
.

Reuse of Algorithms:

Still a Challenge to Object-Oriented Programming

Karsten Weihe
,_ Univer&it Konstanz, Fak. Mathematik und Informatik

‘Fach D188, D-78457 Kopstanz; Germani’
karsten.weihe@uni-konstanzde

Abstract)

This paper is about reusable, efficient implementations of
complex algorithms and their integration into software pack-
ages. It seems that this problem is not yetwell understood,
and that it is not at all clear how object-oriented and other
approaches may contribute to a solution. We analyze the
problem and try to reduce it to a few key design goals?
Moreover, we discuss various existing approaches in light
of these goals, and we briefly report experiences with exper-
imental case studies, in which these goals were rigorously
addressed. - .,

1 Introduction ~,

Many sophisticated algorithms for solving various problems
have been proposed in the literature. These include, for
example, algorithms for numerical computations, for graph
and network problems; for computer graphics, and for sym-
bolic computations.

Implementing such an algorithm is time consuming and
prone to error and requires expert knowledge in algorith-
mics. Since algorithmic problems appear quite frequently,
libraries of ‘algorithms for solving various problems might
be useful. However, to be widely usable, the components of
such a library must meet two requirements: efficiency and
flexible adaptability.

Efficiency must in no way be disregarded, because algo-
rithmic software is often time-critical. For example, efficient
algorithms are indispensable for real-time programming. In
the other extreme, algorithmic software is often applied to
large-scale problems, where a single run of an algorithm may
take hours, days, or weeks (even when executed massively
in parallel). In engineering and operations research, the run
time of the.algorithmic software is sometimes crucial for the
time of the whole developmental or decision process. Many
algorithmic problems cannot be solved exactly, for exam-
ple, numerical and geometric problems on real numbers and
NP-hard discrete problems. If such an algorithm is critical
for a development or decision process; which is usually sub-
ject to strict deadlines, a loss of efficiency results inevitably
in a loss of accuracy. Lack of algorithmic efficiency also

Permission to make digital/hard copy of part or all this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage, the copyright notice, the title of the publication and its date
appear, and notice is given that copying is by permission of ACM,
Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee.
OOPSLA ‘97 10197 GA, USA
0 1997ACM 0-89791-9084/97/0010...$3.50

has an impact on user interfaces: often the response time
is dominated by complex graphical algorithms, Hence, offi-
ciency of algorithms is necessary to overcome the “temporal
usability problem [16].”

On the other hand, flexible adaptability is necessary to
customize the implementation of an algorithm to various
specific applications. It is the author’s subjective impres-
sion that this problem is not yet well understood and often
underestimated. The following design goals are au attempt
to summarize the properties that make implementations of
algorithms truly reusable.

Key design goals:

1.

2.

3.

.4-

1.1,

An algorithm should be implemented such that it can
be ea&y adapted to existing and application-specific
realizations of the underlying abstract data types with-
out sacrificing efficiency.

The interfaces of data structures to algorithms should
be-designed such that a small set of generic or poly-
morphic classes makes the implementation of such in-
terfaces easy, convenient, and straightforward.

An algorithm should be implemented such that its al-
gorithmic functionality is flexibly adaptable.

An algorithm should be implemented such that it is
possible to inspect all potentially relevant details dur-
ing its execution.

Overview

Each of the following sections is devoted to one of theso
goals. All goals are explained and discussed in detail, This
includes a discussion of various existing design methodolo-
gies that may be relevant for the respective goal. In that,
the focus is on object-oriented methodologies. Each scc-
tion is concluded by a discussion of the experiences that we
gained from practical case studies in C++ Ref. [23] and
the technical reports [21, 22, 301 describe selected detdls of
the implementations.

We focus on a specific area, graph algorithms, because
a discussion that covers various algorithmic domains and
is still sufficiently concrete would exceed the limits of this

34

paper. However, analogous arguments apply to other algo-
rithmic areas as well.

A few concrete examples presented in the following sec-
tions are taken from projects in which the author of this pa-
per has been involved during the last years [13, 20, 29, 311.
A certain number of further examples are taken from the
Library of Efficient Data types and Algorithms (LEDA [25,
27]), which is written in C++. Additional examples are
taken from the Standard Template Library (SZ’L [28]), which
greatly influenced the prospective definition of the Cff
standard library and the design of many other libraries. We
also refer the reader to the libraries CGAL [6], ffGraph [9],
Karla [18], and the AA1 base class library [l].

We focus on LEDA to some extent, because LEDA mat-
ches the topic of this paper quite well: it is especially devoted
to graph algorithms, and maximum efficiency and ease of use
were the primary design goals (and have essentially been
achieved). The design of LEDA uses various object-oriented
and generic features of C++ and might be representative for
many other packages. LEDA is mature and used by many
groups both in academics and in the software industry. It is
applied in various domains, and in some areas it has become
a de-facto standard.

1.2 Further Reading

Several books (e.g. [5, 14, 331) present implementations of
basic and advanced algorithms in object-oriented and hybrid
programming languages, most of them in C++. However,
only a few publications address the specific design prob-
lems inherent in algorithmic software. Barton and Nack-
man [3] demonstrate how the object-oriented and generic
features of C++ may be used to achieve a better structure
for algorithmic code in scientific and engineering computing.
Flamig [lo] implements algorithms as classes to let them act
like input streams (which he calls algotithmic generators).
Soukop [35] incorporates a few advanced algorithmic exam-
ples in his general design discussions (notably section 2.6).

In a concrete case study in Object Pascal (mtimum-
flow problem [2]), Gal10 and Scutella [ll] apply the strategy
pattern [12] to keep subalgorithms interchangeable.

Holland [I51 implements algorithms as frameworks, which
can be adapted to a specific application by subclassing. Van-
Hilst and Notkin [37] re-implement this design using C++
templates.

Several articles discuss extensions to existing mainstream
languages, which are intended to support design and im-
plementation of efficient, reusable library components. For
example, Biggerstaff [4] discusses the problem to design ef-
ficient, reusable libraries such that the number of compo-
nents remains manageable. He argues that the features of
Qonventional, mainstream programming languages” are not
sufficient for that, and he surveys and discusses software de-
velopment systems which add extra-linguistic expressibility
to the language.

Yu and Zhuang [39] concentrate on efficient, reusable al-
gorithms and propose an extension to C-i-+ (named kinds).
In Yu and Zhuang’s own words, this extension is intended to
“realize algorithmic abstraction” and to close the lLabstrac-
tion gap between algorithms and procedures.”

Further publications are concerned with implementations
of graph algorithms in functional languages [8, 19, 241.

We will discuss selected approaches from the literature
in greater detail in the relevant sections. Moreover, we will

discuss the relevance of various design patterns [12] to the
individual goals. Here we are interested in the general ideas
of these patterns, not in the concrete realization of the inter-
play between the collaborators. For example, this realization
may be based on inheritance as in [12], but also on generic
features.

2 Adaptation to Data Structures

An algorithm should be implemented such that it
can be easily adapted to existing and application-
specific realizations of the underlying abstract data
types without sacrificing efficiency.

The discussion’will be grouped into two variations of this
goal: different implementations and variations of one ab-
stract type and different implementations of the item pa-
rameters.

In the following, the term abstract type refers to general
concepts such as directed or undirected graphs. For instance,
figures l(a) and l(d)-(e are examples of the abstract type)
undirected graph, and figures l(b)-(c) of the abstract type
directed graph. More specifically, figures l(c)-(e) show ex-
amples of specializations of these abstract types: symmetric
directed graph, plane graph (a graph is plane if it can be
drawn such that no two edges cross each other), and grid
graph. In turn, grid graphs are a specialization of the spe-
cialized abstract type plane graph.

2.1 Different Implementations &md Varia-
tions of One Abstract Type

Different implementations

Typically, an abstract data type such as a directed graph
may be implemented in many diierent ways. Goal 1 means
that an implementation of an algorithm should be indepen-
dent of this concrete impIementation.

On one hand, it is crucial for time-critical applications
that an algorithm can be adapted to data structures which
are tuned for efficiency. This tuning usually varies from ap-
plication to application, and thus requires a high degree of
flexibility. On the other hand, an implementation of an algo-
rithm can be integrated into existing software only if it can
be adapted to the data structures on which this software
is built. These data structures might have been developed
a long time ago and designed to meet absolutely different,
non-algorithmic, needs. Clearly, in such a case, the algo-
rithm cannot achieve its best possible run time, because
the data structures have not been designed for that. How-
ever, the algorithm’s interface should be flexible enough so
that-within the bounds of possibility-a reasonable degree
of efficiency can be achieved.

35

s &JY!!Jg J!!jf!gn (a) (b) (4 (4 (e)
Figure 1: (a) an undirected graph, that is, edges are not oriented; (b) a directed graph constructed from (a) by assigning
arbitrary orientations; (c) the directed graph constructed from (a) by substituting a pair of mutually opposing directed edges
for each undirected edge; (d) a plane undirected graph, embedded without crossings; (e) a grid graph. ,

Different abstract types

Moreover, many graph algorithms apply to a broad range of
abstract graph types. For example, for many algorithms, it
does not matter whether the graph is directed or undirected.
Likewise, the same algorithm may apply to hypergraphs (i.e.
an edge may connect more than two nodes) and other, sim-
ilar variations. Goal 1 also means that an implementation
of such an algorithm should work with every abstract graph
type to which the algorithm applies “in theory.”

Alternatives /
There are two alternatives to goal 1: either each algorithm
is implemented on its own, specific interface, and the data
is converted back and forth for each call of an algorithm; or
a standard is defined on which the implementations of all
algorithms are based.

Alternative I (conversions): very often, the first alter-
native is simply infeasible in algorithmic software design,
because the amount of data to be converted is too large.
This problem is aggravated by the fact that algorithms are
usually not (and should not be) implemented monolithically,
but composed of other, more basic algorithms, which are, in
turn, composed of even more basic algorithms, and so on.
Such a decomposition would result in a large number of ex-
pensive conversions. Quite often, the run times of the most
basic algorithms are sublinear in the size of the data struc-
tures (at least in an empirical sense). In this case, the run
time is not even proportional to the theoretical efficiency.’

Alternative II (standardized abstracta’ons): Many exist-
ing libraries for graph algorithms (incl. LEDA) adopt the
second alternative, which is to define a class for graphs and
to implement all algorithms on top of this interface. How-
ever, experience suggests that the following undesired con-
sequence might inevitably occur when a library is actually
used in real applications in different fields: from release to
release, the class is equipped with’more and more function-
ality to fulfill the users’ demands; the implementation thus
becomes less and less efficient, but without the ideal state
ever being reached.

It is essential to note that this missing functionality is
not only a problem of “exotic” applications, which means

‘For example, effects like these occurred in a project in which the
author of this paper was involved a few years ago and which used
conversions to a common format to integrate various algorithms for
scheduling problems into one package [20].

that all “mainstream” applications would be satisfied by a
well-chosen subset. In fact, even the requirements imposed
by mainstream applications differ in many details.

For example, many algorithms require an access method
that gets two nodes as arguments and returns the edgo con-
necting these nodes. In principle, this access can be realized
efficiently in two ways: either as a matrix whose columns
and rows are nodes and whose entries are edges, or as an
associative array with pairs of nodes as keys and edges as
the associated units of information. However, the overhead
in space or run time caused by such a solution may not be
acceptable for an algorithm that does not require this par-
ticular functionality.

The potential present and future variations might not
be predictable. Hence, a common generalization of all vari-
ations is not possible (even if it were possible, it might not
be efficient). In summary, all of these variations should be
realized by different classes with different interfaces.

Experience 1
The alternatives to goal 1 do not suffice to achieve
a high degree of flexibility without sacrificing effi-
ciency. I

2.2 Different Implementations of the Item
Parameters

A graph may be viewed as a composition of containers, For
example, a directed graph class that is intended for various
purposes often consists of a container of nodes, a container
of edges, and for each node, a container of references to tha
edges leaving this node. Further containers may be included,
for instance, for each node, a container of references to all
edges entering this node.

The items of,a container may be assigned item parame-
ters. For example, the nodes of a graph are usually assigned
parameters such as names, flags, and coordinates, and likc-
wise, the edges are assigned parameters such as lengths,
costs, and capacities. Goal 1 states that the concrete or-
ganization of these item parameters shall be hidden from
each algorithm.

36

F’rom an abstract viewpoint, the values of all item pa-
rameters for all items form a table: there is a row for each
item and a column for each parameter, and the value of a
parameter for an item is the entry at the table slot specified
by this row and this column. Many algorithms insert and
remove items, which means that the set of rows is usually
dynamic.

Dynamic column set

It is essential to note that the set of columns should also be
dynamic to some extent. For example, many algorithms rely
on auxiliary parameters, which are meaningless for all other
parts of the program. A concrete example is the “seen”
label of nodes inside an algorithm that constructs a path
from some node s to some node t using a depth-first or
breadth-first search: s and t are the input, the path is the
output, and the label is internally used to ensure that no
subgraph is searched more than once.

In some cases, it may be preferable to instantiate such
an auxiliary parameter only temporarily, immediately be-
fore invoking the algorithm, and to drop the parameter after
termination of the algorithm. For the sake of argument, sup-
pose that a program applies algorithms Al,. . . , Ak one after
another to the same graph and each algorithm Ai requires a
different set of auxiliary parameters. If the set of node and
edge parameters is organized statically (i.e. fixed once and
for all at compile time), we have to maintain the union of
these parameter sets throughout the program, which causes
a waste of space and additional run-time overhead. The
same effect occurs when Al,. . . , Ak are not called after each
other, but are made exchangeable using the strategy pat-
tern [12]: here only one of Al, . . . , dk is invoked, and the al-
gorithm Ai to be invoked is chosen only at run time. Hence,
if all node and edge parameters are static, all parameters of
all algorithms must be unnecessarily maintained.

Non-materialized parameters

Even more, in some applications, it might not even be rea-
sonable to store certain node and edge parameters in any
way. For example, consider the case that the nodes of a
graph are points in the plane and the length of an edge
is the normal (i.e. Euclidean) distance of its nodes. The
number of edges is potentially quadratic. Hence, it may be
preferable not to store the lengths of the edges explicitly, but
to compute the length of an edge from the node coordinates
when needed.

Data organization

The abstract view of item parameters as a table suggests
two ways qf organizing all data: row-wise and column-wise.

Row-wise organization. in principle, this means that ev-
ery item is attached a tuple which comprises all item pa-
rameters. This organization is supported by many graph
libraries.

For example, in LEDA [25] and in the AA1 base class
Iibrary [l], certain node and edge types are generic.2 Hence,
a static set of node and edge parameters can be realized by

*To be precise, certain graph classes in LEDA are generic, and the
generic type parameters are the information types of nodes and edges.

instantiating the node and the edge type with records which
comprise all item parameters.

In contrast, the graph class in the ffGraph library [9]
provides a means of adding and removing node and edge
parameters (called labels) at run time. Each parameter gets
a unique ID. Roughly speaking, each node (resp. edge) main-
tains an associative array of parameters, and the set of IDS
in this associative array is the same for all nodes. To al-
low parameters of diierent types, each parameter must be
a subclass of a prescribed base class for node (edge) labels.
This row-wise approach is fully dynamic, however, at the
cost of efficiency and type safety.

In addition to the generic features mentioned above, the
AA1 graph also supports user-defined extensions of the nodd
and edge types: the node and the edge type are designed to
serve as base classes, and the graph class only handles point-
ers and references to nodes and edges. Thus, it is possible to
create graphs which handle extended node and edge classes.
In particular, this allows the integration of 8. user-defined
row-wise implementation of node and .edge parameters.

Column-wise organization. For each item parameter, an
associative array is instantiated, which contains the values
of this parameter for all items. Each item has a unique
ID, which can be used to access its value in this array. In-
stantiating a new item parameter at run time amounts to
instantiating a new array. In contrast to the row-wise case,
this concept is dynamic and fully type-safe.

For’ example, the LEDA graph class comes with so-called
node and ‘edge arrays. A node 6r edge array is an asso-
ciative array with a static index set, which is the set of
nodes or edges at the moment when the array is instanti-
ated. Thus, LEDA allows an arbitrary mixture of a row-wise
and a column-wise organization.

However, a normal array or an associative array with
a static index set becomes invalid once items are inserted
or removed. Hence, such an array is of limited use. On
the other hand, an associative array with a dynamic index
set might increase the run time significantly, even by more
than a constant factor. Moreover, when items are inserted
or removed, the corresponding associative arrays should be
updated automatically, which requires an expensive solution
based on the observer pattern [123.

Discussion

In summary, neither a row-wise nor a column-wise organiza-
tion (nor any other puristic organization) is sufficient for all
application.+. Hence, to achieve goal 1, an implementation
of an algorithm must be able to cope with different ways of
organizing the item parameters in the underlying containers.

Very often, a mixed solution may be suitable, in which
the records attached to items hold the permanent data, and
for temporary data, additional arrays are instantiated when
needed. However, whether a certain parameter is perma-
nent or temporary depends on the context, and hence an
algorithm cannot assume a specific constellation. Moreover,
even when such a mixed solution is applied, the question of
non-materialized data remains open.

It seems that the problem of organizing the item param-
eters in a container is often underestimated or even over-
looked. For example, the design of the STL does not ad-
dress this problem at all [28]. The items of an STL-style
container are accessed through iterutors [12]. However, the

37

syntactic requirements for iterator classes in STL contain
only one method for accessing an item’s data (the C++ de-
referencing operator, operator*).

Obviously, the design of the STL only considers con-
tainers such that each item is the (only) item parameter
itself. In fact, all algorithms in STL assume this scenario.
Hence, if there is more than one item parameter, the STL
algorithms are not easily applicable (see the example below;
STL-function replace).

As mentioned above, a typical graph algorithm accesses
several node and edge parameters, which may be permanent
or temporary. Hence, the problem of organizing the item
parameters is addressed by designers of graph libraries. We
have analyzed some of the solutions in the above discussion
of row-wise and column-wise schemes.

The solutions adopted for LEDA are certainly the most

efficient implementations of row-wise and column-wise data
organization. This allows one to choose the most efficient
intermixed solution for a specific application. Hence, to
achieve goal 1, an implementation of an algorithm must be
able to cope with both approaches and with mixed solutions.

However, all graph algorithms in LEDA assume that the
node and edge parameters are organized column-wise, al-
though this is often not the method of choice. The fact that
the organization of node and edge parameters is hard-wired
in these algorithms shows that data abstraction has still not
been achieved. However, it is not surprising that a column-
wise organization is preferred over a row-wise one: C++
does not provide any feature for renaming the members of
a record. Therefore, in each algorithm, the names of all ac-
cessed parameters had to be hard-wired, when a row-wise
organization was adopted. This is impractical because of
potential name conflicts.

Experience 2

The concrete organization of the item parameters
may be completely hidden from the algorithm by
data accessors without significant loss of efficiency.

We introduced the concept of data accessors in [23].
Roughly speaking, a data accessor is a class that is respon-
sible for the access to a single item parameter. The type of
the item parameter is a type tag vtype of the data accessor.

A data accessor class provides one or more methods
named get, which gets a handle or iterator type for items
as an argument and returns the parameter value for the
item identified by the argument. The method get is over-
loaded for every relevant handle and iterator type. More
specifically, if It-l...It-n are the relevant iterator classes,
the data accessor class must conform3 to the following C++

* class definition:

3For conformance, we make no distinction as to whether the ar-
guments and the return value of a method are vaiues or constant ref-
erences. In the following code fragments, we will generally disregard
this difference.

class AnyDataAccessor
I
public:

typedef . . . vtype;
vtype get (It-l) const;
. . .
vtype get (It-n) const;

3;

Since get is overloaded, an algorithm only needs one data
accessor for each item parameter, no matter how compli-
cated the underlying graph data structure is. The concrete
examples below will demonstrate that get is usually not
overloaded “by hand,” but by genericity.

We distinguish between read and read/write accessors.
A read/write accessor provides an additional method set
for each relevant handle and iterator type It:

void set (It, vtype) ;

This method overwrites the current parameter value by the
value of the second argument.

Example

This is a simplified version of the running example in [23].
Consider the STL-function replace [28]. This function runs
over a linear sequence of items of the template type T and rc-
places all occurrences of the value old-value by new-value.
The linear sequence is given by two iterators, first and
sentinel. Iterator first identifies the beginning of the se-
quence, and sentinel is a past-the-end marker (e.g, the Null
value if the sequence is a linked list and the iterator is a mere
pointer).

template <class It, class T>
void replace

(It first, It sentinel,
T old-value, T new-value)

for (It it=first; it!=sentinel; ++it)
if (*it==old,value >

*it = new-value;
3

For instance, this function replace is applicable if we havo a
sequence salaries of STL-type list<int>, which contains
the salaries of all employees, and we want to replace every
occurrence of a $1,000 salary by $2,000:

replace (salaries.first(),
salaries. last 0 ,
1000, 2000) ;

38

salary

it

(*it) .salary

-it

(it)

Figure 2: the scenario in the, STL version of replace. A ref- Figure 3: the modified scenario when data accessors are
erence to the grey row is returned by the method operator* used. The iterator accesses the grey row, and the data ac-
of the iterator. The row must exist as a materialized object cessor, the grey column. The individual columns may be
of a record type. organized arbitrarily (not necessarily materialized).

However, now assume that we have a struct type Employee,
which contains an employee’s salary as a member salary,
and we want, to perform the same update of salaries on a
list<Employee>. The operator*’ of a list iterator returns
the whole struct (see figure 2). To apply the above imple-
mentation of replace, It must be an adapter [12] for iter-
ators, which overwrites operator* to drop all parameters
but one. However, this is inconvenient when implementing
algorithms which access more than one item parameter, be-
cause usually, what one wants is to access all parameters
of an item through one iterator. If this is not possible, an
algorithm must handle one iterator for each item parameter,
which induces consistency problems.

A revised’version of replace, which relies on a data ac-
cessor DA for accessing the salary, is flexible enough. We use
the type tag vtype to drop the template parameter T.

template <class It, class Da>
void replace

(It first, It sentinel, DA da,
typename DA::vtype old-value,
typename DA::vtype neu-value)

all relevant iterator types are STLcompliant, operator* re
turns a (reference to a) struct type, and the item parameter
is a member of this struct type.

template <class Str, class T>
class MemberAccessor

c
public :

typedef T vtype;
MemberAccessor (T Str::*ptr)

: i-ptr(ptr) C 1
template <class It>

vtype get (It it)’ const
(return (*it> .*i-ptr; 1

template <class It>
void set (It it, vtype value)

C (*it).*i-ptr = value;)
private:

T Str::*i-p&z;
3;

c
Using this class template, we can update all salaries as fol-

for (It it=first;‘it!=sentinel; wit)
lows:

if (da.get(it)==old-value > 1
da.set (it, new-value);

3 MemberAccessorGmployees,int>
act (&Employees::salary);

Figures 2 and 3 illustrate the difference.
The following class template MemberAccessor solves our

exemplary problem. The type of the member salary ap-
pears as template argument T, the struct type Employee as
template argument Str, and the concrete member salary
as an argument of the constructor (namely as a pointer-to-
member). Hence, this template covers all scenarios in which

replace (our-employees .f irst (> ,
our-employees.. last () ,
act, 1000, 2000);

This concludes the example.

’

39

Pure read accessors may be used to encapsulate non-
materialized parameters. The following class template, Const-
Accassor, is a simple example: it uniformly returns the
value received through the constructor.

template <class T>
class ConstAccessor

c
public :

typedef T vtype;
ConstAccessor (T t) -

: i-t(t) C 1
template <class It>

T get (It) const
C return i-it; 3

private :
T i-t;

3;

3 Toolboxes for Interfaces

..e ,’

Goal 2
The interfaces of data structures to algorithms
should be designed such that a small set of generic
or polymorphic classes makes the implementation
of such interfaces easy, convenient, and straightfor-
ward.

For a simple exposition, assume that there are n graph
algorithms and m data structures for graphs, and each algo-
rithm shall work on each d&a structure. This requires n.m
customizations of algorithms to data structures. Hence, it
might be useful to have a toolbox of generic or polymor-
phic classes from which these adapters may be constructed
with a relatively modest programming effort. In the ideal
case, tailoring an algorithm to a data structure would then
amount to instantiating these polymorphic or generic types
with the appropriate parameters.

However, this introduces a tradeoff: on one hand, the
toolbox should be small and coherent, which significantly
restricts the freedom in designing interfaces. On the other
hand, a large degree of freedom is necessary to adapt an al-
gorithm to various applications without sacrificing efficiency.

STL viewed as a toolbox

Goal 2 is one of the main design goals of the STL. The
most important sort of generic classes in the STL are iter-
ators: each container class comes with a couple of specific
iterator classes, and each algorithm accesses the underlying
containers solely through these iterators. Containers and al-
gorithms can be easily combined, because the iterator classes
are template parameters of the algorithms, the interfaces of
all iterator classes conform to a set of requirements, and the
algorithms access iterators only according to these require-
ments.

Of course, not every combination of an algorithm and
a container makes sense. For example, it does not make
sense to sort a singly-linked list by the usual random-access
variant of quicksort. Therefore, containers are classified into
five groups according to their potential functionality: input
stream, output stream, singly-linked (forward) sequence, doubly-
linked (bidirectional) sequence, and random-access container.
For each of these groups, there is a specific set of require-
ments, and these sets form a hierarchy as shown in figure 4.

Experience 3
At least in C+f, it is possible to implement tool-
boxes which realize goal 2 and do not sacrifice ef-
ficiency. As a prerequisite, the interface of a com-
plex data structure to algorithms is not realized by
a single, large class, but by a couple of light-we&$&t
classes.

We have implemented an experimental toolbox for graph
algorithms. This toolbox is written in C++. [23] and tho
technical reports [21,22] address the basic ideas and crucial
details of the implementation. A restricted version, which
is less flexible but specifically adapted to the LEDA data
types,, is described in [30]. This version will be integrated
into LEDA.

Our toolbox consists solely of small, light-weight types
Each of these types is responsible for a specific aspect of tha
data structure. The most important types in our toolbox
are iterators and data accessors.

Handle/iterator hierarchy

Iterators are provided for all relevant ways of iterating over
a graph: over the whole set of nodes, the whole set of edges,
and the set of edges incident to a single node, The essential
details ape summarized in [21]. In principle, we follow tha
guidelines for iterators in STL [28], However, for reasons
discussed in [21], our iterators deviate from the STL con-
ventions in several technical details, which are beyond tho
scope of this paper.

As a result of our practical case studies, the toolbox of-
fers each of these iterator types in a normal and a reduced
version4 and in addition node and edge handle types (fig-
ure 5). The main difference between normal and reduced it-
erators is that a normal iterator must provide certain moth-
ads which require that the iterator object has some “global
knowledge” about the underlying graph. In contrast, an
object of a reduced iterator type is only assumed to have
knowledge about its specific type of iteration. Finally, a
node or edge handle type refers to a single, fixed node or
edge and is not assumed to “know” anything about the un-
derlying graph or about any way of iteration.

Often, the reduced version of an iterator class is smaller
than the normal version, and the corresponding handler
class is even smaller. Hence, if an algorithm manages larga
containers of iterators, using the reduced version or even

4Called the heavy and the light version in [21].

40

1 RandoT itentor]

JI
Bidirectional iterator

Figure 4: The STL hierarchy of iterator requirements. An
arrow indicates that the requirements on the tail side are a
supehet of the requirements on the liead side.

the handle class may save space and decrease the run-time
overhead induced by copy operations.5

On the other hand, the reduced version often gets the
global knowledge required for the normal version “for free”
from the underlying graph data structure. For example,
each node and, edge in the graph data structure in LEDA and
AA1 holds a pointer to the graph to which it belongs. Hence,
a mere pointer to the node or edge type suffices as a normal
iterator, and the normal and the reduced versions collapse
into one class. Nonetheless, an algorithm may distinguish
between the normal and the reduced version of an iterator
class. If the algorithm is generic with these two classes being
type parameters, both type parameters are then instantiated
with the same type.

Proxies

Moreover, the toolbox provides several generic proxies [12]
for iterators, data accessors, and other types.

Example. the following class template, named Filter, is a
simple, small proxy for iterators.6 It constructs a filter iteru-
tor from an object it of iterator type It and from an object
pred of predicate type Pred. This iterator skips all items
which do not fulfill the predicate. As in STL, the predicate
is evaluated in function notation (operator()). For nota-
tional convenience, we do not follow the STL guidelines for
iterators: the sentinel is dropped, and instead the Boolean
method valid returns false if’and only if the end of the
sequence has been passed. Moreover, advance performs one
forward step, and get-data returns the data associated with
the current item.

5To our surprise, it has turned out that simple copy,operations
may cause a significant overhead. AppIying reference semantics to
reduce this effect is often problema’tic in a language such as C++,
becnuse there is no built-in garbage collector, and techniques such as
reference counting may cancel out the savings.

ORecently, we have successfully applied generic iterator proxies like
this to the internal design of a database query engine (13).

Figure 5: The hierarchy of requirements for iterators on
graphs in our toolbox. A dashed line indicates that the
relation between the requirements on the head and the tail
side are only syntactical in nature, but the semantics may
be diierent (to be concrete: iterating over all edges of the
graph vs. over all edges leaving a-single node).

template <class It, class Pred>
class Filter

(
* public:

typedef ;,ename 1t::vtype vtype;
Filter (It it, Pred pred)

I< - i-it(it1, i-pred(pred1
i advance-if-falseo; 1

boo1 valid 0 const
{ return i-it.validO; 1

vtype& get-data 0
{ return i-it.get-datao; 3

void advance 0

(
i-it. advance 0 ;

-,, advapce-if-falseo;

3
private:

It i-it;
Pred i-pred; *
void advance-if-false 0

<
while (i-it.validO %%

!i-pred(i-it) >
&it. advance 0 ;

% 3
3;

Programming languages

We apply many advanced features of C++ to achieve this
degree of flexibility and convenience. For example, we use
many features of the template mechanism’ in C++, which
is much more flexible than the generic mechanisms in many
other languages. Moreover, pointer-to-members [36] are used
in our toolbox; see the example MemberAccessor in sec-
tion 2.2.

Of course, the design of our toolbox.can be realized in
other programming languages, because a flexible generic
mechanism and pointer-to-members may be simulated by

41

inheritance. In fact,. an effort is currently being undertaken
by another team in our group to implement a variant of our
toolbox in Java and to apply it to the visualization of social
networks [38]. As a nice by-product, our concept allows the
adaptation of graph algorithms to a graphic-oriented data
structure, which supports editing and layout facilities. This
removes the need formaintaining redundant information in
two data structures: one for graphics and one for~graph al-
gorithms.

However, it seems that the features offered by the cur-
rent definition of. Java inevitably result in weaker static
type checks and less convenience. For example, we did not
find a surrogate for the class template MemberAccessor (sec-
tion 2.2) which is equally general and type-safe (not to men-
tion efficient)., j’ : b

4 Algorithmic Functionality

Goal. 3

An algorithm should be implemented such that its
algorithmic functionality is flexibly adaptable.

/

Goal 3 addresses many ‘aspects of the design of algo-
rithms. First we will briefly illustratetwo aspects: ezchange-
able subalgorithms and variations of the output. Afterwards,
we will start a more detailed discussion of yet another as-
pect: heuristic speed-up techniques.

Exchangeable subalgorithms

To give a concrete example, many graph algorithms rely on
a subalgorithm which determines a path from some specified
node s to some other node t. This subalgorithm might start
one of various kinds of graph searches at s, for instance,
a depth-first search or breadth-first search, or a shortest-
path algorithm, which determines the cheapest path with
respect to an arbitrary definition of edge costs. Goal 3 states
that the concrete strategy for determining this path should
be left open in the implementation of the main algorithm.
This is necessary to achieve both overall goals-efficiency
and reusability-simultaneously, because none of these path
algorithms is efficient in all possible applications. Further-
more, some applications even rely on specific properties of
the path, which are only guaranteed by specific subalgo-
rithms.

The strategy pattern [12, 111 seems to be appropriate to
meet this goal. However, the situation is even more complex,
and it does not suffice to base the,design solely on the strat-
egy pattern. The problem is that the usual algorithms for
depth-first-search, breadth-first search, and shortest paths
determine spanning trees, not paths. For reasons of effi-
ciency, it does not suffice to run one of these algorithms u’p
to its regular termination and to extract the path afterwards
from the tree. Rather, the algorithm should terminate once
the path from s to t is determined. Therefore, these algo-
rithms must be adapted to the problem of finding a single
path.

Variations of the output

A depth-first search or breadth-first search algorithm may
either return a mere labeling of all visited nodes or addi-
tional information such as the traversal order. Moreover,
it may also return the tree induced by the search, which
comprises all visited nodes and all traversed edges. This
tree may be encoded as a O/l-labeling of the edges, as an
(acyclic) object of the graph class, as an object of a specific
tree class, or whatsoever.

Many libraries (incl. LEDA) provide implementations of
depth-first search and similar algorithms which only return
node labelings or the traversal order of all nodes. Construct-
ing a depth-first tree from this information amounts to per-
forming another complete depth-first search. This simple
example demonstrates that the concrete variation of the out-
put cannot always be delegated to postprocessing routines,
Consequently, this flexibility should be’inherent in the im-
plementation of the algorithm itself.

Speed-up techniques

As mentioned above, we discuss this aspect in greater detail.
We illustrate this task by means of an example: we are givon
a traffic network, that is, the nodes are cities and towns,
and the edges are traffic connections. The system receives
a potentially infinite number of pairs (s, t) of nodes as run-
time events. For each pair, it has to compute a shortest path
from s to t in the network (see figure 6). This is a special
case within the wide range of algorithmic problems that are
best solved by Dijkstra’s famous algorithm ([7], sect. 25)
Our concrete scenario offers a wealth of algorithmic spced-
up techniques. If t is often in the vicinity of s, the speed-up
factor gained from these techniques may be in the order of
1,000 to 10,000. Unless stated otherwise, i is the node from
which the search starts.

Early termination. The first, most basic speed-up tech-
nique is to let the algorithm terminate immediately when
the shortest path from s to t is found. Actually, Dijkstra’s
algorithm computes shortest paths from s to all other nodes.
Unfortunately, the typical implementations of Dijkstra’s al-
gorithm in libraries [25] and in the literature [lo] do not even
allow this simple speed-up technique.

Version stamps. In combination with the technique early
termination, the following trick can be applied to achiavo
expected sublinear run time for a single shortest-path com-
putation: the node distances are not initialized with a value
representing +oo in every shortest path computation, In-
stead, a version stamp is maintained for every node, which
is the number of the last shortest path computation in which
the distance of this node was updated. If the version stamp
of a node is not up to date,’ this node is regarded as hav-
ing infinite distance (clearly, to avoid an ‘integer overflow,
all version stamps must be reset to the initial value after
a-huge-number of steps).

Goal-directed search. The length e(v,ur) of an edge (v, us)
E E-is replaced by the reduced length e’(v, 2~) := L(v, w) -
A(v, t) + A(w, t), where A(z, y) is a lower bound on tho
shortest path from z to y: for example, the normal distance
of 2 and y ([26], sect. 3.8.5.1). There is empirical evidcnco
that this modification may direct the search towards t.

42

Figure 6: a shortest path from s = Hannower to t = Leipzig
in the German rail nehvork. Whenever s and t are relatively
close, restricting the search horizon to a small ellipsis reduces
the run time dramatically.7

Bidirectional search. The shortest (s, t)-path is com-
puted from two nodes, s and t, simultaneously, from s in a
forward direction and from t in a backward direction ([26],
sect. 3.8.5.2). That is, two slightly different executions of
Dijkstra’s algorithm are “merged” into one loop, in each
step one of these two algorithms is chosen to scan one sin-
gle node, and this choice is made by an on-line heuristic.
The algorithm terminates once a node u has been reached
by both searches (the concatenation of the shortest paths
from s and from t to u is the solution).

Restricted search horizon. Often it may be safely as-
sumed (though not provable) that the real shortest path
does not deviate too much from the straight Iine segment
connecting s with t. In this case, the search may be re-
stricted to, say, an ellipsis around s and t (see figure 6). This
ellipsis may even be changed dynamically during the algo-
rithm, depending on intermediate results. In other words,
two algorithms-the shortest path routine and a routine
that extends the search horizon on-line-are “merged” into
one loop and affect each other.8

‘This figure stems from a joint project with the Deutsche Bahn
AG [34); permission to visualize the railway data is granted by the
TLC/Deutsche Bahn AG.

sFor example, heuristical strategies of this kind have been impIe-
mented in the on-line information system of the Deutsche Bnhn AG,
the central German train and railway company.

Variations of the A* algorithm. This sort of algorithm
for shortest (s, t)-paths in the plane also fits into this general
scheme [17]. In general, the effective length of an edge is
a combination of its nominal length and an additional cost
function, which penalizes large angles between this edge and
the direction towards t. The effective cost of an edge must
not be initialized in advance, but computed when needed,
because otherwise, the initialization destroys the advantage
of the A’ heuristic: that the amortized run time is highly
sublinear in the size of the graph.

Concept

Our concept to achieve goal 3 consists of two principles: loop
kernels and full logical inspectability.

Loop kernels. We introduced this principle in [22]. The
crucial observation is that probably every non-trivial algo-
rithm essentially consists of one or more loops (or nested
loops), plus some pre- and postprocessing operations for
each loop. We call these loops the core Ioops of the algo-
rithm. For example, Dijkstra’s algorithm for shortest paths,
which we discussed above, has one core loop. In each itera-
tion of this loop, the current distance estimation of exactly
one node is decreased, provided that the currently available
information allows that.

More systematically, implementing an algorithm as a
loop kernel means the following:

1. The core loops of an algorithm are the basic units of
reuse, not the algorithm as a whole.

2. A core loop is implemented as a class (the loop-kernel
class), not as a subroutine.

3. Subalgorithms are polymorphic members of the class
(design pattern strategy [12]).

4. The loop-kernel class provides a method which exe-
cutes exactly one iteration of the core 10op.~

5. Pm- and postprocessing operations are regarded as
customizations of the core loop and left to the user
of the class.

6. In particular, the algorithm does not initialize the data
on which it works; it expects that this data has been
initialized before the first iteration (not necessarily be-
fore instantiating the loop-kernel object).

7. Only the basic functionality of the algorithm, which is
common to all applications, is provided by the loop-
kernel class. Extensions are regarded as customiza-
tions of the core loop and left to the user of the class.

The fourth and fifth items enable the user to extend the
basic functionality: the core loop is implemented by the
user “around the loop kernel,” and the user can freely insert
additional stuff in the loop:

‘For some algorithms, it may even be reasonable to divide ta single
iteration into several steps. In other words, a couple of methods
is provided such that one iteration is performed when all of these
methods are called once in a specific order.

43

Algorithm A (. . .> ; // Loop-kernel object
do-some-stuff-1 () ;
while (! break-condition,fulfilled(A) >

c
do,some-stuf f -2 0 ;
A.next 0; // one iteration
do-some-stuff -3 0;

3
do-some-stuff-P 0 ;

’

We are aware of the problem that algorithms which are im-
plemented as classes and leave all pre- and postprocessing to
the client are much harder to understand and to apply than
algorithms which are implemented as subroutines. Hence, it
might be useful to additionally implement a couple of sub-
routines, which are mere partial or complete customizations
of the algorithm class to typical scenarios (incl. pre- and
postprocessing). Clearly, these subroutines are much more
convenient to use than the loop kernel itself.

Typically, the implementation of such a customizing sub-
routine is very short. Thus, if the sources of these subrou-
tines are freely distributed as a part of the documentation,
they may also serve as tutorials for using the full power of
the underlying loop kernel. Moreover, it might be reason-
able to implement various speed-up techniques iu advance
and to describe their potential applications and their usage
in the documentation. All of these tasks form an integral
part of [30].

Full logical inspectability. We call a class fully logically

inspectable, if it provides methods to read all details of the
current logical state of an object. In that, the logical state of
an object of some class at some stage is defined as the bunch
of information about its state which is necessary to predict
the results of all possible sequences of calls to methods to
this object after this stage.

For example, many libraries provide stack classes which
offer access to the topmost element only (by methods push,
pop, and top). However, the logical state of a stack object
is not fully determined by the topmost element. Rather, it
is described by the ordered sequence of items in the stack
object. The principle of full logical inspectability requires
methods which allow one to iterate over this sequence and
to read the values of all items in this order.

Note that full logical inspectability does not contradict
the encapsulation of implementation details, because no de-
tails of the implementation are exhibited and the access is
read-only.” However, a stack class that is fully logically
inspectable contradicts the abstract idea of a stack being
a sequence that is only accessible at its front. In the dis-
cussion below, we will argue that for algorithm classes, the
advantages of inspectability outweigh the resulting violation
of abstraction.

Experience 4

If an algorithm is implemented as a fully logically
inspectable loop kernel class, its algorithmic func-
tionality is flexibly and efficiently adaptable.

“In some cases, it might even be reasonable to offer a disciplined’
write access to selected details.,

Example

We continue with our example of speed-up techniques: Dijks-
tra’s algorithm for shortest paths. Although it is only a sim-
plified version, the following class template, Di jkstra, may
illustrate our two design principles. The template parame-
ters Length and Distance are data accessors and responsible
for edge lengths and node distances, respectively. Template
parameter AdjIt is the adjacency iterator type according to
the hierarchy in section 3 (figure 5). According to the terms
of section 3, this may be a reduced iterator, because tho
core loop of the algorithm works purely locally and does not
require any “global knowledge” about the graph. The algo-
rithm needs a container PriorQ, which serves as a priority
queue. To simplify notation, we assume that this class is not
a template parameter of Dijkstra, and that it is compliant
to the list class in STL [28].

Method next is the heart of the algorithm. This method
performs one step of the iteration. For lack of space, we leave
out its implementation. Method current-node returns the
node currently processed, and begin and end allow read ac-
cess to the current frontier line of the search, which is exactly
the contents of the priority queue. These three methods im-
plement full logical inspectability.

template <class Length, class Distance,
class AdjIt>

class Dijkstra
I
public :

Dijkstra (Length len, Distance dist)
: i-len(len) , i-dist(dist) {)

void make-root (AdjIt it)
{ i-pq.push,back(it) ;)

void next (1;
boo1 finished () const

C return i,pq. empty0 ;)
AdjIt current-node () const

C return i,pq.front(); 1
Priorq: : const,iterator begin 0

{ return i,pq.begin();)
PriorQ::const-iterator end (>

C return i,pq.end();)
private :

Prior4 Lpq;
Length i-len;
Distance i-dist;
// . . .

3;

The “classical” variant of Dijkstra’s algorithm, in which WC
want to compute shortest paths from root s to every other
node, can be realized as follows:

AdjIt s;
/* init. s */
/* init. length accessor ‘len’ */
/* init. distance accessor 'dist' */
Dijkstra<Length,Distance,AdjIt>

dijk (len, dist);
dijk.make-root (s);
while (!dijk.finished())

dijk.next();

44

In the following variant, we assume that the function
wait-for-request waits until a user wants to know the
shortest connection from node s to t, which are specified
in the call to wait-for-request. The speed-up technique
“early &r&ration” in our traffic network example can sim-
ply be realized as follows:

while (true)
x

AdjIt s, t;
wait-for-request (s, t);
/* init. length accessor ‘len, */
/* init. distance accessor ‘dist, */
Dijkstra<Length,Distance,AdjIt>

dijk (len, dist);
dijk.make,root (s) ;
while (dijk.current-node0 != t)

dijk.next();
3

Recall the speed-up technique “vers.sion stamps” defined
above. To realize this variant, we write a data accessor
class VersionAccessor, whose get methods return +co if
the version stamp of the node does not equal the global
version number. The access to the node distance and to
the version number are delegated to further data accessor
classes: DA and VA. Hence, it is an example of proxies for
data accessors. Since DA and VA are template arguments,
VersionAccessor is broadly applicable. To simplify nota-
tion, we assume that all version numbers are of type int,
and that INT,MAX represents +co.

template <class DA, class VA>
class VersionAccessor

c
public :

typedef typename DA::vtype vtype;
VersionAccessor

(DA da, VA va, int global)
* i-da(da) , i-va (va) ,
* i-global(globa1) < >

template <class It>
vtype get (It it) const

c
return i-va.get(it)==i-glob61

? i-da.get(it) : INTJlAX;
3

template <class It>
vtype set (It it, vtype const&,value)

c
i-va. set (it, i-global) ;
i-da. set (it, value) ;

3
private :

DA i-da;
VA i,va;
int i-global;

3

Here is the code to incorporate the speed-up technique “uer-
sion stamps?’

int global-version = 0;
/* init. all node stamps to 0 */
while (true)

c
AdjIt s, t;
wait-f or-request Cs, t1;
global-version++;
/* init. length accessor ‘len, */
/* init. distance accessor ‘dist, */
/*-init. data accessor ‘stamp’ for node

version stamps */
typedef

Versionkcessor-V*...*/,/*...*/> VA;
VA stamped,dist

(dist, stamp, global-version);
Dijkstra<Length,VA,AdjIt>

dijk (len, stamped,dist) ;
dijk.make-root (s) ;
while (dijk.current-node0 != t>

dijk.next.0 ;
3

This adaptation is only possible because Dijkstra is a loop
kernel. Full logical inspectability is not required for this
speed-up technique. However, it is required for the speecl-
up technique bidirectional search. We only give a high-level
description of the adaptation:

Reserve or establish two distance labels for each node
and inititialize them.

Inititialize shortest-path loop kernel A with the first
distance label and make s the (unique) root of A.

Inititialize shortest-path loop kernel B with the second
distance label and make t the (unique) root of B.

WHILE no node is seen by both A and B:

(a) let C be either A or B, depending on a heuristic
on-line choice;

(b) apply C.next().

The full logical inspectability is necessary in step 4(a): a
sophisticated on-line choice must access the logical states of
both loop kernels.

The speed-up techniques ‘&d-directed search” and “wan’-
ations of the A’ algorithm” can be easily realized through
specific data accessor classes (cf. section 2.2 and 3). Finally,
the restriction of the search horizon to an ellipsis can be
realized by a filter iterator as defined in section 3. This it-
erator must be instantiated with a predicate that returns
true for a node if and only if this node is inside the search
horizon. To increase the search horizon on-line, the heuristic
which computes the new search horizon must be invoked in
every iteration of the core loop. Because of the loop kernel
concept, this loop is “inside-out,” and hence this is easily
clone. Because of full logical inspectability, this heuristic is
well informed.

Comparison to algorithmic generators

Loop kernels are a generalization of the algotithmic genera-
tors introduced by Flamig [lo], which are similar to graph
search iterators [l] and to built-in concepts for streams and

45 .

iterations in various object-oriented programming languages
(notably the iterutor concept in Sather [32]). Like a loop
kernel, an algorithmic generator encapsulates an algorithm
in a class and offers a method to perform exactly one iter-
ation of the core loop. The main differences between loop
kernels and algorithmic generators are the following:

:_z_
l Algorithmic generators are only intended to implement

algorithms which consist of one core loop, and in each
iteration of the core loop, a single piece of the algo-
rithm’s output is constructed. For example, a gener-
ator for a sequence of prime numbers falls into this
category. However, Dijkstra’s algorithm does not, and
many other algorithms do not either. Consequently,
Dijkstra’s and many other algorithms are not formu-
lated as algorithmic generators in [lo], but in a con-
ventional style as subroutines.

l An algorithmic generator do&, all pre-, and postpro-
cessing itself, namely in its constructors and destruc-
tor, whereas a loop kernel delegates this to the client.
Hence, a speed-up technique such as “version stamps”
cannot be incorporated afterwards in an existing al-
gorithmic generator,‘unless this technique was antipi-
cated by the designer of the algorithmic generator.

l After an iteration of the core loop, an algorithmic gen-
erator provides a means of accessing the piece of the
output generated in this iteration. This is far from
full logical inspectability. : Consequently, a speed-up
technique such as “bidirectional search” cannot be in-
corporated either.

Comparison to algorithm frameworks

Goal 3 can alternatively be approached through aframework-
like design (see Holland [15] for a concrete example). In such
an algorithm framework, the algorithm is designed as a base
class, and this base class provides a method which executes
the algorithm as a whole.’ The crucial design task is to iden-
tify the “skeleton” of the algorithm, which is common to all
applications, and to determine all points in the algorithm
where a possibility to change or extend the behavior is nec-
essary to achieve flexible adaptability. Each of these points
is realized as a method of the base class. Derived classes
may overwrite these methods to customize the algorithm to
concrete applications.
, As demonstrated above, variations of the break condi-

tion, extensions of the algorithmic functionality, and inter-
mixed algorithms (e.g. bidirectional search) are straightfor-.
ward if the loop-kernel concept is applied. In contrast, in an
algorithm framework, any of these modifications requires im-
plementing a derived class. Moreover, these derived classes:
might often be tricky to implement. For instance, inter-,
mixed algorithms can indeed be realized in an algorithmic
framework, but the task is not at all trivial, and the de-
sign of the whole algorithmic package might suffer. To give
another example: suspending .an algorithm temporarily to
perform other, unrelated tasks is trivial in the loop-kernel
concept, but might cause severe design problems in an algo-
rithm framework.

ib

5 Inspectability,

Goal 4

An algorithm should be implemented such that it
is possible to inspect all potentially relevant details
during its execution.

Experience 5
Goal 4 may also be achieved through fully logically
inspectable loop kernels.

J

Goal 4 addresses various tasks. We discuss two different
tasks to illustrate experience 5.

6 ,Animation: To give a concrete example, a possible
visualization of Dijkstra’s algorithm in slow motion
would be to distinguish unseen nodes, nodes in the
current frontier line of the search, and finished nodes
from each other by color. It is not hard to write itera-
tor adapters which deliver all necessary information to
the graphical display (using the observer pattern [12]).

Sometimes it might be necessary to refresh the whole
display. This requires information about the current
logical state of the algorithm. Because of the principle
of full logical inspectability, no redundant bookkeoping
outside the algorithm is necessary.

l Snapshots: Another point, which might not bo in-
teresting for Dijkstra’s algorithm, but may bo impor-
tant for algorithms which take significant moro timo
per run: if the loop kernel concept is applied, tho al-
gorithm may be “snapshot” at frequent occasions to
recover after a crash.

6 Conclusion

We have implemented several algorithms based on the tool-
box in section 3 and’ on the loop kernel concept and tho
principle of full logical inspectability.”

In particular, we compared the shortest-path algorithm
in LEDA with our adaptable implementation. To achiovo
a realistic comparison, we customized our implementation
exactly to the same algorithmic problem and the same data
structures.

I I

The overhead of the techniques discussed in this
1 tions. Experience 6 , 1

paper compared to traditional implementations of
algorithms might be acceptable for most applica-

“Using the GNU C++ compiler, version 2.7.2, on Sparc Stntions,

46

Figures 7-9 show the results of computational studies in
which we compared the performance of LEDA’s implementa-
tion of Dijkstra’s algorithm (labeled “Direct”) with the per-
formance of our implementation (“Adaptable”). Figures 7
and 9 show the results of two studies in which the “classical”
variant of Dijkstra’s algorithm was applied to determine the
shortest paths from a designated root s to all other nodes.
On the other hand, to obtain figure 8, we computed the
shortest paths for all pairs of nodes: the classical variant is
called once for every node as the root node. Figure 8 shows
the accumulated times.

This computational study is based on random graphs.
In figures 7 and 8, each graph was constructed such that it
is highly connected and highly cyclic. Figure 9 is based on
random triangulated graphs: a triangulated graph is a plane
graph (cf. figure 1) such that each internal area is a triangle.
In addition, we studied all-pairs shortest-path computations
on several national and international train networks such as
the ‘one shown in figure 6:

Train network Overhead factor
Austria 1.48
Europe -1.53 -
France 1.68
Germany 1.60
Germany (local trains only) 1.62
Switzerland 1.57

This overhead is certainly acceptable for the overwhelming
majority of all applications. “In theory,” the overhead may
be even smaller in all situations in which the run-time flex-
ibility of dynamic binding is not required, because all func-
tion calls could be inlined and optimized as if they were
hand-coded. Hence, there is hope that progress in compiler
technology will reduce the overhead even further-r2 /

Acknowledgements

I would like to thank Ulrik Brandes, Dieter Gluche, Dret-
mar Kiihl, Kurt Mehlhorn, Stefan NZher, Marco Nissen,
Wolfgang Pree, and Christian Uhrig for fruitful discussions.
Special thanks to Dietmar Kiihl and Marco Nissen for their
strong engagement in the project and to Dorothea Wag-
ner for her overall support and encouragement. Moreover, I
would like to thank the anonymous reviewers for their valu-
able comments and for their hard, constructive criticism. In
particular, I am very grateful to my “shepherdess,” Lougie
Anderson, Finally, I would like to thank Tina Deveny for
proof-reading.

References

[l] AA1 base class library home page.
http://www.aai.com/AAI/IUE/spec/base/
base-classeshtml.

l*The overhead was essentially caused by failure of method inlin-
ing. In principle, zero overhead is possible. In fact, in additional
oxporiments, we found that at least one commercial compiter already
comas close to this ideal. We could not use this compiler for the above
studies, because LEDA has not been ported to, it.

PI

i31

PI

[51

PI

[71

PI

PI

PI

?I

WI

P31

1141

[I51

PI

[I71

P3J

PI

Ravindra K. Ahuja, Thomas L. ,Magnanti, and
James B. Orlin. Network flows. Prentice Hall, 1993.

Robert Barton and Lee R. Nackman. Scientific and Bn-
gineeting C++. Addison-Wesley Publish. ‘Camp., 1994.

Ted J. Biggerstaff. The library scaling problem and
the limits of concrete component reuse. In Proceedings
3rd International Conference on Software Reuse, 1994.
http://www.research.microsoft.com/research/ip/tedb/
limits/limits.htm.

T. Budd. Classic Data Structures in C++. Addison-
Wesley Publishing Company, 1994.

CGAL home page. http://www.cs.ruu.nl/CGAL/.

Thomas H. Cormen, Charles E. Leiserson, and
Ronald L. Rive&. Introduction to Algorithms. MIT
Press and McGraw-Hill, 1994.

Martin Erwig. Graph algorithms = iteration + data
structures? In Proceedings 18th International Work-
shop on Graph-Theoretic Concepts in Computer Sci-
ence, WG’92, Wiesbaden-Naurod, Germany, June 18-
20, 1992, pages 277-292. Springer-Verlag, Lecture
Notes in Computer Science, vol. 657, 1992. ,

ffGraph home page. httpi//www.fmi.uni-passau.de/
‘friedric/ffgraph/main.shtml.

Bryan Flamig. PracticaZ algorithms in C-/-+. Coriolis
Group Book, 1995.

Giorgio Gal10 and Maria G. Scutella. Toward a pro-
gramming environment for combinatorial optimization:
a case study oriented to max-%ow computations. ORSA
J. Computing, 5:120-133, 1993.

Erich Gamma, Richard Helm, Ralph Johnson; and John
Vlissides. Design patterns, elements of reusable object-
oriented software. Addison-Wesley Publishing Com-
pany, 1994.

Dieter Gluche, Dietmar Kiihl, and Karsten Weihe.
Evaluation of database queries through iterator prox-
ies, 1997.13

Mark R. Headington and David D. Riley. Data ab-
stractions and structures using C++. D.C. Heath and
Company, 1994.

Ian M. Holland. Specifying reusable components us-
ing contracts. In Proceedings Europoean Conference on
Object-Oriented Programming (ECOOP), pages 287-
308,1992.

Chris Johnson and Philip Gray. Assessing the impact
of time on user interface design. SIGCHI Bulletin,
28(2):33-35, 1996.

Laveen Kanal and Vipin Kumar. Search ‘in Artificial
Intelligence. Springer, 1988.

KarIa home page. http://i44www.info.uni-karlsruhe.
de/-zimmer/karla/index.html.

Yugo Kashiwagi and David S. Wise. Graph algorithms
in a lazy functional programming language. In Proceed-
ings 4th International Symposium on Lucid and Inten-
sional Programming, pages 35-46, 1991.

47

PO1

WI
:\

PI

P31

PI

P51

PI

1271

WI

PI

[301

[311

1321

[331

[341

[351

[361

[371

[331

[391

Dietmar Kiihl, A& Ludwig, Rolf H. MBhring, Rudolf
Miiller, J5rn Schulze, and Karsten Weihe. ADLIPS user
manual, 1993.13

Dietmar Kiihl and Karsten Weihe. Iterators and han-
dles for nodes and edges in graphs.13

Dietmar Kfihl,and Karsten Weihe., Using design pat-
terns for reusable, efficient implementations of graph
algorithms - working paper.13

Dietmar Kiihl and Karsten Weihe. Data access tem-
plates. C++ Report, S(July/August), 1997. ;

John Launchbury. Graph algorithms with a func-
tional flavour. In First International Spn’ng School on
Advanced Functional Programming Techniques, pages
308-331. Springer-Verlag, Lecture Notes in Computer
Science, vol.’ 925, 1995. ’

LEDA home page. http://www.mpi-sb.mpg.de/
LEDA/leda.html.

Thomas Lengauer. ‘Combinatorial algorithms for inte-
grated circuit layout. Wiley, 1990.

Kurt Mehlhorn and Stefan N5her. LEDA: a library of
efficient data structures and algorithms.. Communica-
tions of the,ACM, 38:96-102, 1995.

David R. Musser and Atul Saini. STL !lktorial and Ref-
erence Guide. Addison-Wesley Publishing Company,
1995.

Gabriele Neyer, Wolfram Schlickenrieder, Dorothea
Wagner, and Karsten Weihe. PlaNet - a demonstra-
tion package for algorithms on planar networks.?.

Marco Nissen and Karsten Weihe. Combining
LEDA with customizable implementations of graph
algorithms.r3 i-

PlaNet home page. http://www.informatik.
uni-konstanz.de/Forschung/Projekte/PlaNet/.

Ss,h;;rhome page. http://www.icsi.berkeley,edu/
I’

Robert Sedgewick. Algorithms in C++. Addison-
Wesley Publishing Company, 1992. ’ .’

SIMI home page. http://www.informatik.uni-konstanz.
de/Research/projects-algo.html#projekt7.

Jiri Soukop. Taming C++. Addison-Wesley Publishing
Company, 1994.

Bjarne Stroustrup. The C++ programmini language
(2nd edition). AddisonyWesley Publishing Company,
1991.

Michael VanHilst and David Notkin. Using
C-l-+ templates to implement role-based design.
http://www.cs.washington.edu/homes/vanhilst/
research.html.

visone home page. http://www.informatik.uni-
konstanz.de/Research/projects-algo.html$projekt8.

Sheng Yu and Qingyu Zhuang. Software reuse via al-
gorithmic abstraction. In Conference .Series Technology
of Object-Oriented Languages and Systems (Too& USA
‘95), pages 277-292, 1995. _ _~ ~. __I

48

Figure 7: single-source shortest paths on random graphs
with 1000 nodes (2: number of edges, y: run time in sec-
onds).

Figure 8: all-pairs shortest paths on random graphs with
100 nodes (2: riumber of edges, y: run time in seconds),

Figure 9: single-source shortest paths on random triangu-
lated planar graphs (2: number of nodes, y: run time in
seconds).

