it
became evident that the manner in which data is orga-
nized for storage is not fundamental enough to graphic
behavior to serve as the pivot of the inheritance mech-
anism. In the present iteration, the basic visualization
class, DataModel, knows how to access and arrange
(store) items in a variety of formats (e.g., unary in-
dexable collections, matrices, etc.). This structuring
makes it more convenient for a computation model to
request a variety of graphic representations of itself.

2.2 Performance of the Scientific Interface

The Smalltalk environments in which this work has
been proceeding are among the most powerful cur-
rently available. Specifically, the scientific classes

October 1-6, 1989 OOPSLA ‘89 Proceedings 161

I

Figure 3: Spreadsheet on a domain decomposition problem. Each cell is computing a region of the
problem’s physical space. Initial conditions are shown in the graph at top left. The final computation
at each subdomain is shown at the bottom left. The solution as reconstituted from the cells can be
viewed and manipulated in the tool shown at the right.

have been implemented under ParcPlace version 2.3
on SunS’st (8Mb memory), ParcPlace version 2.4
on a Sun4/llOt and on an Ardent Titant (32 Mb
memory, dual processors), and Tektronix Smalltalk
version TB2.3.0a on the Tektronix 4405t, 4406t
(monochrome) and 43171 workstations (color, 12Mb
memory). In this class of workstation, we have been
able to achieve interactive processing speeds sufficient
to show that Smalltalk is indeed a viable environ-
ment for prototyping bonafide scientific problems (not
mere demonstration exercises) and that it can perform
as well as postprocessing visualization graphics under
SunViews or Xwindows.

Achieving effective performance has depended on
maximizing the throughput of large amounts of float-
ing point information, a throughput that involves stor-
age, retrieval, and transmission as well as computa-
tion. Since we are aiming at a distributed computing
environment, with the Smalltalk component serving
as the front end to multiple processor facilities, it was
essential to develop our strategies to reveal the areas
of Smalltalk performance that would have to be en-
hanced. In the first instance, we wanted to see how
these Smalltalk graphing tools would do as a post pro-
cessing visualization environment on data generated
by actual scientific prototyping tasks. A data set of
30,000 xy pairs (60,000 floating point numbers) or an
80x80 matrix of xyz values (19,200 float values) rep-

resents the upper bound of the 2D or 3D data volume
expected from a prototyping exercise.

To understand the processing issues, consider a
data file of 1000 floating point numbers. If the data is
represented in ASCII format, each floating point value
uses twelve to thirteen ASCII characters (depending
on sign) to represent one single-precision number. In
addition, a delimiter character (carriage return, line-
feed, comma, etc.) is needed to separate the numbers
from one another. A file of 1000 floats represented
in ASCII normally consumes 12000 to 14000 bytes.
In binary format, with each 32 bit float (or real *4)
comprising 4 bytes, the file size is cut to 4000 bytes.
In the former case, since the exact number of ASCII
characters representing one float varies depending on
sign, reading an ASCII stream requires a “grope until
delimiter” type method based ultimately on a byte by
byte inspection. The optimal way to introduce exter-
nally computed data is by accessing an entire binary
file in one operation, attaching it to a ByteArray and
parsing it directly into Floats.

Thus, one of the strategies important to data
throughput in a scientific user’s Smalltalk environ-
ment is the provision of methods to pack and un-
pack various collections of Floats or objects that in-
clude Floats, (e.g., Triplets, Vectors, and other scien-
tific computation objects) into the barest possible byte
sequences for communication between Smalltalk and

162 OOPSLA ‘89 Proceedings October l-6, 1989

nonSmalltalk environments. In fact, the coezistence

of a scientific element as a Smalltalk Object and a8 a
byte sequence is turning out to be the linchpin in the
current development of a high performance scientific
Smalltalk. The conceptual complexity and computa-
tional intensity of scientific prototyping has led us to
distinguish between the exploratory and the valida-
tion stages of prototyping. The ezploratory stage is
Smalltalk’s forte. Objects can be designed and dis-
carded as they fail to pan out or retained as tentative
commitments in a larger exploration. Performance
speed is rarely an issue in this phase since preliminary
models, or at least their components can be scaled
down. However, a point occurs at which a set of pri-
mary Objects has proven to be a reasonable concep-
tual design but the dynamics of their behaviors must
be drawn out with physically meaningful parameters
and for an extensive duration. It is in this checking
out stage that the computational intensity slows down
the performance; yet the primary Objects need to re-
main interruptible and inspectable. For this reason,
we are pursuing the development of scientific objects
that carry two versions of some of their methods, a
version entirely within Smalltalk, and a version writ-
ten as a user primitive (linked C code).

3 Scientific Primitives

3.1 Visualization Primitives in the Model

Profiling the behavior of the 3D graphing meth-
ods quickly identified the places where execution in
Smalltalk was more costly than the results warranted.
Consider the treatment of a data set representing a
surface as a mesh. Each xyz point is a Smalltalk ob-
ject, namely, a Triplet (xyz point). The data set of
Triplets has been organized as a Matrix, an object
that knows how to store and retrieve its elements by
rows and by columns. To transform this data so that
it can be drawn as a three dimensional surface, each
Triplet must be 1) fetched, 2) multiplied by a 4x4 Ma-
trix of Floats, 3) further multiplied and divided by
certain screen-based values to compute the 2D per-
spective point. These transformed points are 4) stored
in another instance of Matrix where they can be 5a)
fetched as an OrderedCollection of rows and columns
for drawing as surface lines or 5b) as a SortedCollec-
tion of polygons, in depth order for representation as
a shaded surface. So far, these methods are primar-
ily computation and ordering methods of DataSurface.
6)Actual drawing of the 2D points is accomplished by
DataSurfaceView.

As we have indicated elsewhere,[4] on a Tektronix
4317 running a Tektronix Smalltalk image, the pro-
cessing time for a data set of 6400 xyz points (19,200

floating point values) transformed by a 4x4 matrix
(steps 1 and 2 only) took 81657 milliseconds or about
1.2 minutes when done in Smalltalk with no user prim-
itives (although the Smalltalk methods for computa-
tion on individual Floats are themselves executed as
primitives). When a user primitive was added that
operated on the entire Matrix passed as an Array of
Floats to a C routine linked into the image as a user
primitive, processing time for the entire transforma-
tion was cut to 1000 milliseconds (one second). Sim-
ilar speedups occurred on the Ardent Titan (Parc-
Place 2.4) where processing time on the same data
was cut from 55810 milliseconds (steps 1 and 2) in
Smalltalk with no user primitives to 560 milliseconds
with a user primitive doing the transformation com-
putations. The difference in performance of the two
workstations is primarily attributable to the difference
in processors.

Adding user primitives under either the Tektronix
or ParcPlace images is quite straightforward; although
the calling protocols are different, the implementations
are similar enough that primitives developed in one
image can be quickly ported to the other. In fact,
the C code that does the actual computing is iden-
tical; only the format for passing arguments and the
functions that mediate the Smalltalk and C addresses
differ and they are easily plugged in as “boilerplate”
once you know how to use them. In terms of strategy,
there is an interesting difference; in the Tektronix ver-
sion, user primitives can access the address space of
the object as it exists in the image. Thus, an Array
of Floats (Smalltalk object) serving as the instance
of the object invoking the primitive method or as an
argument to that primitive can be accessed in the C
code by a service function that assigns the starting
address of its data space to a C pointer to an array of
floats. Items of type float can be taken from and put
in this array. However, the array cannot be enlarged
from within the primitive. Upon completion of the
primitive and return to Smalltalk, any changes made
to the contents of the array in C are accessible as the
Floats in the Smalltalk Array.

In the ParcPlace interface, the user primitive
passes Smalltalk object names as arguments but the
service functions supplied by ParcPlace “copy” the
Smalltalk objects, that is, make their content acces-
sible in additional space declared in C. In this case,
the size of the space allotted to the C item can be dy-
namically allocated according to the size of the object,
which can be queried in the C routine. The primary
operational difference between the two interfaces is the
manner in which anything affected in the C routine
is retrieved in Smalltalk. In the Tektronix approach,
the primitive can pass in a number of objects as ar-
guments; any that are modified in their C persona

October 1-6, 1989 OOPSLA ‘89 Proceedings 163

are thereby modified in their Smalltalk persona since
the same address space is accessed directly in both
modes. The primitive need return only a completion
code. In the ParcPlace approach, any modification to
a copy of a Smalltalk object has to be the argument
of a return function (a set of “service’ functions are
provided) that structures the C element into the re-
quested object which is to be returned in Smalltalk.
To affect a number of different Smalltalk objects in
one primitive and make use of those modifications in
their persona as Smalltalk objects, one needs to pack
them into one returnable object. For our purposes, an
array of Floats representing a number of Float arrays
and individual Float values was returned from the C
primitive and unpacked into its respective Smalltalk
persona on retrieval in Smalltalk.

In actual practice we tend to develop primitive ver-
sions of methods as we identify areas of an object’s
behavior where performance is bogging down the in-
teractive prototyping. We “prototype the prototype”
by subclassing off the object whose behavior we are
trying to improve and substituting primitive versions
of selected methods until we achieve acceptable perfor-
mance. Sometimes, we find that one Smalltalk method
maps directly to one primitive. In other cases, it ap-
pears best to absorb several Smalltalk methods into
one primitive whose behavior is complex but func-
tionally targeted nontheless. For the transformation
procedure described above, the user primitive works
as follows: The Matrix of Triplets (the xyr data) is
unpacked in column order into an Array of Floats.
The values of the 4x4 transformation matrix [S], hav-
ing been determined by the user’s interactive choices
of viewpoint, rotations, view distance, etc., are un-
packed in column order into another Array of Floats.
The Smalltalk method tranaformMatriz: zyzarray by:
ualuearruy is linked to the C function transformitda-
triz(zyrarray, valuearray) which calculates the trans-
formed xys values and replaces them in the “return-
able” array. That primitive performs all computations
necessary to return a set of screen coordinate points
(i.e, steps 2 and 3).

We are not currently including functions to replace
step 5b (a software depth sort of polygons) with a
primitive but that could be included in this primitive
if desired; or a separate primitive for that function
alone could be fashioned. The performance trade offs
between calling many limited function primitives or
calling a few complex primitives rests on the amount
of packing and unpacking of objects in Smalltalk be-
tween primitive calls. Experience has shown that the
Smalltalk methods that are so handy “logically”, (e.g,
sending a message to a Matrix to break out a column,
accessing the objects in the column, asking them (the
Triplets) to deliver their x, y, or z value) are costly be-

cause of the number of steps required to service all the
referencing. Normally, we try to identify behavioral
units that have general utility and whose functions,
once requested, do not require user intervention.

3.2 Visualization Primitives in the View

The transformation primitives we have been describ-
ing so far are primitives that replace computation
methods in DataSurface. The methods that do the ac-
tual displaying are in DataSurfaceView. These meth-
ods use Pens and Forms (including HalfTones repre-
senting colors on the Tektronix 4317’s) to produce the
screen events we see. To the extent that scientific vi-
sualization performance demands capabilities beyond
those possible using BitBlt as the only graphics prim-
itive, primitives could be added to tap hardware ca-
pabilities of powerful graphics systems. For exam-
ple, the Ardent Titan graphics workstation features
24 bit planes, hardware vector line drawing, hardware
z buffering. Although it runs a basic ParcPlace 2.4
Smalltalk which does not make use of these capabili-
ties, we have begun adding graphic primitives to that
image. Preliminary results using a C routine that ac-
cesses the Titan lowest level graphics software to draw
line segments as a method of PrimitivePen (a subclass
of Pen), show performance improved by a factor of
three for typical wireframe surfaces. (A 20 x 20 ma-
trix, or forty lines of twenty points per line took 2400
milliseconds in Smalltalk on the Ardent, using Pen
methods; using an Ardent “direct graphics” function,
the same figure was drawn in 800 milliseconds. When
direct buffer control, vector drawing and zbuffering (
to support 3D rotation) are added as primitives, we
anticipate performance in graphics on the Ardent un-
der Smalltalk to be comparable to its performance un-
der its native graphics mode.

Moreover, it does appear that user added graph-
ics primitives can be integrated with the model-view-
controller behavior so that blue button commands to
move, resize, reframe, and collapse views produce the
expected result. What is needed are primitives that
directly cache the bits affected by the user primitive
drawline. In principle, it should be possible to support
the hiding, restoring, and overlapping of views drawn
and/or colored by user added primitives.

4 Physical Model Representation

4.1 Flag Simulation in Smalltalk-

The applicability of the Smalltalk- environment to
the development of numerically-intensive models was
tested on a flag simulation model. This problem
was chosen because of its conceptual complexity and

164 OOPSLA ‘89 Proceedings October 1-6, 1989

Figure 4: Flag simulation. Clockwise from top right: 1) after 50 iterations; 2) after 80 iterations; 3) at
100 iterations; 4) 120 iterations at lapsed time of 83900 milliseconds on SUNUllO. From these results,
the user was able to determine that the values used for gravity and for the spring force were too large
since the model began to exhibit instability.

as a means of testing the Smalltalk/computational-
primitive paradigm. The flag model essentially con-
sists of a grid of mass-points connected together by a
set of springs and fixed in space at two points. The
flag is subject to four forces in the model: spring, fric-
tional, gravitational, and wind forces. The four forces
on a mass point are given by vector relations. The flag
“flaps” in three dimensions and, as a result, the bulk of
the computation requires three-dimensional vector al-
gebra in order to compute the force vectors. The com-
putational loop for the model requires about 42,000
floating point operations for each time step for a flag
of 12x20 mass points.

4.2 Computational Objects

The object-oriented model consists of the implemen-
tation of two new classes: Flag and Vector3D. As

noted previously, Flag is a subclass of DataSurface
and, thereby, inherits 3D visualization behavior. In-
stances of the Flag class are designed to respond to
global messages pertaining to the forces and kinemat-
ical equations to which they are subject. Within the
Flag instance methods, all three-dimensional vector
operations are handled through the use of Vector3D
objects, a subclass of Triplet. A three-dimensional
vector expression, such as the computation of the
spring force would be invoked as follows, given the
normal, n, the velocity, v, and the wind velocity, VW:

springForce <- (n * ((v - VW 1 dot : n >)

As is evident, there is no need to deal with the
vector components separately. The Smalltalk encap-
sulation of the vector methods into the class Vector3D

October 1-6, 1989 OOPSLA ‘89 Proceedings 165

allows the programmer to handle vectors simply aa These bounds are very important for certain types of
vectors. The vector methods presented form a very problems such as singular perturbation problems [9].
small subset of all possible vector methods. In spite The increased performance provided by use of knowl-
of this, a great savings in “think-time” was achieved edge representation can do much to improve overall
using this very simple set of methods. In fact, the performance in a scientific Smalltalk system. That is,
prototyping of this physical model to the point where intelligent algorithmic techniques can reduce iteration
it exhibited physically correct behavior took about a requirements which can be a major source of perfor-
week in Smalltalk. mance degradation in Smalltalk.

In order to achieve a minimum level of physical re-
alism, the flag model required a 12 by 20 grid of mass
points. Each of these mass points was connected to
its 8 nearest neighbors via 8 springs, each contribut-
ing a vector spring force contribution to the ‘netForce’
matrix, among other forces. In addition, the time dif-
ferencing increment required to have stable flag be-
havior was such that 50 time iterations produced only
a small visual change in the shape of the flag. The
computational intensity of this model (with each iter-
ation requiring some 42,000 floating point operations)
provided a meaningful test for the feasibility of proto-
typing genuine scientific models in Smalltalk.

5 Conclusions

Again, performance was optimized by incorporat-
ing computational user primitives. The VectorSD
methods to add, multiply, divide,etc. xyz points were
implemented in C. In some cases, a computation loop
(e.g., the calculation of the spring force at each point
in the matrix was written as one primitive. Results
for the flag model performance are given in Figure 5.

The incorporation of primitives led to an increase
in debugging time, particularly in the latter stages
of code development. While a very flexible, totally
changeable environment is required at the start of a
programming task, when the emphasis of debugging
shifts towards visual interpretation of results, a faster-
running version of the code is needed. One possibility
for improving the primitive coding phase is the devel-
opment of Smalltalk to C translation methods. Since
many computationally intensive primitives will be pro-
grammed to run on parallel processing facilities, the
issue of the boclc end code is a major topic on its own.

The effort to date has convinced us that Smalltalk
is potentially a desirable user interface for scientific
numerical modeling. It offers a means to effect real
computational steering [8], i.e. the in-situ modifica-
tion of the model during computation. Our results
indicate that a reasonable trade-off between primi-
tives and Smalltalk code can be effected that will per-
mit prototyping with credible performance. It may
be that the balance between primitives and Smalltalk
code will shift as the prototype develops. Clearly im-
proved interpreter performance would be an important
attribute because it would enhance the response of the
Smalltalk code portions of the model. Special inter-
preter boards [12], [13] are one approach; faster proces-
sors now appearing in workstations are another. How-
ever, “information hiding” is the primary source of
performance degradation in object-oriented systems.
Work by Johnson [lo] to effect inline code expansion
offers promise of alleviating this problem.

Finally, some future directions should be noted.
Smalltalk’s natural application to simulation often
makes it easier to deal with modeling of physical
phenomena than mathematical abstractions. When
considering applications involving partial differential
equations, Smalltalk classes to represent physical do-
main behavior can be readily constructed, often more
easily than classes to effect formal numerical solu-
tions. We are implementing a knowledge representa-
tion scheme [7] which uses physical domain behavior
as its basis [4]. Also, use of knowledge representation
allows us to incorporate very fundamental mathemat-
ical behavior into class protocols. This representation
permits very significant speedup in numerical solution
to differential equations by providing tight bounds.

As this work progresses, additional features must
be added to any Smalltalk image if it is to support
scientific prototyping. These include double precision
for floating point, complex numbers (which have been
added by Pinson[ll]), additional graphics and visu-
alization tools, and mathematical fonts with equation
editors for problem input. In addition, the “back-end”
processors will need some “standard” collection of nu-
merical procedures that can be accessed as primitive
methods. All of this is feasible, and some of it is work
in progress. We remain confident that the interac-
tive, object-oriented approach to scientific computa-
tion interfaces will evolve into viable alternatives to
the traditional programming techniques, at least for
model prototyping where the traditional methods re-
strict flexibility and productivity.

References

[l] Rice, J.R., SIAM News, Sept. 1987

[2] Peskin, R.L. and Russo, M.F. “An Object-
Oriented System Environment for Par-
tial Differential Equation Solution”, 1988

166 OOPSLA ‘89 Proceedings October 1-6, 1989

PI

PI

Fl

PI

PI

PI

Tektronix 4317 7700 milliseconds 875 milliseconds

Figure 5: Computation of one time step (42000 floating point operations)

ASME Inter. Computers in Engineering
Conf., San Francisco, Aug. 1988

Russo, M.F., Peskin, R.L., and Kowal-
ski, A.D., “A Prolog Based Expert System
for Partial Differential Equation Modeling”,
Simulation, a publication of “The Society
for Computer Simulation”, San Diego, Cal-
ifornia, Volume 49, No.4, October 1987.

Peskin, R.L., Walther, S.S, Froncioni, A.M.,
“Smalltalk - The Next Generation Scientific
Computing Interface?“, 1988 IMACS Con-
ference on Expert Systems for Numerical
Computing, Purdue University, LaFayette,
Indiana, Dec. 1988 and to be published in
the journal of Mathematics and Computers
in Simulation.

Walther,%, “Strategies for In-
teractive Graphing of Numeric Results”, In-
ternational Symposium on AI, Expert Sys-
tems and Languages in Modeling and Sim-
ulation (IMACS), Barcelona, Spain, June
1987, Proceedings.

Newman, W., Sproull, R.,PrincipZes of In-
teractive Computer Graphica, McGraw Hill,
1979, Chapter 22.

Balaban, D., Greiman, Durst, M., and W.,
Garbarini, J. ‘Knowledge Representations
for the Automatic Generation of Numerical
Simulators for PDEs”. 1988 IMACS Con-
ference on Expert Systems for Numerical
Computing, Purdue University, LaFayette,
Indiana, Dec. 1988 Proceedings.

“Visualization in Scientific Computing”,
McCormick, B., DeFanti, T. , and Brown,
M., NSF Report on Grant ASC-8712231,
July, 1987

PI

Cl01

WI

PI
PI

Russo, M., “Automatic Generation of Paral-
lel Programs using Nonlinear Singular Per-
turbation Theory”, Doctoral Dissertation,
Rutgers Univ., Jan. 1989

Johnson, R., Graver, J-O., and Zurawski,
L-9 “TS: An Optimizing Compiler for
Smalltalk” ,OOPSLA Conference Proceed-
ings, Sept. 1988

Pinson, L.J., and Wiener, R.S., An In-
troduction to Object-Oriented Progmmming
and Smalltalk, Addison-Wesley Pub. Co.,
1988.

IEEE Micro, February 1988, p.6-7

Pountain, D., “Rekursiv: An Object-
Oriented CPU”,Byte, November 1988, p.340

*This research was supported in part by the Parallel Comput-
ing Laboratory of the Center for Computer Aids For Industrial Pro-
ductivity(CAIP) and in part by National Science Foundation under
grant number ECS-8814937. CAIP is supported by the New Jer-
sey Commission on Science and Technology, Rutgers-the State
University of NewJersey, and the CAIP Industrial Members.

6 Acknowledgements

We wish to thank Mike Miller of Tektronix, Inc. for
making a preliminary version of his Cprim User Prim-
itive package available to us. Andy Froncioni of Caip
programmed the Flag Model.

tSmalltalk-80 is a registered trademark of Xeroz
Corp. Sun3 and Sun4 are registered trademarks of
Sun Microsystems. Ardent Titan ia a registered trade-
mark of Ardent Computer Corporation. Tektroniz
4405,440s and 4317 are registered trademark8 of Tek-
troniz, Inc.

October 1-6, 1969 OOPSLA ‘89 Proceedings 167

