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Abstract ) 

This paper is about reusable, efficient implementations of 
complex algorithms and their integration into software pack- 
ages. It seems that this problem is not yetwell understood, 
and that it is not at all clear how object-oriented and other 
approaches may contribute to a solution. We analyze the 
problem and try to reduce it to a few key design goals? 
Moreover, we discuss various existing approaches in light 
of these goals, and we briefly report experiences with exper- 
imental case studies, in which these goals were rigorously 
addressed. - ., 

1 Introduction ~, 

Many sophisticated algorithms for solving various problems 
have been proposed in the literature. These include, for 
example, algorithms for numerical computations, for graph 
and network problems; for computer graphics, and for sym- 
bolic computations. 

Implementing such an algorithm is time consuming and 
prone to error and requires expert knowledge in algorith- 
mics. Since algorithmic problems appear quite frequently, 
libraries of ‘algorithms for solving various problems might 
be useful. However, to be widely usable, the components of 
such a library must meet two requirements: efficiency and 
flexible adaptability. 

Efficiency must in no way be disregarded, because algo- 
rithmic software is often time-critical. For example, efficient 
algorithms are indispensable for real-time programming. In 
the other extreme, algorithmic software is often applied to 
large-scale problems, where a single run of an algorithm may 
take hours, days, or weeks (even when executed massively 
in parallel). In engineering and operations research, the run 
time of the.algorithmic software is sometimes crucial for the 
time of the whole developmental or decision process. Many 
algorithmic problems cannot be solved exactly, for exam- 
ple, numerical and geometric problems on real numbers and 
NP-hard discrete problems. If such an algorithm is critical 
for a development or decision process; which is usually sub- 
ject to strict deadlines, a loss of efficiency results inevitably 
in a loss of accuracy. Lack of algorithmic efficiency also 
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has an impact on user interfaces: often the response time 
is dominated by complex graphical algorithms, Hence, offi- 
ciency of algorithms is necessary to overcome the “temporal 
usability problem [16].” 

On the other hand, flexible adaptability is necessary to 
customize the implementation of an algorithm to various 
specific applications. It is the author’s subjective impres- 
sion that this problem is not yet well understood and often 
underestimated. The following design goals are au attempt 
to summarize the properties that make implementations of 
algorithms truly reusable. 

Key design goals: 

1. 

2. 

3. 

.4- 

1.1, 

An algorithm should be implemented such that it can 
be ea&y adapted to existing and application-specific 
realizations of the underlying abstract data types with- 
out sacrificing efficiency. 

The interfaces of data structures to algorithms should 
be-designed such that a small set of generic or poly- 
morphic classes makes the implementation of such in- 
terfaces easy, convenient, and straightforward. 

An algorithm should be implemented such that its al- 
gorithmic functionality is flexibly adaptable. 

An algorithm should be implemented such that it is 
possible to inspect all potentially relevant details dur- 
ing its execution. 

Overview 

Each of the following sections is devoted to one of theso 
goals. All goals are explained and discussed in detail, This 
includes a discussion of various existing design methodolo- 
gies that may be relevant for the respective goal. In that, 
the focus is on object-oriented methodologies. Each scc- 
tion is concluded by a discussion of the experiences that we 
gained from practical case studies in C++ Ref. [23] and 
the technical reports [21, 22, 301 describe selected detdls of 
the implementations. 

We focus on a specific area, graph algorithms, because 
a discussion that covers various algorithmic domains and 
is still sufficiently concrete would exceed the limits of this 
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paper. However, analogous arguments apply to other algo- 
rithmic areas as well. 

A few concrete examples presented in the following sec- 
tions are taken from projects in which the author of this pa- 
per has been involved during the last years [13, 20, 29, 311. 
A certain number of further examples are taken from the 
Library of Efficient Data types and Algorithms (LEDA [25, 
27]), which is written in C++. Additional examples are 
taken from the Standard Template Library (SZ’L [28]), which 
greatly influenced the prospective definition of the Cff 
standard library and the design of many other libraries. We 
also refer the reader to the libraries CGAL [6], ffGraph [9], 
Karla [18], and the AA1 base class library [l]. 

We focus on LEDA to some extent, because LEDA mat- 
ches the topic of this paper quite well: it is especially devoted 
to graph algorithms, and maximum efficiency and ease of use 
were the primary design goals (and have essentially been 
achieved). The design of LEDA uses various object-oriented 
and generic features of C++ and might be representative for 
many other packages. LEDA is mature and used by many 
groups both in academics and in the software industry. It is 
applied in various domains, and in some areas it has become 
a de-facto standard. 

1.2 Further Reading 

Several books (e.g. [5, 14, 331) present implementations of 
basic and advanced algorithms in object-oriented and hybrid 
programming languages, most of them in C++. However, 
only a few publications address the specific design prob- 
lems inherent in algorithmic software. Barton and Nack- 
man [3] demonstrate how the object-oriented and generic 
features of C++ may be used to achieve a better structure 
for algorithmic code in scientific and engineering computing. 
Flamig [lo] implements algorithms as classes to let them act 
like input streams (which he calls algotithmic generators). 
Soukop [35] incorporates a few advanced algorithmic exam- 
ples in his general design discussions (notably section 2.6). 

In a concrete case study in Object Pascal (mtimum- 
flow problem [2]), Gal10 and Scutella [ll] apply the strategy 
pattern [12] to keep subalgorithms interchangeable. 

Holland [I51 implements algorithms as frameworks, which 
can be adapted to a specific application by subclassing. Van- 
Hilst and Notkin [37] re-implement this design using C++ 
templates. 

Several articles discuss extensions to existing mainstream 
languages, which are intended to support design and im- 
plementation of efficient, reusable library components. For 
example, Biggerstaff [4] discusses the problem to design ef- 
ficient, reusable libraries such that the number of compo- 
nents remains manageable. He argues that the features of 
Qonventional, mainstream programming languages” are not 
sufficient for that, and he surveys and discusses software de- 
velopment systems which add extra-linguistic expressibility 
to the language. 

Yu and Zhuang [39] concentrate on efficient, reusable al- 
gorithms and propose an extension to C-i-+ (named kinds). 
In Yu and Zhuang’s own words, this extension is intended to 
“realize algorithmic abstraction” and to close the lLabstrac- 
tion gap between algorithms and procedures.” 

Further publications are concerned with implementations 
of graph algorithms in functional languages [8, 19, 241. 

We will discuss selected approaches from the literature 
in greater detail in the relevant sections. Moreover, we will 

discuss the relevance of various design patterns [12] to the 
individual goals. Here we are interested in the general ideas 
of these patterns, not in the concrete realization of the inter- 
play between the collaborators. For example, this realization 
may be based on inheritance as in [12], but also on generic 
features. 

2 Adaptation to Data Structures 

An algorithm should be implemented such that it 
can be easily adapted to existing and application- 
specific realizations of the underlying abstract data 
types without sacrificing efficiency. 

The discussion’will be grouped into two variations of this 
goal: different implementations and variations of one ab- 
stract type and different implementations of the item pa- 
rameters. 

In the following, the term abstract type refers to general 
concepts such as directed or undirected graphs. For instance, 
figures l(a) and l(d)-( e are examples of the abstract type ) 
undirected graph, and figures l(b)-(c) of the abstract type 
directed graph. More specifically, figures l(c)-(e) show ex- 
amples of specializations of these abstract types: symmetric 
directed graph, plane graph (a graph is plane if it can be 
drawn such that no two edges cross each other), and grid 
graph. In turn, grid graphs are a specialization of the spe- 
cialized abstract type plane graph. 

2.1 Different Implementations &md Varia- 
tions of One Abstract Type 

Different implementations 

Typically, an abstract data type such as a directed graph 
may be implemented in many diierent ways. Goal 1 means 
that an implementation of an algorithm should be indepen- 
dent of this concrete impIementation. 

On one hand, it is crucial for time-critical applications 
that an algorithm can be adapted to data structures which 
are tuned for efficiency. This tuning usually varies from ap- 
plication to application, and thus requires a high degree of 
flexibility. On the other hand, an implementation of an algo- 
rithm can be integrated into existing software only if it can 
be adapted to the data structures on which this software 
is built. These data structures might have been developed 
a long time ago and designed to meet absolutely different, 
non-algorithmic, needs. Clearly, in such a case, the algo- 
rithm cannot achieve its best possible run time, because 
the data structures have not been designed for that. How- 
ever, the algorithm’s interface should be flexible enough so 
that-within the bounds of possibility-a reasonable degree 
of efficiency can be achieved. 
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Figure 1: (a) an undirected graph, that is, edges are not oriented; (b) a directed graph constructed from (a) by assigning 
arbitrary orientations; (c) the directed graph constructed from (a) by substituting a pair of mutually opposing directed edges 
for each undirected edge; (d) a plane undirected graph, embedded without crossings; (e) a grid graph. , 

Different abstract types 

Moreover, many graph algorithms apply to a broad range of 
abstract graph types. For example, for many algorithms, it 
does not matter whether the graph is directed or undirected. 
Likewise, the same algorithm may apply to hypergraphs (i.e. 
an edge may connect more than two nodes) and other, sim- 
ilar variations. Goal 1 also means that an implementation 
of such an algorithm should work with every abstract graph 
type to which the algorithm applies “in theory.” 

Alternatives / 
There are two alternatives to goal 1: either each algorithm 
is implemented on its own, specific interface, and the data 
is converted back and forth for each call of an algorithm; or 
a standard is defined on which the implementations of all 
algorithms are based. 

Alternative I (conversions): very often, the first alter- 
native is simply infeasible in algorithmic software design, 
because the amount of data to be converted is too large. 
This problem is aggravated by the fact that algorithms are 
usually not (and should not be) implemented monolithically, 
but composed of other, more basic algorithms, which are, in 
turn, composed of even more basic algorithms, and so on. 
Such a decomposition would result in a large number of ex- 
pensive conversions. Quite often, the run times of the most 
basic algorithms are sublinear in the size of the data struc- 
tures (at least in an empirical sense). In this case, the run 
time is not even proportional to the theoretical efficiency.’ 

Alternative II (standardized abstracta’ons): Many exist- 
ing libraries for graph algorithms (incl. LEDA) adopt the 
second alternative, which is to define a class for graphs and 
to implement all algorithms on top of this interface. How- 
ever, experience suggests that the following undesired con- 
sequence might inevitably occur when a library is actually 
used in real applications in different fields: from release to 
release, the class is equipped with’more and more function- 
ality to fulfill the users’ demands; the implementation thus 
becomes less and less efficient, but without the ideal state 
ever being reached. 

It is essential to note that this missing functionality is 
not only a problem of “exotic” applications, which means 

‘For example, effects like these occurred in a project in which the 
author of this paper was involved a few years ago and which used 
conversions to a common format to integrate various algorithms for 
scheduling problems into one package [20]. 

that all “mainstream” applications would be satisfied by a 
well-chosen subset. In fact, even the requirements imposed 
by mainstream applications differ in many details. 

For example, many algorithms require an access method 
that gets two nodes as arguments and returns the edgo con- 
necting these nodes. In principle, this access can be realized 
efficiently in two ways: either as a matrix whose columns 
and rows are nodes and whose entries are edges, or as an 
associative array with pairs of nodes as keys and edges as 
the associated units of information. However, the overhead 
in space or run time caused by such a solution may not be 
acceptable for an algorithm that does not require this par- 
ticular functionality. 

The potential present and future variations might not 
be predictable. Hence, a common generalization of all vari- 
ations is not possible (even if it were possible, it might not 
be efficient). In summary, all of these variations should be 
realized by different classes with different interfaces. 

Experience 1 
The alternatives to goal 1 do not suffice to achieve 
a high degree of flexibility without sacrificing effi- 
ciency. I 

2.2 Different Implementations of the Item 
Parameters 

A graph may be viewed as a composition of containers, For 
example, a directed graph class that is intended for various 
purposes often consists of a container of nodes, a container 
of edges, and for each node, a container of references to tha 
edges leaving this node. Further containers may be included, 
for instance, for each node, a container of references to all 
edges entering this node. 

The items of,a container may be assigned item parame- 
ters. For example, the nodes of a graph are usually assigned 
parameters such as names, flags, and coordinates, and likc- 
wise, the edges are assigned parameters such as lengths, 
costs, and capacities. Goal 1 states that the concrete or- 
ganization of these item parameters shall be hidden from 
each algorithm. 
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F’rom an abstract viewpoint, the values of all item pa- 
rameters for all items form a table: there is a row for each 
item and a column for each parameter, and the value of a 
parameter for an item is the entry at the table slot specified 
by this row and this column. Many algorithms insert and 
remove items, which means that the set of rows is usually 
dynamic. 

Dynamic column set 

It is essential to note that the set of columns should also be 
dynamic to some extent. For example, many algorithms rely 
on auxiliary parameters, which are meaningless for all other 
parts of the program. A concrete example is the “seen” 
label of nodes inside an algorithm that constructs a path 
from some node s to some node t using a depth-first or 
breadth-first search: s and t are the input, the path is the 
output, and the label is internally used to ensure that no 
subgraph is searched more than once. 

In some cases, it may be preferable to instantiate such 
an auxiliary parameter only temporarily, immediately be- 
fore invoking the algorithm, and to drop the parameter after 
termination of the algorithm. For the sake of argument, sup- 
pose that a program applies algorithms Al,. . . , Ak one after 
another to the same graph and each algorithm Ai requires a 
different set of auxiliary parameters. If the set of node and 
edge parameters is organized statically (i.e. fixed once and 
for all at compile time), we have to maintain the union of 
these parameter sets throughout the program, which causes 
a waste of space and additional run-time overhead. The 
same effect occurs when Al,. . . , Ak are not called after each 
other, but are made exchangeable using the strategy pat- 
tern [12]: here only one of Al, . . . , dk is invoked, and the al- 
gorithm Ai to be invoked is chosen only at run time. Hence, 
if all node and edge parameters are static, all parameters of 
all algorithms must be unnecessarily maintained. 

Non-materialized parameters 

Even more, in some applications, it might not even be rea- 
sonable to store certain node and edge parameters in any 
way. For example, consider the case that the nodes of a 
graph are points in the plane and the length of an edge 
is the normal (i.e. Euclidean) distance of its nodes. The 
number of edges is potentially quadratic. Hence, it may be 
preferable not to store the lengths of the edges explicitly, but 
to compute the length of an edge from the node coordinates 
when needed. 

Data organization 

The abstract view of item parameters as a table suggests 
two ways qf organizing all data: row-wise and column-wise. 

Row-wise organization. in principle, this means that ev- 
ery item is attached a tuple which comprises all item pa- 
rameters. This organization is supported by many graph 
libraries. 

For example, in LEDA [25] and in the AA1 base class 
Iibrary [l], certain node and edge types are generic.2 Hence, 
a static set of node and edge parameters can be realized by 

*To be precise, certain graph classes in LEDA are generic, and the 
generic type parameters are the information types of nodes and edges. 

instantiating the node and the edge type with records which 
comprise all item parameters. 

In contrast, the graph class in the ffGraph library [9] 
provides a means of adding and removing node and edge 
parameters (called labels) at run time. Each parameter gets 
a unique ID. Roughly speaking, each node (resp. edge) main- 
tains an associative array of parameters, and the set of IDS 
in this associative array is the same for all nodes. To al- 
low parameters of diierent types, each parameter must be 
a subclass of a prescribed base class for node (edge) labels. 
This row-wise approach is fully dynamic, however, at the 
cost of efficiency and type safety. 

In addition to the generic features mentioned above, the 
AA1 graph also supports user-defined extensions of the nodd 
and edge types: the node and the edge type are designed to 
serve as base classes, and the graph class only handles point- 
ers and references to nodes and edges. Thus, it is possible to 
create graphs which handle extended node and edge classes. 
In particular, this allows the integration of 8. user-defined 
row-wise implementation of node and .edge parameters. 

Column-wise organization. For each item parameter, an 
associative array is instantiated, which contains the values 
of this parameter for all items. Each item has a unique 
ID, which can be used to access its value in this array. In- 
stantiating a new item parameter at run time amounts to 
instantiating a new array. In contrast to the row-wise case, 
this concept is dynamic and fully type-safe. 

For’ example, the LEDA graph class comes with so-called 
node and ‘edge arrays. A node 6r edge array is an asso- 
ciative array with a static index set, which is the set of 
nodes or edges at the moment when the array is instanti- 
ated. Thus, LEDA allows an arbitrary mixture of a row-wise 
and a column-wise organization. 

However, a normal array or an associative array with 
a static index set becomes invalid once items are inserted 
or removed. Hence, such an array is of limited use. On 
the other hand, an associative array with a dynamic index 
set might increase the run time significantly, even by more 
than a constant factor. Moreover, when items are inserted 
or removed, the corresponding associative arrays should be 
updated automatically, which requires an expensive solution 
based on the observer pattern [123. 

Discussion 

In summary, neither a row-wise nor a column-wise organiza- 
tion (nor any other puristic organization) is sufficient for all 
application.+. Hence, to achieve goal 1, an implementation 
of an algorithm must be able to cope with different ways of 
organizing the item parameters in the underlying containers. 

Very often, a mixed solution may be suitable, in which 
the records attached to items hold the permanent data, and 
for temporary data, additional arrays are instantiated when 
needed. However, whether a certain parameter is perma- 
nent or temporary depends on the context, and hence an 
algorithm cannot assume a specific constellation. Moreover, 
even when such a mixed solution is applied, the question of 
non-materialized data remains open. 

It seems that the problem of organizing the item param- 
eters in a container is often underestimated or even over- 
looked. For example, the design of the STL does not ad- 
dress this problem at all [28]. The items of an STL-style 
container are accessed through iterutors [12]. However, the 
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syntactic requirements for iterator classes in STL contain 
only one method for accessing an item’s data (the C++ de- 
referencing operator, operator*). 

Obviously, the design of the STL only considers con- 
tainers such that each item is the (only) item parameter 
itself. In fact, all algorithms in STL assume this scenario. 
Hence, if there is more than one item parameter, the STL 
algorithms are not easily applicable (see the example below; 
STL-function replace). 

As mentioned above, a typical graph algorithm accesses 
several node and edge parameters, which may be permanent 
or temporary. Hence, the problem of organizing the item 
parameters is addressed by designers of graph libraries. We 
have analyzed some of the solutions in the above discussion 
of row-wise and column-wise schemes. 

The solutions adopted for LEDA are certainly the most 

efficient implementations of row-wise and column-wise data 
organization. This allows one to choose the most efficient 
intermixed solution for a specific application. Hence, to 
achieve goal 1, an implementation of an algorithm must be 
able to cope with both approaches and with mixed solutions. 

However, all graph algorithms in LEDA assume that the 
node and edge parameters are organized column-wise, al- 
though this is often not the method of choice. The fact that 
the organization of node and edge parameters is hard-wired 
in these algorithms shows that data abstraction has still not 
been achieved. However, it is not surprising that a column- 
wise organization is preferred over a row-wise one: C++ 
does not provide any feature for renaming the members of 
a record. Therefore, in each algorithm, the names of all ac- 
cessed parameters had to be hard-wired, when a row-wise 
organization was adopted. This is impractical because of 
potential name conflicts. 

Experience 2 

The concrete organization of the item parameters 
may be completely hidden from the algorithm by 
data accessors without significant loss of efficiency. 

We introduced the concept of data accessors in [23]. 
Roughly speaking, a data accessor is a class that is respon- 
sible for the access to a single item parameter. The type of 
the item parameter is a type tag vtype of the data accessor. 

A data accessor class provides one or more methods 
named get, which gets a handle or iterator type for items 
as an argument and returns the parameter value for the 
item identified by the argument. The method get is over- 
loaded for every relevant handle and iterator type. More 
specifically, if It-l...It-n are the relevant iterator classes, 
the data accessor class must conform3 to the following C++ 

* class definition: 

3For conformance, we make no distinction as to whether the ar- 
guments and the return value of a method are vaiues or constant ref- 
erences. In the following code fragments, we will generally disregard 
this difference. 

class AnyDataAccessor 
I 
public: 

typedef . . . vtype; 
vtype get (It-l) const; 
. . . 
vtype get (It-n) const; 

3; 

Since get is overloaded, an algorithm only needs one data 
accessor for each item parameter, no matter how compli- 
cated the underlying graph data structure is. The concrete 
examples below will demonstrate that get is usually not 
overloaded “by hand,” but by genericity. 

We distinguish between read and read/write accessors. 
A read/write accessor provides an additional method set 
for each relevant handle and iterator type It: 

void set (It, vtype) ; 

This method overwrites the current parameter value by the 
value of the second argument. 

Example 

This is a simplified version of the running example in [23]. 
Consider the STL-function replace [28]. This function runs 
over a linear sequence of items of the template type T and rc- 
places all occurrences of the value old-value by new-value. 
The linear sequence is given by two iterators, first and 
sentinel. Iterator first identifies the beginning of the se- 
quence, and sentinel is a past-the-end marker (e.g, the Null 
value if the sequence is a linked list and the iterator is a mere 
pointer). 

template <class It, class T> 
void replace 

(It first, It sentinel, 
T old-value, T new-value) 

for (It it=first; it!=sentinel; ++it) 
if ( *it==old,value > 

*it = new-value; 
3 

For instance, this function replace is applicable if we havo a 
sequence salaries of STL-type list<int>, which contains 
the salaries of all employees, and we want to replace every 
occurrence of a $1,000 salary by $2,000: 

replace (salaries.first(), 
salaries. last 0 , 
1000, 2000) ; 
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salary 

it 

(*it) .salary 

-it 

(it) 

Figure 2: the scenario in the, STL version of replace. A ref- Figure 3: the modified scenario when data accessors are 
erence to the grey row is returned by the method operator* used. The iterator accesses the grey row, and the data ac- 
of the iterator. The row must exist as a materialized object cessor, the grey column. The individual columns may be 
of a record type. organized arbitrarily (not necessarily materialized). 

However, now assume that we have a struct type Employee, 
which contains an employee’s salary as a member salary, 
and we want, to perform the same update of salaries on a 
list<Employee>. The operator*’ of a list iterator returns 
the whole struct (see figure 2). To apply the above imple- 
mentation of replace, It must be an adapter [12] for iter- 
ators, which overwrites operator* to drop all parameters 
but one. However, this is inconvenient when implementing 
algorithms which access more than one item parameter, be- 
cause usually, what one wants is to access all parameters 
of an item through one iterator. If this is not possible, an 
algorithm must handle one iterator for each item parameter, 
which induces consistency problems. 

A revised’version of replace, which relies on a data ac- 
cessor DA for accessing the salary, is flexible enough. We use 
the type tag vtype to drop the template parameter T. 

template <class It, class Da> 
void replace 

(It first, It sentinel, DA da, 
typename DA::vtype old-value, 
typename DA::vtype neu-value) 

all relevant iterator types are STLcompliant, operator* re 
turns a (reference to a) struct type, and the item parameter 
is a member of this struct type. 

template <class Str, class T> 
class MemberAccessor 

c 
public : 

typedef T vtype; 
MemberAccessor (T Str::*ptr) 

: i-ptr(ptr) C 1 
template <class It> 

vtype get (It it)’ const 
( return (*it> .*i-ptr; 1 

template <class It> 
void set (It it, vtype value) 

C (*it).*i-ptr = value; ) 
private: 

T Str::*i-p&z; 
3; 

c 
Using this class template, we can update all salaries as fol- 

for (It it=first;‘it!=sentinel; wit) 
lows: 

if ( da.get(it)==old-value > 1 
da.set (it, new-value); 

3 MemberAccessorGmployees,int> 
act (&Employees::salary); 

Figures 2 and 3 illustrate the difference. 
The following class template MemberAccessor solves our 

exemplary problem. The type of the member salary ap- 
pears as template argument T, the struct type Employee as 
template argument Str, and the concrete member salary 
as an argument of the constructor (namely as a pointer-to- 
member). Hence, this template covers all scenarios in which 

replace (our-employees .f irst (> , 
our-employees.. last () , 
act, 1000, 2000); 

This concludes the example. 

’ 
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Pure read accessors may be used to encapsulate non- 
materialized parameters. The following class template, Const- 
Accassor, is a simple example: it uniformly returns the 
value received through the constructor. 

template <class T> 
class ConstAccessor 

c 
public : 

typedef T vtype; 
ConstAccessor (T t) - 

: i-t(t) C 1 
template <class It> 

T get (It) const 
C return i-it; 3 

private : 
T i-t; 

3; 

3 Toolboxes for Interfaces 

..e ,’ 

Goal 2 
The interfaces of data structures to algorithms 
should be designed such that a small set of generic 
or polymorphic classes makes the implementation 
of such interfaces easy, convenient, and straightfor- 
ward. 

For a simple exposition, assume that there are n graph 
algorithms and m data structures for graphs, and each algo- 
rithm shall work on each d&a structure. This requires n.m 
customizations of algorithms to data structures. Hence, it 
might be useful to have a toolbox of generic or polymor- 
phic classes from which these adapters may be constructed 
with a relatively modest programming effort. In the ideal 
case, tailoring an algorithm to a data structure would then 
amount to instantiating these polymorphic or generic types 
with the appropriate parameters. 

However, this introduces a tradeoff: on one hand, the 
toolbox should be small and coherent, which significantly 
restricts the freedom in designing interfaces. On the other 
hand, a large degree of freedom is necessary to adapt an al- 
gorithm to various applications without sacrificing efficiency. 

STL viewed as a toolbox 

Goal 2 is one of the main design goals of the STL. The 
most important sort of generic classes in the STL are iter- 
ators: each container class comes with a couple of specific 
iterator classes, and each algorithm accesses the underlying 
containers solely through these iterators. Containers and al- 
gorithms can be easily combined, because the iterator classes 
are template parameters of the algorithms, the interfaces of 
all iterator classes conform to a set of requirements, and the 
algorithms access iterators only according to these require- 
ments. 

Of course, not every combination of an algorithm and 
a container makes sense. For example, it does not make 
sense to sort a singly-linked list by the usual random-access 
variant of quicksort. Therefore, containers are classified into 
five groups according to their potential functionality: input 
stream, output stream, singly-linked (forward) sequence, doubly- 
linked (bidirectional) sequence, and random-access container. 
For each of these groups, there is a specific set of require- 
ments, and these sets form a hierarchy as shown in figure 4. 

Experience 3 
At least in C+f, it is possible to implement tool- 
boxes which realize goal 2 and do not sacrifice ef- 
ficiency. As a prerequisite, the interface of a com- 
plex data structure to algorithms is not realized by 
a single, large class, but by a couple of light-we&$&t 
classes. 

We have implemented an experimental toolbox for graph 
algorithms. This toolbox is written in C++. [23] and tho 
technical reports [21,22] address the basic ideas and crucial 
details of the implementation. A restricted version, which 
is less flexible but specifically adapted to the LEDA data 
types,, is described in [30]. This version will be integrated 
into LEDA. 

Our toolbox consists solely of small, light-weight types 
Each of these types is responsible for a specific aspect of tha 
data structure. The most important types in our toolbox 
are iterators and data accessors. 

Handle/iterator hierarchy 

Iterators are provided for all relevant ways of iterating over 
a graph: over the whole set of nodes, the whole set of edges, 
and the set of edges incident to a single node, The essential 
details ape summarized in [21]. In principle, we follow tha 
guidelines for iterators in STL [28], However, for reasons 
discussed in [21], our iterators deviate from the STL con- 
ventions in several technical details, which are beyond tho 
scope of this paper. 

As a result of our practical case studies, the toolbox of- 
fers each of these iterator types in a normal and a reduced 
version4 and in addition node and edge handle types (fig- 
ure 5). The main difference between normal and reduced it- 
erators is that a normal iterator must provide certain moth- 
ads which require that the iterator object has some “global 
knowledge” about the underlying graph. In contrast, an 
object of a reduced iterator type is only assumed to have 
knowledge about its specific type of iteration. Finally, a 
node or edge handle type refers to a single, fixed node or 
edge and is not assumed to “know” anything about the un- 
derlying graph or about any way of iteration. 

Often, the reduced version of an iterator class is smaller 
than the normal version, and the corresponding handler 
class is even smaller. Hence, if an algorithm manages larga 
containers of iterators, using the reduced version or even 

4Called the heavy and the light version in [21]. 
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JI 
Bidirectional iterator 

Figure 4: The STL hierarchy of iterator requirements. An 
arrow indicates that the requirements on the tail side are a 
supehet of the requirements on the liead side. 

the handle class may save space and decrease the run-time 
overhead induced by copy operations.5 

On the other hand, the reduced version often gets the 
global knowledge required for the normal version “for free” 
from the underlying graph data structure. For example, 
each node and, edge in the graph data structure in LEDA and 
AA1 holds a pointer to the graph to which it belongs. Hence, 
a mere pointer to the node or edge type suffices as a normal 
iterator, and the normal and the reduced versions collapse 
into one class. Nonetheless, an algorithm may distinguish 
between the normal and the reduced version of an iterator 
class. If the algorithm is generic with these two classes being 
type parameters, both type parameters are then instantiated 
with the same type. 

Proxies 

Moreover, the toolbox provides several generic proxies [12] 
for iterators, data accessors, and other types. 

Example. the following class template, named Filter, is a 
simple, small proxy for iterators.6 It constructs a filter iteru- 
tor from an object it of iterator type It and from an object 
pred of predicate type Pred. This iterator skips all items 
which do not fulfill the predicate. As in STL, the predicate 
is evaluated in function notation (operator()). For nota- 
tional convenience, we do not follow the STL guidelines for 
iterators: the sentinel is dropped, and instead the Boolean 
method valid returns false if’and only if the end of the 
sequence has been passed. Moreover, advance performs one 
forward step, and get-data returns the data associated with 
the current item. 

5To our surprise, it has turned out that simple copy,operations 
may cause a significant overhead. AppIying reference semantics to 
reduce this effect is often problema’tic in a language such as C++, 
becnuse there is no built-in garbage collector, and techniques such as 
reference counting may cancel out the savings. 

ORecently, we have successfully applied generic iterator proxies like 
this to the internal design of a database query engine (13). 

Figure 5: The hierarchy of requirements for iterators on 
graphs in our toolbox. A dashed line indicates that the 
relation between the requirements on the head and the tail 
side are only syntactical in nature, but the semantics may 
be diierent (to be concrete: iterating over all edges of the 
graph vs. over all edges leaving a-single node). 

template <class It, class Pred> 
class Filter 

( 
* public: 

typedef ;,ename 1t::vtype vtype; 
Filter (It it, Pred pred) 

I< - i-it(it1, i-pred(pred1 
i advance-if-falseo; 1 

boo1 valid 0 const 
{ return i-it.validO; 1 

vtype& get-data 0 
{ return i-it.get-datao; 3 

void advance 0 

( 
i-it. advance 0 ; 

-,, advapce-if-falseo; 

3 
private: 

It i-it; 
Pred i-pred; * 
void advance-if-false 0 

< 
while (i-it.validO %% 

!i-pred(i-it) > 
&it. advance 0 ; 

% 3 
3; 

Programming languages 

We apply many advanced features of C++ to achieve this 
degree of flexibility and convenience. For example, we use 
many features of the template mechanism’ in C++, which 
is much more flexible than the generic mechanisms in many 
other languages. Moreover, pointer-to-members [36] are used 
in our toolbox; see the example MemberAccessor in sec- 
tion 2.2. 

Of course, the design of our toolbox.can be realized in 
other programming languages, because a flexible generic 
mechanism and pointer-to-members may be simulated by 
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inheritance. In fact,. an effort is currently being undertaken 
by another team in our group to implement a variant of our 
toolbox in Java and to apply it to the visualization of social 
networks [38]. As a nice by-product, our concept allows the 
adaptation of graph algorithms to a graphic-oriented data 
structure, which supports editing and layout facilities. This 
removes the need formaintaining redundant information in 
two data structures: one for graphics and one for~graph al- 
gorithms. 

However, it seems that the features offered by the cur- 
rent definition of. Java inevitably result in weaker static 
type checks and less convenience. For example, we did not 
find a surrogate for the class template MemberAccessor (sec- 
tion 2.2) which is equally general and type-safe (not to men- 
tion efficient)., j’ : b 

4 Algorithmic Functionality 

Goal. 3 

An algorithm should be implemented such that its 
algorithmic functionality is flexibly adaptable. 

/ 

Goal 3 addresses many ‘aspects of the design of algo- 
rithms. First we will briefly illustratetwo aspects: ezchange- 
able subalgorithms and variations of the output. Afterwards, 
we will start a more detailed discussion of yet another as- 
pect: heuristic speed-up techniques. 

Exchangeable subalgorithms 

To give a concrete example, many graph algorithms rely on 
a subalgorithm which determines a path from some specified 
node s to some other node t. This subalgorithm might start 
one of various kinds of graph searches at s, for instance, 
a depth-first search or breadth-first search, or a shortest- 
path algorithm, which determines the cheapest path with 
respect to an arbitrary definition of edge costs. Goal 3 states 
that the concrete strategy for determining this path should 
be left open in the implementation of the main algorithm. 
This is necessary to achieve both overall goals-efficiency 
and reusability-simultaneously, because none of these path 
algorithms is efficient in all possible applications. Further- 
more, some applications even rely on specific properties of 
the path, which are only guaranteed by specific subalgo- 
rithms. 

The strategy pattern [12, 111 seems to be appropriate to 
meet this goal. However, the situation is even more complex, 
and it does not suffice to base the,design solely on the strat- 
egy pattern. The problem is that the usual algorithms for 
depth-first-search, breadth-first search, and shortest paths 
determine spanning trees, not paths. For reasons of effi- 
ciency, it does not suffice to run one of these algorithms u’p 
to its regular termination and to extract the path afterwards 
from the tree. Rather, the algorithm should terminate once 
the path from s to t is determined. Therefore, these algo- 
rithms must be adapted to the problem of finding a single 
path. 

Variations of the output 

A depth-first search or breadth-first search algorithm may 
either return a mere labeling of all visited nodes or addi- 
tional information such as the traversal order. Moreover, 
it may also return the tree induced by the search, which 
comprises all visited nodes and all traversed edges. This 
tree may be encoded as a O/l-labeling of the edges, as an 
(acyclic) object of the graph class, as an object of a specific 
tree class, or whatsoever. 

Many libraries (incl. LEDA) provide implementations of 
depth-first search and similar algorithms which only return 
node labelings or the traversal order of all nodes. Construct- 
ing a depth-first tree from this information amounts to per- 
forming another complete depth-first search. This simple 
example demonstrates that the concrete variation of the out- 
put cannot always be delegated to postprocessing routines, 
Consequently, this flexibility should be’inherent in the im- 
plementation of the algorithm itself. 

Speed-up techniques 

As mentioned above, we discuss this aspect in greater detail. 
We illustrate this task by means of an example: we are givon 
a traffic network, that is, the nodes are cities and towns, 
and the edges are traffic connections. The system receives 
a potentially infinite number of pairs (s, t) of nodes as run- 
time events. For each pair, it has to compute a shortest path 
from s to t in the network (see figure 6). This is a special 
case within the wide range of algorithmic problems that are 
best solved by Dijkstra’s famous algorithm ([7], sect. 25) 
Our concrete scenario offers a wealth of algorithmic spced- 
up techniques. If t is often in the vicinity of s, the speed-up 
factor gained from these techniques may be in the order of 
1,000 to 10,000. Unless stated otherwise, i is the node from 
which the search starts. 

Early termination. The first, most basic speed-up tech- 
nique is to let the algorithm terminate immediately when 
the shortest path from s to t is found. Actually, Dijkstra’s 
algorithm computes shortest paths from s to all other nodes. 
Unfortunately, the typical implementations of Dijkstra’s al- 
gorithm in libraries [25] and in the literature [lo] do not even 
allow this simple speed-up technique. 

Version stamps. In combination with the technique early 
termination, the following trick can be applied to achiavo 
expected sublinear run time for a single shortest-path com- 
putation: the node distances are not initialized with a value 
representing +oo in every shortest path computation, In- 
stead, a version stamp is maintained for every node, which 
is the number of the last shortest path computation in which 
the distance of this node was updated. If the version stamp 
of a node is not up to date,’ this node is regarded as hav- 
ing infinite distance (clearly, to avoid an ‘integer overflow, 
all version stamps must be reset to the initial value after 
a-huge-number of steps). 

Goal-directed search. The length e(v,ur) of an edge (v, us) 
E E-is replaced by the reduced length e’(v, 2~) := L(v, w) - 
A(v, t) + A(w, t), where A(z, y) is a lower bound on tho 
shortest path from z to y: for example, the normal distance 
of 2 and y ([26], sect. 3.8.5.1). There is empirical evidcnco 
that this modification may direct the search towards t. 
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Figure 6: a shortest path from s = Hannower to t = Leipzig 
in the German rail nehvork. Whenever s and t are relatively 
close, restricting the search horizon to a small ellipsis reduces 
the run time dramatically.7 

Bidirectional search. The shortest (s, t)-path is com- 
puted from two nodes, s and t, simultaneously, from s in a 
forward direction and from t in a backward direction ([26], 
sect. 3.8.5.2). That is, two slightly different executions of 
Dijkstra’s algorithm are “merged” into one loop, in each 
step one of these two algorithms is chosen to scan one sin- 
gle node, and this choice is made by an on-line heuristic. 
The algorithm terminates once a node u has been reached 
by both searches (the concatenation of the shortest paths 
from s and from t to u is the solution). 

Restricted search horizon. Often it may be safely as- 
sumed (though not provable) that the real shortest path 
does not deviate too much from the straight Iine segment 
connecting s with t. In this case, the search may be re- 
stricted to, say, an ellipsis around s and t (see figure 6). This 
ellipsis may even be changed dynamically during the algo- 
rithm, depending on intermediate results. In other words, 
two algorithms-the shortest path routine and a routine 
that extends the search horizon on-line-are “merged” into 
one loop and affect each other.8 

‘This figure stems from a joint project with the Deutsche Bahn 
AG [34); permission to visualize the railway data is granted by the 
TLC/Deutsche Bahn AG. 

sFor example, heuristical strategies of this kind have been impIe- 
mented in the on-line information system of the Deutsche Bnhn AG, 
the central German train and railway company. 

Variations of the A* algorithm. This sort of algorithm 
for shortest (s, t)-paths in the plane also fits into this general 
scheme [17]. In general, the effective length of an edge is 
a combination of its nominal length and an additional cost 
function, which penalizes large angles between this edge and 
the direction towards t. The effective cost of an edge must 
not be initialized in advance, but computed when needed, 
because otherwise, the initialization destroys the advantage 
of the A’ heuristic: that the amortized run time is highly 
sublinear in the size of the graph. 

Concept 

Our concept to achieve goal 3 consists of two principles: loop 
kernels and full logical inspectability. 

Loop kernels. We introduced this principle in [22]. The 
crucial observation is that probably every non-trivial algo- 
rithm essentially consists of one or more loops (or nested 
loops), plus some pre- and postprocessing operations for 
each loop. We call these loops the core Ioops of the algo- 
rithm. For example, Dijkstra’s algorithm for shortest paths, 
which we discussed above, has one core loop. In each itera- 
tion of this loop, the current distance estimation of exactly 
one node is decreased, provided that the currently available 
information allows that. 

More systematically, implementing an algorithm as a 
loop kernel means the following: 

1. The core loops of an algorithm are the basic units of 
reuse, not the algorithm as a whole. 

2. A core loop is implemented as a class (the loop-kernel 
class), not as a subroutine. 

3. Subalgorithms are polymorphic members of the class 
(design pattern strategy [12]). 

4. The loop-kernel class provides a method which exe- 
cutes exactly one iteration of the core 10op.~ 

5. Pm- and postprocessing operations are regarded as 
customizations of the core loop and left to the user 
of the class. 

6. In particular, the algorithm does not initialize the data 
on which it works; it expects that this data has been 
initialized before the first iteration (not necessarily be- 
fore instantiating the loop-kernel object). 

7. Only the basic functionality of the algorithm, which is 
common to all applications, is provided by the loop- 
kernel class. Extensions are regarded as customiza- 
tions of the core loop and left to the user of the class. 

The fourth and fifth items enable the user to extend the 
basic functionality: the core loop is implemented by the 
user “around the loop kernel,” and the user can freely insert 
additional stuff in the loop: 

‘For some algorithms, it may even be reasonable to divide ta single 
iteration into several steps. In other words, a couple of methods 
is provided such that one iteration is performed when all of these 
methods are called once in a specific order. 
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Algorithm A (. . .> ; // Loop-kernel object 
do-some-stuff-1 () ; 
while ( ! break-condition,fulfilled(A) > 

c 
do,some-stuf f -2 0 ; 
A.next 0; // one iteration 
do-some-stuff -3 0; 

3 
do-some-stuff-P 0 ; 

’ 

We are aware of the problem that algorithms which are im- 
plemented as classes and leave all pre- and postprocessing to 
the client are much harder to understand and to apply than 
algorithms which are implemented as subroutines. Hence, it 
might be useful to additionally implement a couple of sub- 
routines, which are mere partial or complete customizations 
of the algorithm class to typical scenarios (incl. pre- and 
postprocessing). Clearly, these subroutines are much more 
convenient to use than the loop kernel itself. 

Typically, the implementation of such a customizing sub- 
routine is very short. Thus, if the sources of these subrou- 
tines are freely distributed as a part of the documentation, 
they may also serve as tutorials for using the full power of 
the underlying loop kernel. Moreover, it might be reason- 
able to implement various speed-up techniques iu advance 
and to describe their potential applications and their usage 
in the documentation. All of these tasks form an integral 
part of [30]. 

Full logical inspectability. We call a class fully logically 

inspectable, if it provides methods to read all details of the 
current logical state of an object. In that, the logical state of 
an object of some class at some stage is defined as the bunch 
of information about its state which is necessary to predict 
the results of all possible sequences of calls to methods to 
this object after this stage. 

For example, many libraries provide stack classes which 
offer access to the topmost element only (by methods push, 
pop, and top). However, the logical state of a stack object 
is not fully determined by the topmost element. Rather, it 
is described by the ordered sequence of items in the stack 
object. The principle of full logical inspectability requires 
methods which allow one to iterate over this sequence and 
to read the values of all items in this order. 

Note that full logical inspectability does not contradict 
the encapsulation of implementation details, because no de- 
tails of the implementation are exhibited and the access is 
read-only.” However, a stack class that is fully logically 
inspectable contradicts the abstract idea of a stack being 
a sequence that is only accessible at its front. In the dis- 
cussion below, we will argue that for algorithm classes, the 
advantages of inspectability outweigh the resulting violation 
of abstraction. 

Experience 4 

If an algorithm is implemented as a fully logically 
inspectable loop kernel class, its algorithmic func- 
tionality is flexibly and efficiently adaptable. 

“In some cases, it might even be reasonable to offer a disciplined’ 
write access to selected details., 

Example 

We continue with our example of speed-up techniques: Dijks- 
tra’s algorithm for shortest paths. Although it is only a sim- 
plified version, the following class template, Di jkstra, may 
illustrate our two design principles. The template parame- 
ters Length and Distance are data accessors and responsible 
for edge lengths and node distances, respectively. Template 
parameter AdjIt is the adjacency iterator type according to 
the hierarchy in section 3 (figure 5). According to the terms 
of section 3, this may be a reduced iterator, because tho 
core loop of the algorithm works purely locally and does not 
require any “global knowledge” about the graph. The algo- 
rithm needs a container PriorQ, which serves as a priority 
queue. To simplify notation, we assume that this class is not 
a template parameter of Dijkstra, and that it is compliant 
to the list class in STL [28]. 

Method next is the heart of the algorithm. This method 
performs one step of the iteration. For lack of space, we leave 
out its implementation. Method current-node returns the 
node currently processed, and begin and end allow read ac- 
cess to the current frontier line of the search, which is exactly 
the contents of the priority queue. These three methods im- 
plement full logical inspectability. 

template <class Length, class Distance, 
class AdjIt> 

class Dijkstra 
I 
public : 

Dijkstra (Length len, Distance dist) 
: i-len(len) , i-dist(dist) { ) 

void make-root (AdjIt it) 
{ i-pq.push,back(it) ; ) 

void next (1; 
boo1 finished () const 

C return i,pq. empty0 ; ) 
AdjIt current-node () const 

C return i,pq.front(); 1 
Priorq: : const,iterator begin 0 

{ return i,pq.begin(); ) 
PriorQ::const-iterator end (> 

C return i,pq.end(); ) 
private : 

Prior4 Lpq; 
Length i-len; 
Distance i-dist; 
// . . . 

3; 

The “classical” variant of Dijkstra’s algorithm, in which WC 
want to compute shortest paths from root s to every other 
node, can be realized as follows: 

AdjIt s; 
/* init. s */ 
/* init. length accessor ‘len’ */ 
/* init. distance accessor 'dist' */ 
Dijkstra<Length,Distance,AdjIt> 

dijk (len, dist); 
dijk.make-root (s); 
while (!dijk.finished()) 

dijk.next(); 
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In the following variant, we assume that the function 
wait-for-request waits until a user wants to know the 
shortest connection from node s to t, which are specified 
in the call to wait-for-request. The speed-up technique 
“early &r&ration” in our traffic network example can sim- 
ply be realized as follows: 

while (true) 
x 

AdjIt s, t; 
wait-for-request (s, t); 
/* init. length accessor ‘len, */ 
/* init. distance accessor ‘dist, */ 
Dijkstra<Length,Distance,AdjIt> 

dijk (len, dist); 
dijk.make,root (s) ; 
while (dijk.current-node0 != t) 

dijk.next(); 
3 

Recall the speed-up technique “vers.sion stamps” defined 
above. To realize this variant, we write a data accessor 
class VersionAccessor, whose get methods return +co if 
the version stamp of the node does not equal the global 
version number. The access to the node distance and to 
the version number are delegated to further data accessor 
classes: DA and VA. Hence, it is an example of proxies for 
data accessors. Since DA and VA are template arguments, 
VersionAccessor is broadly applicable. To simplify nota- 
tion, we assume that all version numbers are of type int, 
and that INT,MAX represents +co. 

template <class DA, class VA> 
class VersionAccessor 

c 
public : 

typedef typename DA::vtype vtype; 
VersionAccessor 

(DA da, VA va, int global) 
* i-da(da) , i-va (va) , 
* i-global(globa1) < > 

template <class It> 
vtype get (It it) const 

c 
return i-va.get(it)==i-glob61 

? i-da.get(it) : INTJlAX; 
3 

template <class It> 
vtype set (It it, vtype const&,value) 

c 
i-va. set (it, i-global) ; 
i-da. set (it, value) ; 

3 
private : 

DA i-da; 
VA i,va; 
int i-global; 

3 

Here is the code to incorporate the speed-up technique “uer- 
sion stamps?’ 

int global-version = 0; 
/* init. all node stamps to 0 */ 
while (true) 

c 
AdjIt s, t; 
wait-f or-request Cs, t1; 
global-version++; 
/* init. length accessor ‘len, */ 
/* init. distance accessor ‘dist, */ 
/*-init. data accessor ‘stamp’ for node 

version stamps */ 
typedef 

Versionkcessor-V*...*/,/*...*/> VA; 
VA stamped,dist 

(dist, stamp, global-version); 
Dijkstra<Length,VA,AdjIt> 

dijk (len, stamped,dist) ; 
dijk.make-root (s) ; 
while (dijk.current-node0 != t> 

dijk.next.0 ; 
3 

This adaptation is only possible because Dijkstra is a loop 
kernel. Full logical inspectability is not required for this 
speed-up technique. However, it is required for the speecl- 
up technique bidirectional search. We only give a high-level 
description of the adaptation: 

Reserve or establish two distance labels for each node 
and inititialize them. 

Inititialize shortest-path loop kernel A with the first 
distance label and make s the (unique) root of A. 

Inititialize shortest-path loop kernel B with the second 
distance label and make t the (unique) root of B. 

WHILE no node is seen by both A and B: 

(a) let C be either A or B, depending on a heuristic 
on-line choice; 

(b) apply C.next(). 

The full logical inspectability is necessary in step 4(a): a 
sophisticated on-line choice must access the logical states of 
both loop kernels. 

The speed-up techniques ‘&d-directed search” and “wan’- 
ations of the A’ algorithm” can be easily realized through 
specific data accessor classes (cf. section 2.2 and 3). Finally, 
the restriction of the search horizon to an ellipsis can be 
realized by a filter iterator as defined in section 3. This it- 
erator must be instantiated with a predicate that returns 
true for a node if and only if this node is inside the search 
horizon. To increase the search horizon on-line, the heuristic 
which computes the new search horizon must be invoked in 
every iteration of the core loop. Because of the loop kernel 
concept, this loop is “inside-out,” and hence this is easily 
clone. Because of full logical inspectability, this heuristic is 
well informed. 

Comparison to algorithmic generators 

Loop kernels are a generalization of the algotithmic genera- 
tors introduced by Flamig [lo], which are similar to graph 
search iterators [l] and to built-in concepts for streams and 
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iterations in various object-oriented programming languages 
(notably the iterutor concept in Sather [32]). Like a loop 
kernel, an algorithmic generator encapsulates an algorithm 
in a class and offers a method to perform exactly one iter- 
ation of the core loop. The main differences between loop 
kernels and algorithmic generators are the following: 

:_z_ 
l Algorithmic generators are only intended to implement 

algorithms which consist of one core loop, and in each 
iteration of the core loop, a single piece of the algo- 
rithm’s output is constructed. For example, a gener- 
ator for a sequence of prime numbers falls into this 
category. However, Dijkstra’s algorithm does not, and 
many other algorithms do not either. Consequently, 
Dijkstra’s and many other algorithms are not formu- 
lated as algorithmic generators in [lo], but in a con- 
ventional style as subroutines. 

l An algorithmic generator do&, all pre-, and postpro- 
cessing itself, namely in its constructors and destruc- 
tor, whereas a loop kernel delegates this to the client. 
Hence, a speed-up technique such as “version stamps” 
cannot be incorporated afterwards in an existing al- 
gorithmic generator,‘unless this technique was antipi- 
cated by the designer of the algorithmic generator. 

l After an iteration of the core loop, an algorithmic gen- 
erator provides a means of accessing the piece of the 
output generated in this iteration. This is far from 
full logical inspectability. : Consequently, a speed-up 
technique such as “bidirectional search” cannot be in- 
corporated either. 

Comparison to algorithm frameworks 

Goal 3 can alternatively be approached through aframework- 
like design (see Holland [15] for a concrete example). In such 
an algorithm framework, the algorithm is designed as a base 
class, and this base class provides a method which executes 
the algorithm as a whole.’ The crucial design task is to iden- 
tify the “skeleton” of the algorithm, which is common to all 
applications, and to determine all points in the algorithm 
where a possibility to change or extend the behavior is nec- 
essary to achieve flexible adaptability. Each of these points 
is realized as a method of the base class. Derived classes 
may overwrite these methods to customize the algorithm to 
concrete applications. 
, As demonstrated above, variations of the break condi- 

tion, extensions of the algorithmic functionality, and inter- 
mixed algorithms (e.g. bidirectional search) are straightfor-. 
ward if the loop-kernel concept is applied. In contrast, in an 
algorithm framework, any of these modifications requires im- 
plementing a derived class. Moreover, these derived classes: 
might often be tricky to implement. For instance, inter-, 
mixed algorithms can indeed be realized in an algorithmic 
framework, but the task is not at all trivial, and the de- 
sign of the whole algorithmic package might suffer. To give 
another example: suspending .an algorithm temporarily to 
perform other, unrelated tasks is trivial in the loop-kernel 
concept, but might cause severe design problems in an algo- 
rithm framework. 

ib 

5 Inspectability, 

Goal 4 

An algorithm should be implemented such that it 
is possible to inspect all potentially relevant details 
during its execution. 

Experience 5 
Goal 4 may also be achieved through fully logically 
inspectable loop kernels. 

J 

Goal 4 addresses various tasks. We discuss two different 
tasks to illustrate experience 5. 

6 ,Animation: To give a concrete example, a possible 
visualization of Dijkstra’s algorithm in slow motion 
would be to distinguish unseen nodes, nodes in the 
current frontier line of the search, and finished nodes 
from each other by color. It is not hard to write itera- 
tor adapters which deliver all necessary information to 
the graphical display (using the observer pattern [12]). 

Sometimes it might be necessary to refresh the whole 
display. This requires information about the current 
logical state of the algorithm. Because of the principle 
of full logical inspectability, no redundant bookkeoping 
outside the algorithm is necessary. 

l Snapshots: Another point, which might not bo in- 
teresting for Dijkstra’s algorithm, but may bo impor- 
tant for algorithms which take significant moro timo 
per run: if the loop kernel concept is applied, tho al- 
gorithm may be “snapshot” at frequent occasions to 
recover after a crash. 

6 Conclusion 

We have implemented several algorithms based on the tool- 
box in section 3 and’ on the loop kernel concept and tho 
principle of full logical inspectability.” 

In particular, we compared the shortest-path algorithm 
in LEDA with our adaptable implementation. To achiovo 
a realistic comparison, we customized our implementation 
exactly to the same algorithmic problem and the same data 
structures. 

I I 

The overhead of the techniques discussed in this 
1 tions. Experience 6 , 1 

paper compared to traditional implementations of 
algorithms might be acceptable for most applica- 

“Using the GNU C++ compiler, version 2.7.2, on Sparc Stntions, 
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Figures 7-9 show the results of computational studies in 
which we compared the performance of LEDA’s implementa- 
tion of Dijkstra’s algorithm (labeled “Direct”) with the per- 
formance of our implementation (“Adaptable”). Figures 7 
and 9 show the results of two studies in which the “classical” 
variant of Dijkstra’s algorithm was applied to determine the 
shortest paths from a designated root s to all other nodes. 
On the other hand, to obtain figure 8, we computed the 
shortest paths for all pairs of nodes: the classical variant is 
called once for every node as the root node. Figure 8 shows 
the accumulated times. 

This computational study is based on random graphs. 
In figures 7 and 8, each graph was constructed such that it 
is highly connected and highly cyclic. Figure 9 is based on 
random triangulated graphs: a triangulated graph is a plane 
graph (cf. figure 1) such that each internal area is a triangle. 
In addition, we studied all-pairs shortest-path computations 
on several national and international train networks such as 
the ‘one shown in figure 6: 

Train network Overhead factor 
Austria 1.48 
Europe -1.53 - 
France 1.68 
Germany 1.60 
Germany (local trains only) 1.62 
Switzerland 1.57 

This overhead is certainly acceptable for the overwhelming 
majority of all applications. “In theory,” the overhead may 
be even smaller in all situations in which the run-time flex- 
ibility of dynamic binding is not required, because all func- 
tion calls could be inlined and optimized as if they were 
hand-coded. Hence, there is hope that progress in compiler 
technology will reduce the overhead even further-r2 / 
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Figure 7: single-source shortest paths on random graphs 
with 1000 nodes (2: number of edges, y: run time in sec- 
onds). 

Figure 8: all-pairs shortest paths on random graphs with 
100 nodes (2: riumber of edges, y: run time in seconds), 

Figure 9: single-source shortest paths on random triangu- 
lated planar graphs (2: number of nodes, y: run time in 
seconds). 


