
The MoSaiC Model and Architecture for
Service-Oriented Enterprise Document Mashups

Nelly Schuster
1
, Christian Zirpins

1
, Mathis Schwuchow

1
, Steve Battle

2
, Stefan Tai

1

 1
FZI Forschungszentrum Informatik, Karlsruhe, Germany,

2
Hewlett Packard Laboratories, Bristol, UK

{nschust,zirpins,schwucho,tai}@fzi.de, steve.battle@hp.com

ABSTRACT

Enterprise documents uniquely facilitate organizational collabora-
tion by representing business processes, rules and data in a visual
format that can be communicated between collaborators. While
IT-supported document collaboration is well established for struc-
tured recurring business processes, creative processes that emerge
and evolve instantaneously lack an appropriate document collabo-
ration model. Related documents comprise diverse interrelated
parts that evolve through collaborative activities of varying partic-
ipants in an ad hoc manner. As to this, we introduce a novel ap-
proach to represent these documents as mashups of services. Doc-
ument mashups offer an interactive, intuitive and dynamic way to
indicate the structure and behavior of document fragments that are
provided by human collaborators or IT systems as services. In this
paper we present a conceptual model of document service ma-
shups as well as a document service infrastructure and collabora-
tion platform architecture. Our model considers both the structur-
al/layout composition of a document as well as its active behavior
to support collaborative relationships. We represent the structural
dependencies of document fragments and the collaborative flows
of their providers as application-level rules that react to document
events. Using our collaboration platform, collaborators declare
document layout and interaction rules that are enforced as REST-
ful service interactions by the underlying document service infra-
structure.

Categories and Subject Descriptors
H.5.3 [Information Interfaces and Presentation]: Collaborative

Computing, Web-based Interaction; H.4.1 [Information Systems

Applications]: Office Automation - Groupware, Word processing

General Terms

Management, Design, Human Factors.

Keywords

Document-Driven Situational Collaboration, Document Service
Mashups, Document Service Infrastructure, Document Collabora-
tion Platform.

1. INTRODUCTION: REALIZING OPEN

DOCUMENT-CENTRIC COLLABORA-

TION PROCESSES
Enterprise documents provide a means of communicating infor-
mation in a purpose-optimized (structured, annotated, graphically
appealing, legally binding) form of representation in order to
share and clarify individual points-of-view with targeted reci-
pients. In the enterprise, documents are often used as an organiza-
tional instrument. Sophisticated enterprise documents encapsulate
business rules and processes and provide the means for their regu-
lation and enforcement in a highly efficient manner e.g. utilizing
customer relationship, and workflow management systems. From
a practical perspective, enterprise documents are closely related to
organizational collaboration. As organizations are increasingly
required to be responsive to planned changes and unplanned inci-
dents, to innovate in the face of these situations and in collabora-
tions with clients and partners, they need to look beyond optimi-
zation of recurring business processes and focus on open collabo-

ration processes. These processes are situational, weakly struc-
tured and highly interactive human-centered collaborations within
or across organizational boundaries [13]. Enterprise documents
involved in such collaborations are exposed to ad hoc changes as
new ideas or data from different sources – humans but also sys-
tems – come in. Examples can be found for instance in IT service
management or software engineering where collaborators have to
react on unexpected incidents like bugs or are collaboratively
developing solutions which are captured in interrelated docu-
ments. Another example for document collaboration is the colla-
borative composition of a research publication [13]. During the
course of the team collaboration, documents evolve to stable re-
sults.

Various technologies and tools support collaborative creation and
evolution of documents (e.g., CSCW technologies or wikis) or
structured workflows or processes (e.g., BPM). However, how to
support ad hoc team collaboration within an overall collaborative
document evolution process is an open research question. As to
this, we introduce a unique approach to integrate service-oriented
architecture and enterprise document paradigms.

Our vision of open document-centric collaboration is to put a
service-oriented enterprise document in the center of an open
collaboration process. Representing enterprise documents as com-
positions of specific document services allows leveraging service-
oriented computing technologies [3]. On the one hand, these
technologies facilitate the composition of flexible information and
workflow systems, integrating lightweight processes, such as col-
laborative documentation processes. On the other hand, using the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Mashups 2009, October 25, 2009, Orlando, Florida
Copyright (c) 2010 ACM 978-1-4503-0418-4/10/12... $10.00.

emerging mashup paradigm enables the creation of an end-user-
driven development environment for service compositions [14].
Participants use the document structure to regulate their activities
(who does what and when) in an ad hoc, situational and joint
fashion. An electronic document infrastructure needs to enforce
these regulations in a non-invasive way by mapping them to an
interaction flow between the participants and actively controlling
this flow during the collaboration process. Simultaneously, docu-
ment content represents the state of the collaboration in flow as it
integrates the diverse individual outputs of the participating colla-
borators. During the course of the collaboration process, docu-
ment content transforms from a record of collaborative conversa-
tion towards a publication of stable results.

In order to realize this vision, traditional enterprise document
computing has to be extended along two orthogonal dimensions:
Firstly, conventional electronic document structure needs to gain
flexibility in order for structural definitions to support individuali-
ty, partial definition and ad hoc changes of each document in-
stance driven by collaborating participants. We meet this require-
ment by representing document structure as rule-based mashups
of autonomous document fragments that are intended to be speci-
fied and maintained by the human collaborators. Secondly, con-
ventional electronic document content needs to gain dynamicity in
order for document fragments to reflect and synchronize the ongo-
ing evolution of multiple collaborative activities (e.g. writing,
proof-reading and approval of a specific textual building block)
that create and transform contents in the course of a collaboration
process. We meet this requirement by associating document frag-
ments with a series of interrelated service instances provided by
participating collaborators.

In this paper, we introduce a document component model that
maps document fragments on software services. The structuring
and coordination of services as parts of a growing document is
described in a composition model. Based on the document com-
ponent and composition models, we have developed the architec-
ture of a lightweight document service bus for event-based inte-
raction between document mashups and services. The document
service bus provides the infrastructure for a collaboration envi-
ronment, which allows for end-user-driven ad hoc collaboration in
the course of authoring document mashups. In the following, we
describe the conceptual and technical foundations of our ap-
proach. Section 2 presents our conceptual document component
and composition model. Section 3 shows the architectural design
of the document service infrastructure and collaboration environ-
ment. Section 4 shows an example scenario and use case illustrat-
ing our approach. We discuss related work in Section 5. Section 6
concludes with a summary and an outlook on future work.

2. A CONCEPTUAL MODEL FOR DOCU-

MENT SERVICES MASHUPS
A document service component model and composition model
build the conceptual foundation of our approach for service-
oriented document-centric collaboration. The component model
describes the nature of a document service. Document services
provide content creation (e.g., writing text, drawing diagrams,
accessing databases) and transformation functions (e.g., proof-
reading, translating, layouting), which can be composed into en-
terprise documents. The structuring and coordination of services
as parts of a growing document is described in the composition

model that builds on events and rules: each service exposes events
indicating state transitions of its underlying resources which are
consumed and reacted upon by mashups. Various rules can be
defined for such events; e.g., a rule may specify that when a text-
based content service emits an update event, a proof-read service
is called by the mashup or that at a certain deadline all services
that have not yet delivered results are called again. The mashup
author is free to specify any rules that fit the collaboration at hand.
To increase usability, it is possible to pre-define rule abstractions
that represent application-level controls like reminders.

2.1 Document Services
Document services represent activities of collaborators, e.g. creat-
ing a contribution, translating text, or proof-reading. The result of
an activity is communicated as a document fragment which can be
included in a document. Services are offered by various sources
like systems living in the Inter/intranet as well as human beings.

We have identified different types of such document services
resulting in an extensible service type taxonomy. There are two
main types, content source service and content transformation

service. On request, a content source service provides a document
fragment, i.e., text or other media in any common format. Exam-
ples for content source services are human-written paragraphs,
table of contents, and pictures provided by services on the Web.
Content transformation services primarily transform or work with
existing contents, e.g. document fragments or whole documents.
We differentiate between layout, publication and functionality
services. Layout services transform documents into a format like
XHTML or PDF. They require a composed document as input.
Publication services send documents to external sources, e.g., post
them to a blog, store them on a server or email them to a recipient.
Functionality services provide any kind of value-added function,
for instance proof-read or language translation, which can be ap-
plied to the document or parts of it. As the taxonomy is extensi-
ble, new types can be specified or existing ones can be refined.

An activity is time consuming and subject to a common lifecycle:
starting with a request, it progresses over various steps until fi-
nishing at some point. The evolution of the result is reflected by a
Web accessible document fragment. A uniform Web service inter-
face allows to access the resource, i.e., create, read, update or
delete it. When a create service request is directed to a service
provider, the service provider creates a new service instance in
"draft" state that has a unique endpoint. In this state, the document
fragment is subject to revisions. As soon as the provider of a ser-
vice instance considers his collaborative activity as finished, he
marks the corresponding document fragment as "final". After an
"approval" it will not change anymore.

The evolution of an activity is communicated to some coordina-
tive peers. These peers can trigger lifecycle stages of a document
service by means of service requests, for instance requests for
creation or update of a document fragment. Service requests carry
meta information as well as an input document fragment, if re-
quired by the service. The meta information contain the addressed
service provider and the service identifier or service type he
should deliver. Furthermore, meta information contains the ser-
vice requester identifier, a timestamp and, in case the request con-
tains a fragment, the format of the fragment and processing infor-
mation. The document fragment in the request must have a pre-
defined format the requested service can understand. The

processing information in the fragment data specifies which part
of the content should be used or replaced by the service. Docu-
ment services communicate their lifecycle changes, for instance
revisions in draft state, by means of document service events.
These events contain a document fragment representing the result
of a collaborative activity at that point in time. Additional infor-
mation specify the event source and date, access restrictions, ser-
vice type, event type – i.e. updated, deleted, read, created – and
auxiliary information, e.g. on how to interpret the fragment. A
service provider may offer various types of services. Also, there
might be multiple coordinative peers for a single service. For each
coordinative peer communicating with a service, a distinct service
instance is created which evolves in its own lifecycle.

2.2 Document Service Mashups
A document service mashup represents and realizes one coordina-
tive peer for a collaboration process. It coordinates an open set of
collaborators providing activities and incorporates their results as
parts of a document. A document mashup consists of some docu-

ment structure specifying the layout of document elements, docu-

ment elements as data containers holding activity results, docu-

ment services associated with elements, collaborators providing
document services, and some collaboration logic regulating the
flow of collaborative activities represented by document services.

The left box in Figure 1 shows the document composition model,
which describes the structural composition of document services
to mashups. Each mashup contains exactly one root document

element that can be atomic or complex. The nesting of atomic and
complex document elements leads to a definition of document
layout, i.e. the structural composition. Atomic document elements
do not contain other document elements. Complex document
elements do so and allow representing a nested document struc-
ture.

Document elements hold document fragments that represent the
current state of a collaborative activity represented by a document
service. This data can be accessed throughout the mashup to ex-
press logical relations between different parts.

Each document service in a mashup is associated with a collabo-

ration role that stands for a collaborator. The collaboration roles
of a mashup are bound to an organizational participant or system
that provides the associated document service types. This allows

for instance to specify that two collaborative activities in a ma-
shup should be conducted by the same participant.

Each atomic document element is associated with at least one
content source service. It has a type which equals the type of its
content source service. In addition, document elements might
reference an unlimited number of content transformation services,
e.g., for proof-reading or spell checking. A content transformation
service applies to all document elements contained in the docu-
ment element it is associated with.

The coordination of different document services is specified by
collaboration logic. An event paradigm is used to represent rele-
vant situations. Mashups emit events whenever a document ele-
ment is added, moved or removed. This allows observing struc-
tural changes of the document. State changes of document servic-
es can be observed by the mashup through events that originate
from document services as soon as they are created, updated, or
deleted. For instance, changes to a document fragment in a service
that are made during the authoring process are propagated as up-
date events. Furthermore, environmental changes can be observed.
E.g., platform events are emitted whenever a new document ser-
vice, mashup, or provider is available or a role is bound to a par-
ticipant. Changes in time are propagated through timer events. All
these events are observed by the mashup and provide the basis to
control the associated collaborative flow. Events might also be
consumed by document services if they are important for colla-
borative activities. E.g. the update of one document fragment
might trigger the update of another. More generally, events emit-
ted during mashup runtime cause reactions of services and ma-
shups. These reactions are defined in event-condition-action
(ECA) rules, which are part of the mashup (see right box in Figure
1). Events are input to these rules; based on the events conditions
can be checked and appropriate actions performed, either by ser-
vices, mashups or by the infrastructure. The execution of a ma-
shup thus consists of monitoring events and conditions on these
events as well as conducting the activities.

An example rule is "if introduction and summary are delivered, do
a proof-read". This is a typical interaction rule that involves dif-
ferent collaboration partners, i.e. the authors of introduction and
summary and the proof-reader who is notified as soon as introduc-
tion and summary emit an update event and are in state "final".
Another rule would be "insert a table of content into the mashup
as soon as at least two chapters are provided". This rule has a

Figure 1. Document Composition Model

more structural character. Generally, we distinguish between inte-

raction rules, which involve the collaboration of participants and
request the change of a document service state, and document

structure rules, which do changes to the structure, i.e. the docu-
ment elements and layout of the mashup.

The document composition model includes a set of fundamental
rules that are used implicitly to define default mashup behavior.
For instance, whenever a document element binds a new docu-
ment service, the service receives an update request.

Furthermore, there exist rules, which directly apply to a certain
document element, for instance "insert a table of content into the
mashup as soon as at least two chapters are provided" refers to a
table of content document element. Thus, this conditional rule is
directly associated with this element in the mashup. An iterative

rule might be associated with an element: "for each keyword in a
list, get a picture and place it next to the keyword". These rules
allow realizing loops. We call document elements that directly
contain rules control elements. These are special complex docu-
ment elements. Such elements also might contain more than one
rule. Layout elements represent specific document structures, for
instance tables, lists, or sequence and merge ordering instructions
for included document elements.

The document composition model also defines a number of pre-
defined rule templates that represent common complex situations
and typical reactions and are configured by end users with respect
to a specific mashup. Users can include these rule templates into
mashups without having to define all rules from scratch. E.g., the
"document element with table of content" rule template consists of
a document element of type table of content and two rules:
"show/include if mashup contains at least one chapter document
element" (conditional document structure rule) and "update when-
ever a service in the mashup updates or mashup is changed" (inte-
raction rule). Instead of a table of content any other table, for
instance table of pictures or bibliography, can be used. The "re-
minder" rule template refers to all document services in the docu-
ment element it is defined in. It contains the rule "at a certain date
resend requests to all document services which did not deliver"
(interaction rule). The date has to be configured by the user.

3. ARCHITECTURAL BLUEPRINT AND

IMPLEMENTATION APPROACH
In order to enable open document collaboration via document
service mashups, we have developed an architecture for a docu-

ment service infrastructure and a document collaboration envi-

ronment (see Figure 2). Our architecture reflects the major con-
ceptual characteristics of document service mashups: the service
infrastructure supports document service lifecycles and interaction
and the collaboration environment facilitates interactive document
mashup regulation and control.

For the service infrastructure, we have mapped the document
service model onto RESTful services. Document services provide
a minimal CRUD interface for document service messages. A
fundamental document interaction protocol specifies the basic
messages and messaging patterns of open document collaboration
that can be either requests for, or lifecycle events from, document
services. These messages are routed to any combination of ma-
shups and services by means of a document service bus thus faci-
litating arbitrary interaction patterns that might be appropriate to

enforce collaborative regulations. Routing decisions build on a set
of interaction rules over the event stream going through the bus. A
central rule engine provides respective capabilities of complex
event processing (CEP). Furthermore, the document service bus
maintains a knowledge base of ongoing collaboration processes
and associated mashups as well as collaborators and their docu-
ment service offers.

The collaboration environment reconciles between the interactive
regulation of document collaboration processes by means of visu-
al document mashup specification and the automated enforcement
of these regulations by means of interactive as well as rule-driven
document service interactions. Central to the environment is a
document mashup platform. It interfaces with end users through a
Web 2.0 application frontend that provides a runtime control pan-
el for all aspects of a document mashup. In particular, a human
participant in the role of a collaboration coordinator instruments
the panel to supervise the collaboration process over its complete
lifecycle. The mashup platform interfaces with the service infra-
structure via a mashup manager component. During interactive
mashup specification, the manager exchanges metadata on the
mashup, its services and its participants with the document colla-
boration knowledge base. Then, its active behavior builds on the
execution of mashup rules by the central rule engine. While the
mashup manager feeds events on structural document changes to
the rule engine, the rule engine triggers activities of the manager
to alter the ongoing collaboration by changing the mashup. Pre-
dominantly, the manager requests collaborative activities by
means of document service calls and receives events of ongoing
activities in order to render their results as parts of the document
mashup.

Another aspect of the collaboration environment concerns the
integration of document services that might be either provided by
human collaborators or backend systems. A Web application fron-
tend allows collaborators to manage their collaborative activities,
register respective document services with the infrastructure and

Figure 2. Overview of the MoSaiC Document

Collaboration Architecture

view the document mashups that they are involved in. Depending
on the type of collaborative activity, document services are either
implemented as an editor for document fragments or by backend
systems that are connected through adapters.

3.1 Document Service Infrastructure
In our collaboration architecture, an infrastructure layer mediates
between document mashups and services. The layer consists of
four components that interact with the mashup platform and the
document services. The document service messaging component

is the central communication channel that allows a decoupled
message-oriented communication between the document services
and the mashups they are used in. A document collaboration regi-

stry stores meta-information about document services and their
providers. The mashup editor queries this registry to find those
document services that are best suited for a given collaboration.
New document service providers and mashups are registered at
the document bus manager. It is connected to the messaging com-
ponent and registry to configure them accordingly. The collabora-

tion rule engine processes all event messages sent from document
services and document mashups in order to evaluate the rules that
control mashup execution.

The document service messaging component routes service re-
quests between the mashup manager and document services. Doc-
ument services are created and updated with a request to their
uniform interface. It includes an XML message that contains meta
information and additional data required for processing the re-
quest, e.g. human-readable advice. The services do not respond
synchronously but propagate all state changes that result from a
request as event messages. As the editing of document fragments
may take time and occur in several steps, a single request may be
followed by multiple events. To support this asynchronous com-
munication model, the messaging component is based on a JMS
message broker. The Java Messaging Service (JMS) is a standar-
dized API that supports reliable messaging and point-to-point as
well publish-subscribe communication. Each document service
provider and each mashup have a message queue that stores re-
quest and event messages and forwards them when the service or
mashup is available. Requests are sent to queues via a RESTful
messaging API. It mirrors the interface of the document services
so that the communication over the messaging component is
transparent to the mashup manager and the services. As document
services are addressed only by their unique ProviderID and Servi-
ceID, their actual endpoint URI is hidden and mashup and servic-
es are decoupled. Event messages that contain the results of state
changes of document services are sent to multiple recipients. They
are processed in the collaboration rule engine and sent to all ma-
shups and services that are interested in the results.

In our mashup infrastructure, we use a simple and user-friendly
registry for service discovery. As the user decides which docu-
ment services and which service provider he wants to use in a new
mashup, advanced features like automated matching and selection
are not required. Our document collaboration registry stores meta
information about service provider, document service instances
and document mashups and supports simple keyword queries on
these attributes. If the user wants to create a new document ser-
vice instance and add it to a mashup, he can search for a service
provider that offers a certain document service type. Additionally,
providers can register in a certain collaboration context so that

their services are directly available in the corresponding mashup.
The registry contains an informal textual description on how the
expected content of the document service instance must be speci-
fied. Due to the uniform CRUD interface of document services, an
operational interface description is not required. To allow reuse of
existing content, the user can also query the registry for document
service instances. If their creator did not restrict their reuse, they
can be included in new mashups.

Document service providers that want to offer services in our
mashup infrastructure must register with the document bus man-
ager. They submit meta information about the document services
they provide and may register service instances that already con-
tain content that can be reused in other mashups. Providers may
also register in one or more collaboration contexts so that their
services are only available for use in corresponding mashups. The
document bus manager stores the information in the registry and
creates a queue for the provider in the messaging component. As
some document service provider may not be online all the time,
the manager allows suspending the forwarding of requests tempo-
rarily. The requests are stored in the queue of the provider and
executed when it is available again.

The active behavior of the mashup is controlled by rules. Actions
like calls to document services or changes of the mashup structure
are triggered by conditions that are evaluated on the events emit-
ted by services and mashups. As events from different documents
services and mashups can be used in the rules, they are processed
in the collaboration rule engine. To deal with the throughput of
event messages in a conceptually centralized rule engine, we use
the complex event processing engine Esper
(http://esper.codehaus.org/). Esper allows querying event streams
and detecting events patterns in them using the Esper Event
Processing Language (EPL). EPL statements can contain event
patterns that filter events based on their attributes, correlate mul-
tiple events using logical expressions and consider temporal con-
straints, e.g. on the ordering of the events.

We use EPL statements to formulate the conditions of the rules in
our mashup platform. The following two patterns in EPL syntax
demonstrate how typical collaboration rules can be expressed.

every (Event (Source.ProviderID=‘Alice‘,

Source.ServiceID=‘figure1‘,

Type=’updated’)

and Event (Source.ProviderID=‘Bob‘,

Source.ServiceID=‘abstract‘,

Type=’updated’))

The pattern matches every time service “figure1” of provider
“Alice” and service “abstract” of provider “Bob” are updated. It
may be the condition of a rule that triggers a proofread service
when both document services have changed.

not Event(ProviderID=‘Bob‘,

ServiceID=‘abstract‘, Type=’updated’,

state=’final’)

and timer:interval(24 hours)

This pattern matches if the provider does not emit a document
fragment in final state within 24 hours. It can be used to remind
the provider that a deadline has passed. To perform the corres-
ponding actions, listeners are being attached to statements in the
Esper engine. They are called when a pattern is matched and trig-
ger actions in the mashup manager via a special interface.

Event messages can be sent to the Esper engine with different
adapters. We use the JMS input adapter to connect it to the JMS
message broker that is at the core of the Messaging Component.
In that way, all event messages from the document services can be
efficiently forwarded to the Esper engine when they pass the mes-
saging component. In order to process the events that are emitted
from the document collaboration environment (i.e. mashup
events), the mashup manager is directly connected to the JMS
message broker.

3.2 Document Collaboration Environment
The document collaboration environment supports user-based
creation and administration of mashups. It is composed of two
main parts, the document service platform and the document ma-
shup platform.

The document service platform provides an infrastructure for
managing provided services. Specific Web frontends allow creat-
ing and editing human-based document services, e.g. texts, using
an editor but document services can be also implemented by
backend systems that are connected through adapters. A service

control panel Web frontend supports the registration of new pro-
viders and services. These interfaces access different functions of
the document service infrastructure, e.g., if a new human-based
service is created, it is deployed and registered at the bus using the
document bus manager. A user interface for looking up mashups
allows users to find mashups they participate in or register to ma-
shups they want to participate in. Events caused by these update
and registration actions are transmitted to the document service
messaging component.

The document mashup platform contains two main components,
the mashup manager as well as the mashup control panel Web
frontend. The mashup manager holds the state of a mashup in
cache and is responsible for reacting on events coming from the
mashup control panel. Whenever a change for instance in the
structure of a mashup is made by a user in the mashup control
panel, the mashup manager is notified. It stores a new version of
the mashup in its instance data repository. A mashup version con-
tains the document structure built of document elements as well as
the resource data of the associated service instances in their re-
spective state. In addition, all rules are stored with a mashup.
Whenever a rule is stored or updated in a mashup, it is also confi-
gured in the rule engine. Every mashup event coming from the
mashup control panel is sent via JMS to the rule engine which can
then check whether any follow-up actions are required.

The mashup manager in addition provides interfaces for actions
which can be directly triggered by the rule engine. An example
activity is the update of a service instance in a mashup. The rule
engine calls the respective interface at the mashup manager which
then stores a new version of the mashup including the updated
service instance as well as updates the mashup control panel.

The mashup manager is also responsible for registering new ma-
shups at the document bus manager which were designed by users
using a visual editor of the mashup control panel.

The mashup control panel provides an intuitive Web-based GUI
for collaboratively authoring mashups. A mashup can also be
accessed as a document service in order to allow collaborators to
view the collaborative document as a whole. In our document
collaboration environment, we do not distinguish design time and

runtime of a mashup; i.e., actions like changing the structure of a
mashup or updating a service are performed immediately and do
not need to be specified as a schema. In the Web frontend, the
user can define and refine an overall document structure which is
represented through the root document element of the mashup.
Onto this structure, the user can drag and drop other document
elements or document services from palettes. One palette lists
existing document service instances and allows dragging and
dropping them onto a document element in the mashup. A palette
of providers and their offered services also allows to trigger the
creation of new services: as soon as a new provider is dropped
onto a document element, a create message is sent to the service
provider which results in the creation of a service instance in
“draft” state by the provider. The information about participants
and services are directly retrieved from the document collabora-
tion registry. The creation of rules is based on EPL; however we
are developing a graphical user interface that will support the
different types of rules, such that the user does not have to code.
This includes a wizard for the interaction rules described in sec-
tion 2.2 and a special view on the mashup, which allows defining
document structure rules directly into the mashup.

4. EXAMPLE SCENARIO
We shall now motivate our vision for open document collabora-
tion describing anecdotes of usage of an exemplary system, which
could be based on our open document collaboration models.

Scientific publications involve collaboration of various research-
ers who provide different parts of the publication like pictures,
texts, or references. Authors of a scientific publication need to
discuss contents, structure the document, proof-read it, check for
completeness, correctness and readability.

In our scenario, Alice starts creating a scientific publication ma-
shup using a template that already provides some content structure
like title, abstract and bibliography element. Alice uses the Web
frontend and drags several section elements for introduction and
main part from a palette to the mashup canvas. For each document
element she provides a meaningful title and whenever Alice drops
an element on the canvas, the mashup manager stores the docu-
ment. In addition, for each change, mashup events are sent to the
rule engine.

Having established the first structural draft, Alice defines beha-
vioral rules. A wizard guides her through the process of creating
the rule that all chapters need to be delivered three days before the
conference deadline; i.e., at least update events for each of the
chapters were emitted and they are in state final. First, a loop on
all content document elements is defined. Second, an action is
added to each element in the loop in order to send another request
to the authors, who did not deliver. All rules are stored with the
mashup. In addition, they are fed into the rule engine.

In the service instance palette Alice identifies a layout service,
which formats mashups into ACM format and a service, which
uploads a formatted document to the conference publication serv-
er. She defines a rule that the mashup is formatted by the layout
service when all content elements are in final state. Afterwards a
final proof-read by the first author is required and, in case the
proof-read is ok, the document is published by the publication
service to the conference publication system.

Having specified the rules, Alice uses the provider palette in order
to find service providers and which services they offer. She finds

Bob, Carol and Ted who are in the research team and are planned
to participate in authoring the publication. Alice drags the icon for
Bob on the introduction document element; the association be-
tween service provider and service is immediately stored. Bob
receives an e-mail that he has to write this paragraph and this task
is added to his personal to-do list, which he can inspect after hav-
ing logged in to the system.

Exactly three days before the deadline the rule engine triggers the
“reminder” rule that was specified by Alice. It goes through the
loop and for each document element that is not in state final, it
triggers the action “send email to the provider”. Since Bob did not
provide any text for the introduction yet, he receives an e-mail,
stating that he immediately has to deliver the introduction section
for the publication. He logs into the system, writes the abstract
and refines it adding a picture element into the introduction doc-
ument element and marks its state as final.

The rule engine gets this event, and triggers the rule that as soon
as all chapters are in state final, the mashup is sent to the layout
service. After the layout service returned the formatted PDF file,
the first author is requested to proof-read. After finishing the
proof-read, the first author sends an event stating that the proof-
read was “ok”. This triggers the publishing action defined in the
flow rule. The formatted document is send to the publishing ser-
vice.

5. RELATED WORK
MoSaiC adopts concepts of service mashups for ad hoc composi-
tion of mostly human-based software services as parts of modular

documents in the context of open collaboration.

Mashup technologies have recently gained broad attention from
industry [2] and are increasingly addressed by academic research.
The mashup paradigm, that emphasizes user-driven composition
of situational software applications from Web-based content and
services, is being adopted by a broad variety of approaches for
general-purpose use like online developer platforms [9] or in the
context of specific applications like e.g. collaborative story writ-
ing [12]. While a number of surveys have revealed general charac-
teristics of existing mashup design and development approaches
[6, 14], they also showed the need for new software technologies
addressing specific requirements like collaborative development,
user interface integration and ad hoc lifecycles. Among the specif-
ic challenges are high-level composition models that are appropri-
ate for rapid end-user development like e.g. spreadsheets [15] and
the integration of service presentation layers into a consistent user
interface [5]. These challenges are also addressed by MoSaiC
using a document-based approach.

The need for domain specific mashup technologies for document
collaboration can be illustrated on the example of a general pur-
pose mashup tool like the IBM Mashup Center (http://www-
01.ibm.com/software/info/mashup-center/) that lets users compose
widgets into mashups. Widgets reference services, e.g. feeds, from
the Web or other sources like enterprise information systems. The
definition of a widget holds information about which events the
widget might expose. Based on this information, the mashup de-
veloper can add connection rules between widgets, which route
data in case of an event to another widget. However, these events
most often are caused by user clicks and not by updating any con-
tent. Events are exposed by widgets and not directly by services,
the mashup or the platform, as required for collaborative applica-

tions. Likewise, it is not possible to specify complex rules involv-
ing several events or conditions. It is possible to collaborate on a
mashup, but only the full mashup can be updated at a time and
there is no role model or versioning. Also, the mashup still is an
application and cannot be used as a document.

Currently there is a growing interest in technologies for human-

based software services that allow integrating human intelligence
task into automated information processing and harnessing the
virtual workforce of Web users for highly scalable business
processes [4]. An example is the the Human-provided Services
framework [11] that aims to enable the engagement of humans in
ad hoc and process-centric collaborations through representing
human activities as services. This allows the seamless integration
of human- and machine-based services. The approach focuses on
interaction and collaboration, but not yet on composition of ser-
vices into documents.

An early project on modular documents is XANADU [10], which
started in the 1960s. It followed the vision of composing docu-
ments from pieces of other documents (transclusion), thereby
building a networked bibliography of documents. The idea was to
virtually copy contents, similar to links. This shows that the idea
of composing documents from pieces is not new. However, XA-
NADU did not focus on the collaborative evolution of documents.
Furthermore, in our approach, the document elements are really
copied into the mashup keeping the reference to the resource in
order to request updates. They are not just referenced. More re-
cently, Lublinsky discussed problems of incorporating documents
into SOA implementations [7]. He proposes an approach to
represent documents within a semantic data model that is used by
business processes and services. The focus is however on rather
static enterprise documents. Ad hoc modification of document
structure and related processes is not addressed by this work. The
document engineering approach by Glushko et al. [1] aims to
integrate documents and business processes through analyzing
and modeling the required documents and processes from a data,
task, document, and business process perspective. These models
capture common understanding of exchange information, timing,
people, organization, or roles. However, this approach focuses on
classical business processes and not on ad hoc and dynamic
processes.

Regarding open document collaboration there exist various re-
lated Web 2.0 applications. Google Docs
(http://docs.google.com/) allows collaborative creation of rich text
documents. However, it is not possible to define any dependencies
between document elements or react to events. Thus, lightweight
ad hoc workflows cannot be specified and executed. Furthermore,
Web services cannot be included into a document. Another related
technology is Google Wave (http://wave.google.com/). A wave is
a collaboration of participants based on XML documents consist-
ing of wavelets. This is similar to the composition of document
services to a mashup. Wavelets have a certain state defined by a
sequence of operations. In addition waves might include auto-
mated robots that are comparable to our document transformation
services since they provide functionality like translations. Wave-
lets can include any number of documents. However, Google
Wave focuses more on communication than on collaborative evo-
lution of an enterprise document. Also, there is no way to define
interaction rules based on events and to re-use wavelets in other
waves.

Finally, the Liquid Publications community investigates on new
ways for the creation, dissemination, evaluation and maintenance
of scientific publications by leveraging methods from agile soft-
ware development and collaborative evolution of knowledge in
Web 2.0 [8]. Similar to our approach, liquid publications are evo-
lutionary, collaborative, reusable knowledge objects that can be
composed. However, their focus is mainly on improving the no-
tion of a scientific document but there is not yet a plan for a sys-
tem, which could support collaboration on scientific publications.
Thus, liquid publications are complementary to our research.

6. SUMMARY AND OUTLOOK
Open document collaboration poses substantial requirements on
the flexibility of document structure and on the dynamicity of
document contents. Document collaboration structure is highly
situational and emerges in an ad hoc manner. Respective content
has to reflect the evolving state of multiple participating collabo-
rators and render its visual representation from various sources.
Our approach of document service mashups provides a solution
that meets both requirements. Document mashups support interac-
tive specification of the structure and collaborative regulation of a
shared document in a flexible declarative way on the fly. Docu-
ment services facilitate the integration of dynamic content from
various collaborators.

We have introduced a unique model of document service mashups
that can be used as a basis to develop solutions for open document
collaboration. Further, we have presented our technical architec-
ture for such a solution that defines the main functional compo-
nents and facilitates implementations on different platforms. We
have also demonstrated the utilization of contemporary service-
oriented infrastructure technologies including RESTful Web ser-
vices, messaging patterns, complex event processing and rich
Web 2.0 Internet applications for implementing the architecture
and showing the feasibility of our approach.

Using the concepts of document service mashups, scenarios of
open document collaboration can be soundly argued. Based on
our architecture, the implementation of a complete demonstrator
system is under active development. Prototypes exist for the doc-
ument service infrastructure and document services. We are also
assessing different Web application frontends like Wikis and cus-
tom RIAs. Experimental evaluation is ongoing. Apart from func-
tional and qualitative tests that we have conducted for the existing
prototypes, we will evaluate the approach in a case study experi-
ment as soon as the complete demonstrator system is finished.

7. ACKNOWLEDGMENTS
We would like to thank Hewlett Packard for supporting the Mo-
SaiC project as part of the Open Innovation Research Program.

8. REFERENCES
[1] GLUSHKO, R. J. AND MCGRATH, T. 2005. Document Engineer-

ing: analyzing and designing the semantics of Business Ser-
vice Networks. In Proceedings of the IEEE Eee05 interna-

tional Workshop on Business Services Networks (Hong
Kong, March 29 - 29, 2005). ACM International Conference
Proceeding Series, vol. 87. IEEE Press, Piscataway, NJ, 2-2.

[2] HOYER, V., AND FISCHER, M. Market overview of enterprise
mashup tools. In Computing - ICSOC 2008, 6th Internation-

al Conference, Sydney, Australia, December 1-5, 2008. Pro-

ceedings (2008), A. Bouguettaya, I. Krüger, and T. Margaria,
Eds., vol. 5364 of LNCS, Springer, pp. 708–721.

[3] HUHNS, M. N., AND SINGH, M. P. Service-oriented compu-
ting: Key concepts and principles. IEEE Internet Computing

9, 1 (2005), 75–81.

[4] KERN, R., ZIRPINS, C., AND AGARWAL, S. Managing quality of
human-based eservices. In ICSOC 2008 Workshops (2009),
G. Feuerlicht and W. Lamersdorf, Eds., vol. LNCS Vol.
5472, Springer, pp. 304–309.

[5] KONGDENFHA, W., BENATALLAH, B., VAYSSI`ERE, J., PAUL,
R., AND CASATI, F. Rapid development of spreadsheet-based
web mashups. In WWW '09: Proceedings of the 18th interna-

tional conference on World wide web (Madrid, Spain, 2009),
ACM, pp. 860, 851.

[6] KOSCHMIDER, A., TORRES, V., AND PELECHANO, V. Elucidat-
ing the mashup hype: Definition, challenges, methodical
guide and tools for mashups. In 2nd Workshop on Mashups,

Enterprise Mashups and Lightweight Composition on the

Web in conjunction with the 18th International World Wide

Web Conference, Madrid. (2009).

[7] LUBLINSKY, B. Unifying data, documents and processes.
Enterprise Architect 2, 2 (2004).

[8] MARCHESE, M., GIUNCHIGLIA, F., AND CASATI, F. Liquid pub-
lications: Scientific publications meet the web. Techreport
DIT-07-073, University of Trento, Department of Informa-
tion Engineering and Computer Science, 2007.

[9] MAXIMILIEN, E., RANABAHU, A., AND GOMADAM, K. An on-
line platform for web APIs and service mashups. Internet

Computing, IEEE 12, 5 (2008), 32–43.

[10] NELSON, T. H. Xanalogical structure, needed now more than
ever: parallel documents, deep links to content, deep version-
ing, and deep re-use. ACM Computing Surveys 31, 4 (1999).

[11] SCHALL, D., TRUONG, H. L., AND DUSTDAR, S. The human-
provided services framework. In 10th IEEE Int. Conference
on E-Commerce Technology (CEC 2008) / 5th IEEE Int.
Conference on Enterprise Computing, E-Commerce and E-
Services (EEE 2008), July 21-14, 2008, Washington, DC,
USA (2008), IEEE Comp. Society, pp. 149–156.

[12] SCHEIBLE, J., TUULOS, V., AND OJALA, T. Story mashup: de-
sign and evaluation of novel interactive storytelling game for
mobile and web users. In MUM '07: Proceedings of the 6th

int. conference on Mobile and ubiquitous multimedia (2007),
ACM, pp. 148/139.

[13] SCHUSTER, N., ZIRPINS, C., TAI, S., BATTLE, S., AND HEUER,
N. A service-oriented approach to document-centric situa-
tional collaboration processes. In 18th IEEE Int. Workshops

on Enabling Technologies: Infrastructures for Collaborative

Enterprises (2009), IEEE Comp. Society, pp. pp.221–226.

[14] YU, J., BENATALLAH, B., CASATI, F., AND DANIEL, F. Under-
standing mashup development. IEEE Internet Computing 12,
5 (2008), 44–52.

[15] YU, J., BENATALLAH, B., CASATI, F., DANIEL, F., MATERA, M.,
AND SAINT-PAUL, R. Mixup: A development and runtime en-
vironment for integration at the presentation layer. In Web

Engineering. 2007, pp. 479–484

