
GROOP: An object-oriented toolkit for animated 3D graphics

Larry Koved

IBM Research
T. J. Watson Research
Yorktown Heights, NY

ABSTRACT

Center
10.598

GROOP is an object-oriented toolkit for creating
3D computer graphics applications. It is designed
for application developers who are not familiar
with computer graphics, but are familiar with
object-oriented programming, While application
programmers are able to quickly create animated
3D graphical objects, the toolkit is also sophisti-
cated enough for experienced programmers.

In addition to creating stationary 3D objects,. the
toolkit is used to construct animated objects.
Sophisticated reusable articulated objects have been
created for use in a variety of applications, similar

to static 2D and 3D clip art available today.

1. Introduction

As 3-D computer generated graphics becomes more

affordable, there is an increasing need to provide

tools for application programmers that are easier to

learn and use, yet retain flexibility for a wide range

of modelling, animation, visualization and Virtual

Reality applications. The challenge is to define the

programming interface so that it is intuitive for

programmers who have a rudimentary under-

standing of 3-D geometry, yet have no prior know-

ledge of computer generated graphics.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
. .
@ 1993 ACM 0-89791-587-9/93/0009/0309...s1.50

Wayne L. Wooten

Graphics Visualization and Usability Center
Georgia Institute of Technology

Atlanta, Georgia 30318

GROOP, GRaphics using Object-Oriented Pro-

gramming, is a toolkit for animated 3D computer

generated graphics. The basic metaphor is derived

from theater or motion pictures -- a scene -- com-

posed of a stage (display), actors (3D objects),

lights and a camera. For the novice, simple ani-

mated models can be quickly constructed by cre-

ating objects, adding them to a scene, and applying

transformations (scale, rotate and translate) to gen-

erate animation. To simplify learning and provide

consistency, an object-oriented language with

inheritance, operator overloading and

polymorphism is employed, yielding code reuse

and permitting the construction of reusable 3D

objects with behavior.

GROOP is designed to be portable across

graphics systems and operating environments. The

system is divided into two major components -

scene construction/animation, and rendering (dis-

plays). Scenes contain 3D objects, lights and a

camera. Scenes are renderer independent. There-

fore different renderers can be used to display the

same scene description. The current implementa-

tion uses the Graphics Library (GL) for rendering

[2]. However, a new Display object using a dif-

ferent graphics package, having the same func-

tional interface as the GLwindow renderer object,

will be able to display the same set of scenes.

This separation of the scene from displays makes it

possible to quickly port applications from one

OOPSLA’93, pp. 309-325

309

system to another, even when the rendering soft-

ware is different.

The separation of scenes from displays and the

simplified object-oriented design of GROOP all fit

into the theme of making it easier for application

programmers to write portable 3D graphics applica-

tions. Many of the aspects of GROOP that make it

easier to learn and use by novices also make pro-

gramming more productive for experienced

graphics programmers. Libraries of 3D objects

with behavior can be quickly constructed and

included in a variety of applications and problem

domains.

2. Bclckgrormd

A number of graphics systems support application

programming interfaces (APIs) making it easier to

develop 3D graphics applications portable to a

number of different graphics hardware platforms

and operating environments (c.f.

[2, 6, 8, 13, 18, 221). These APIs present a

number of challenges to an application developer.

To develop some seemingly straightforward pro-

grams, most of these systems require the applica-

tion developer to cultivate a thorough

understanding of a complex programming model

that includes matrix operations, 3D geometry, and

lighting models. These graphics systems can

contain hundreds of functions, many of which gen-

erate system state changes that affect subsequent

graphics function calls. Thus, creating interesting

graphics applications requires significant invest-

ments of time and effort to become proficient at

creating even relatively simple applications.

Some graphics tools have taken on a more

object-oriented design [l, 5, 121. Others employ

object-oriented technology in the programming

model (e.g. C++) [3, 211. However, they retain

significant aspects of their graphics programming

heritage. The interface explicitly requires that a

display list, or scene graph, be constructed with

separate components for geometry, material proper-

ties (surface lighting) and geometric transforma-

tions. It is the responsibility of the programmer to

build and traverse the display lists in the correct

order so they can be fed into the graphics pipeline

for rendering and other operations.

Researchers at Brown University use delegation

rather than inheritance in their object-oriented

system [25]. The approach allows instancing of

objects and class methods. Objects communicate

with each other through message objects. Interpre-

tation of the messages is left up to the receiving

objects, where the interpretation of the message

may change over time. The work is oriented

towards animation tools. However, delegation is

not a widely used technique, and object-oriented

programmers are currently more familiar with

inheritance-based object-oriented languages.

Grams, recently reported work from the Univer-

sity of Illinois, employs an approach similar to

ours [9, lo]. Grams uses an object-oriented lan-

guage, C++, and also separates the specification of

geometry from that of rendering, permitting an

application to select from a number of different

renderers. The primary differences between Grams

and GROOP are in the class hierarchy and the

approach we have taken to extensibility, 3D object

construction, optimization and defining of objects

that have behavior.

3. GROOP

GROOP is designed to be used by application pro-

grammers familiar with object-oriented program-

ming and design. As shown in Figure 1, the

system is layered. The top-most layer is the appli-

cation that takes advantage of a number of

graphics-oriented objects in the middle layer.

Below these is the software interface to the 3D

graphics rendering.

The top layer contains application objects. They

are designed and implemented by the application

320

Application

GROOP Geometry Specification /

Transformations / Material Properties

GROOP Display (Rendering) Interface

Figure 1. Graphics layers. At the top is the application. This includes, but is not limited to, animation
systems, 3D modellers, visualization and Virtual Reality. This interfaces with GROOP by generating
object descriptions (or reading them from a file) and defining object surface material properties such as
color and texture. The next layer is the GROOP interface to the rendering software package. It performs
data management, such as optimization and caching of data values from the layer above, and appropriately
sequences all of the calls to the rendering software. The renderer and graphics hardware are provided by
systems manufacturers and/or third party vendors (e.g. [l, 2, 6, 8, 18, 221).

programmer. These include simulations, 3D object

modellers, animation and data visualizers, among

others. The application defines the geometry of

and relationships between the objects to be dis-

played, along with the material properties. These

properties include the color, reflection, and surface

textures. The application determines the visual

behavior (animation) of the 3D objects to be dis-

played through the use of tmnsfomar~ons: scaling

of the object size, rottzfions (about the origin) and

translations (movement away from the origin).

The scene description can be computed by the

application, read from files, or imported from other

external sources.

An example application is the spinning top sim-

ulator (Figure 2). In this program, a top is created

by constructing an inverted cone and combining it

with a cylinder to create the top. The geometry of

the cone and cylinder are computed when they are

created. Each time through the simulation, the top

is tilted and rotated, giving it the appearance of

wobbling’ ,

The middle layer is a set of classes used to

describe a scene (see Figure 3). The underlying

concept is that all elements of a scene are

GeometricObjects, which can be transformed and

given material properties.

3.1 GEOMETRICOBJECTS

All GeometricObjects contain three basic elements:

3D geometry, material (surface or lighting) proper-

ties, and lists of geometric transformations.

A number of classes provide flexibility in

defining the geometry of 3D objects. Surfaces are

often defined by polygons and strips of simple tri-

angles. These objects along with polylines (multi-

segment lines) are defined by a list of verticies,

points represented in Cartesian coordinates by

(X, Y, 2). They inherit from the VertexList class,

I If the spinning top application were to be written as a GL program, the following 26 functions would be used: winopen(),
prefposition0, winconstraint.% viewport lookat(), RGBmode(), doublebuffero, gconfig(), zbuffer(), czclear(), swapbufferso,
mode-0 perspective0, loadmatrixo, popmatrixo, multmatrix(), rot(), scale(), lmdef(), lmbind(), bgnpolygon(), endpolygon(),
bgntmesh(), endtmesh(), n3f(), v3f(). Many of these have complex options and change the system state. Programmers would have
to understand how the state changes affect subsequent graphics system function calls.

311

main (void)
1

GLwindow mywindow("Spinning Top"); // create GL window
// with a title bar

CappedCone* conertr = new CappedCone;
CappedCylinder* cylinderptr : new CappedCylinder;
Composite* topptr = new Composite;

topPtr->Add(conePtr); // add cone and cylinder to the top object
topPtr->Add(cylinderPtr);
mywindow.Add(topPtr); // put the top in the window

conePtr->material.Diffuse(rgb_RED); // set object colors
cylinderptr->material.Diffuse(rgb-YELLOW);

cylinderptr->SetScale(0.1, 1.0, 0.1); // make it tall & skinny
conePtr->SetRotate(0.0, 0.0, 180.0); // default cone is base down.

// flip it over.

// simple simulation -- the top wobbles as it spins
for (float index = 0.0; index < 2000.0; index += 1.0) {

topPtr->RotateZ(45.0 * index / 2000.0); // make it wobble
topPtr->RotateY(index); // spin the top

mywindow.Display(); // display the top
1

I

Figure 2. Spinning Top. A simple animated object program. A Display object is created (mywindow). A
number of GeometricObjects are created: two Composite objects are put into another Composite (topPtr)
and given colors. Since their default shape and orientation need to be changed to create the desired model
(a top), they are transformed. The “simulator” is a simple animation loop where the top is given tilt and
rotated to give the appearance of wobbling. See color plate 2 located near the end of the conference pro-
ceedings.

which maintains a list of verticies and normals*

that define the object, For example, a cube can be

represented as six polygons, one for each of the

faces. To create a face, a polygon object is created

and the Add{) member is called, inherited from

VertexList, with the vertex and normal for each

corner. Other primitive 3D objects include points,

curved surfaces such as nurbs3, and text.

Interesting objects are usually composed of

many smaller parts. Composite objects are con-

tainers, either of heterogeneous or homogeneous

objects. They are used to aggregate a number of

GeometricObjects that can be manipulated as a

group. A transformation applied to a Composite is

applied to each of the sub-objects. In addition,

default material properties can be defined that

2 Unit vectors perpendicular to a surface at a point.

3 non-uniform rational B-splines

apply to the sub-objects, unless the sub-objects

define their own material properties.

Heterogeneous Composite objects are collections

of objects where the geometric descriptions are of

different types. A candlestick may be composed of

a vertical component defined by polygons and the

base consisting of a nurbs surface. The compo-

nents of the Composite object are individually

created and added to the Composite. In addition,

the individual GeometricObjects may each have

surface material properties and geometric transfor-

mations.

Composites can contain Composites. This leads

to the construction of hierarchically composed

complex objects. GROOP automatically handles

the resulting nesting of the transformation hierar-

312

Camera (see below)
StereoCamera -(see below)

GeometricObject

Light
Composite - (see below)

Nurbs

Composite

CappedCylinder
CappedCone
Cube
Torus
Sphere

Camera -[
SimpleCamera
SimpleFixedScreenCamera

StereoCamera 4 SImpleStereoCamera
SlmpleStereoFixedScreenCamera

Figure 3. Geometric objects class hierarchy. Part of the class hierarchy that deals with GeometricObjects.

Other primitive classes in GROOP include MaterialProperties, GeoTransforms, Vertex, Matrix, rgb, Scene,

Display, GLwindow, and a number classes used for reading files of various formats. Domain and applica-

tion specific classes are added to extend the system. (Currently IndexedPolygon, IndexedTriMesh and

Nurbs are not implemented, but can easily be added.)

chies. This ability to nest Composites within Com-

posites enables the construction of complex

articulated objects, objects with behavior. A

simple example is in the Spinning Top, where the

cone and cylinder objects (CappedCone and

CappedCylinder) are subclasses of Composite.

These Composite objects are nested in another

Composite object, topPtr, where they are manipu-

lated as a group.

Special cases are automatically optimized.

Homogeneous Composites are constructed from

two or more objects of the same type. A cube is

such an object, consisting of six Polygons, where

each of the six faces is created and added to a

Composite object. Often the individual sub-parts

of the Composite object do not need to be inde-

pendently transformed. Similarly, each of the sub-

parts do not need to be given different material

properties. GROOP transparently optimizes these

different special cases.

3.2 LIGHTS

Scenes can contain multiple lights. Lights have

properties in addition to those of

GeometricObjects. By default, lights are omni-

directional. However, they can be redefined as

spotlights by setting the spotlight direction, angle

of focus (the cone of light spread) and light atten-

uation values. Generation of shadows is not pro-

vided by GROOP, but is left to the renderer being

used. For example, a Gouraud or flat shading

renderer may not necessarily provide automatic

313

generation of shadows. Other renderers, such as

RenderMan [22], will generate shadows.

3.3 CAMERAS

A number of full-featured and simplified camera

classes are provided. The base camera class allows

setting of the camera location and a number of

screen parameters.4 The settings include the width,

height, a normal vector, near and far clipping

planes, among other parameters. Understanding

and setting these parameters can be a daunting task

for the average programmer. A number of simpli-

fied camera models have been created that employ

the basic camera.

Class SimpleCamera behaves like a video

camera. Its location, a direction it is facing and a

rotation can be set. The class member functions

compute the new values for the underlying Camera

object. This is an intuitive camera model usable in

a wide variety of applications.

SimpleFixedScreenCamera creates the illusion

that the observer is looking into a box in which the

3D objects reside. When the camera’s location is

coupled to the observer’s location (e.g., using a 3D

position sensor [4, 17, 20]), the objects appear to

remain stationary as the observer moves about --

up, down, left, right, towards and away from -- the

computer monitor or display unit.

Stereoscopic display units enhance the illusion

that the computer generated objects are three

dimensional [ll, 14-161. The most commonly

used technique is for the graphics system to draw

the scene twice, once for each eye. The

stereoscopic display units make sure each eye sees

only one of the images. A StereoCamera object,

containing two Camera objects, can be inserted

into a scene. To simplify the use of stereoscopic

cameras, SimpleStereoCamera and

SimpleStereoFixedScreenCamera classes were

created. Similar to the monoscopic versions previ-

ously described, these two simplified StereoCamera

subclasses also take eye separation distance and

head orientation into consideration.

To reduce learning time and programming

effort, all of the simple cameras (monoscopic and

stereoscopic) have a common functional

(polymorphic) interface. This allows rapid substi-

tution of one camera type for another.

3.4 MATERIALPROPERTIES

All GeometricObjects contain an object, material,

that is of type MaterialProperties. The base set of

properties are diffuse, ambient, emissive and

specular colors, and a shininess parameter. Other

renderer specific attributes can be attached to

objects, such as texture maps. The base and other

attributes are used primarily for 3D surfaces and

objects. For lights, a subset of these attributes are

employed, and camera objects ignore them. A

number of material values are predefined to sim-

plify the process of selecting suitable values,

3.5 TRANSFORMATIONS - BASIC MODELLING

AND ANIMATION

For a programmer not familiar with 3D graphics

concepts, learning to apply transformations (scale,

rotate, translate) can be quite confusing. Graphics

packages typically require the user to understand

matrix operations and figure out the order in which

the transformations should be applied. In GL, for

a given set of transformations to an object, the

transformations need to be fed into the graphics

pipeline in the reverse order (bottom-up). When

hierarchically composing objects (nested Com-

posite objects), the transforms for the Composites

are fed into the pipeline in a top-down fashion.

This is certainly not intuitive.

Even for simple scaling, rotating and translating,

transformation usage is not always intuitive.

Transformations are order dependent. For

4 Informally, a screen is a rectangular 2D area onto which images of the 3D objects are projected.

314

example, this means that performing a rotate before

a translate will most likely produce a result dif-

ferent then if the order were reversed. Also, the

means for applying transformations to lights and

cameras may be different than for other

GeometricObjects.

GROOP hides the details of feeding the graphics

pipeline with the list of transformations and their

composition. The programmer adds the transfor-

mations in the sequence that is intuitive - in the

forward (top-down) direction, and through hierar-

chical nesting of GeometricObjects (the Composite

class).

Many times primitive objects or composite

objects are not oriented, located or scaled appropri-

ately for a given scene. Transformations need to

be applied to these objects at the time they are dis-

played to create the necessary model. In addition,

these models need to be animated. GROOP

addresses the modelling and animation issues in

two ways (see the Spinning Top example in

Figure 2).

The first is to provide a simple interface that

performs transformations -- SetScale(), SetRotate

and SetTranslate -- in a fixed order every time an

object is displayed. Once defined for an object,

these transformations remain with the object unless

subsequently changed by the application.

The second method permits transformations on

GeometricObjects to be specified in any order

when they are displayed. The transformation func-

tions are Scale(), RotateX(), RotateY(), RotateZ(),

Translate(), GenericTrans(), where the latter func-

tion accepts any 4x4 transformation matrix. These

functions generate a list of operations

(GeoTransform objects) to be performed on the

next display update (rendering). These transforms

are frequently used for animating objects. Each

time through the animation loop, the appropriate

transformations are specified to define the new

scale, location and orientation of the objects. By

default, the display object’s Display0 function

(which performs the rendering) will discard the list

of transformations every time the object is dis-

played. This simplifies the animation loop by not

having to add extra code just to reset the objects’

transformations.

To correctly model some objects, the simple

Set*() functions described above may be insuffi-

cient, so the general transformation functions need

to be used. To prevent Display{) from discarding

the transformations, a SaveTransforms is added to

the object’s list of transformations. This causes the

list of transformations prior to the

SaveTransforms{) to be computed and saved with

the object, and used by subsequent Display0 calls.

Also, transformations can still be added after the

SaveTransforms call to perform object animation,

as previously described.5

3.6 COPYING INSTANCES

Once an object has been modelled, it is sometimes

desirable to make copies. It is intuitive to use the

assignment operator to make that copy. GROOP

supports this by providing an assignment operator

for GeometricObject classes. In Figure 4, the code

fragment shows how four wheels for a wagon are

created from the original wheel. Each of these

wheels can be independently transformed into their

desired location to be part of the wagon.

GROOP can handle the assignment operation in

two ways. The simplest is copy-by-value (deep

COPY). However, for large complex objects, the

memory allocation overhead may be severe. In

this case, copy-by-reference is possible (shallow

copy). (A compromise between these extremes

would be to have copy-on-change.)

5 A different approach would be to provide a set of modelling functions to transform the original data points rather than trans-
forming the data every time through the animation loop.

315

. . .

Composite Wheel-l, Wheel-2, Wheel-3, Wheel-B;

. . . // code to construct the Wheel-l object

Wheel-2 = Wheel-l; // copy the wheel
Wheel-3 = Wheel-l;
Wheel-4 = Wheel-l;

Wheel-l->Translate(3, 0, -1); // move wheels to new locations
Wheel-2->Translate(3, 0, 1);
Wheel-3->Translate(-3, 0, -1);
Wheel-4->Translate(-3, 0, 1);

. . . // code to construct the rest of the wagon

Figure 4. Wheel objects. Multiple wheels are created from a single wheel by using the assignment oper-
ator. They are then transformed into their final location for use in a wagon. See color plate 2 located near
the end of the conference proceedings.

3.7 MEMORY MANAGEMENT

GROOP provides automatic memory management

for GeometricObjects. That is, when a Scene or a

Composite object is deleted, then all of the objects

contained in these objects and their attributes are

also deleted. This is important especially for pro-

grammers who want to focus on constructing

models and animating them. They do not want to

worry about keeping track of hundreds, thousands

or millions of objects. These objects may be

created by modeling applications and imported into

GROOP through one of the file reader classes,

Keeping track of the thousands of objects would be

impractical if not handled by GROOP. However,

there are circumstances where automatic memory

management may be undesirable. So, functions are

provided to turn off this feature.

4. Scenes and Displays

Scenes are a collection of GeometricObjects: 3D

objects, lights and a camera.6 Scene’s Add0 and

Delete0 functions are used to insert and remove

GeometricObjects. The only constraint is that a

scene can have just one Camera or StereoCamera

at a time.

Displays interpret scene descriptions. The

Display object sends a message to each of the

GeometricObjects in the scene to obtain the

GeometricObjects’ geometry, set of transforma-

tions, MaterialProperties and other attributes.

Display classes interfacing to renderers, such as

GLwindow, use the information to make the appro-

priate graphics system calls. While GLwindow

uses the GL graphics library for rendering, a

Display does not have to be a renderer. For

example, different Display subclasses can be

defined to write scene descriptions to files in any

desired format.

To achieve renderer independence, Display is

defined as a C++ virtual base class. The class

defines a set of member functions that must be

implemented by all subclasses, Most of these

functions are the routines that will interpret the

objects’ geometry data (e.g., triangles, polygons,

nurbs, etc.) and other object attributes. By imple-

menting the minimal set of functions defined in

Display, any scene description can be rendered or

written to a file.

As a convenience, Display is a subclass of

Scene. This alleviates the extra step of creating a

6 Displays contain a default light and camera when none are otherwise specified.

316

enum LeftRight { LeftHand, RightHand 1;

class Hand : public Composite {
private:

. . .
public:

// private declarations

Hand(LeftRight handedness); // create the hand
BendFingers{

float, float, // thumb joints
float, float, float, // index joints
float, float, float, // middle joints
float, float, float, // ring joints
float, float, float // pinky joints
);

Figure 5. Hand object. A simple interface to an object defining a 3D hand with behavior. Hand is a sub-
class of Composite, which is a subclass of GeometricObject. This means that the palm and fingers can be
transformed (scaled, rotated, translated) as a single unit rather than having to perform the transformations
on the individual components. The details of managing the complex geometric relationships are hidden
within the class.

Scene object and adding it to a Display object. gesture (bending of the fingers). Another example

Also, multiple scenes can be added to a Display. is the Lathe (see Figure 6). An object is inserted

Scene objects can be used to contain scene seg- into the lathe for turning. Member functions

ments that are added and deleted from the display define the lathe’s rotation, plus the location and ori-

as needed. entation of the cutting tool.

5. Reusable objects with behavior

One goal of GROOP is to afford the construction

or importation of reusable 3D graphical objects

that have behavior. Many 3D modelling products

are commercially available. However, for ani-

mation tasks, visualization and Virtual Reality

applications, among others, there is a need to give

these objects programmable behavior. For

example, it is straightforward to build a graphical

model of a hand. However, it is cumbersome to

take the geometry from a modelling program and

animate it. More desirable would be the ability to

define the palm and fingers as a Composite object

with behavior. This object would have an interface

for creating instances as either left or right hands,

and bending the fingers (e.g. Figure 5). The

Bend0 member function takes care of the details of

how the finger bending is modelled. The applica-

tion developer can now focus on where the hand

should be rotated and translated, and the hand

By defining 3D objects with behavior, it

becomes much easier for application developers to

write applications containing 3D graphics. Much

of the laborious work entailed in building the

models, specifying the geometric relationships and

their dynamics (motions relative to each other) can

be hidden inside the classes.

GROOP is effective in constructing objects with

behavior. They are usually defined as a Composite

so they can contain any number of other

GeometricObjects. Since it is also a

GeometricObject, it can be transformed to create

the desired model for the scene in which it is to be

used. The constructor can create the necessary

GeometricObjects and add them to itself, defining

the geometric relationships needed between the

sub-objects. For example, the Hand object con-

tams a number of Finger objects. The finger is

modelled in a separate class that defines the geom-

etry of the parts of the fingers and defines a

member function for finger bending. The Hand

317

class Lathe : public Composite {
private:

. . .
public:

// private declarations

Lathe(GeometricObject object); // object to be turned in the lathe
Turn(float angle); // angle to rotate object
ToolOrientation(float anglel, float angle2); // cutting tool angle
ToolLocation(float x, float y, float z); // location of tool

I;

Figure 6. Lathe object declaration.

class creates five fingers, transforms (scales and

translates), and adds them to itself. When Hand’s

Bend0 function is called, the Finger’s Bend0 func-

tion is called for each finger with the appropriate

parameters. All of these low-level details are

hidden from the end-user of the Hand class. It is

the combination of hierarchical object construction

and object-oriented programming that makes reus-

able objects easy to create.

6. Using GROOP in applications

GROOP was designed to be embedded in a variety

of applications rather than being a domain specific

tool. Hence, it does not have a specific user inter-

faces, such as a 3D modeller, animation classes,

Virtual Reality or scientific visualization functions.

Instead, these can be added to suit the application

needs. For example, at IBM we have created a

simple interactive 3D modeller by using standard

X Windows widgets. We routinely use GROOP in

our Virtual Reality toolkit.

6.1 ANIMATION

GROOP is a library that is flexible enough to be

used in the creation of a generic animation system.

Hierarchical composition of objects through the use

of the Composite class makes it is easier to create

articulated figures such as humans and animals.

Code which uses inverse-kinematic techniques can

then be used to drive the joints of the articulated

figures (cf. [19, 231). In addition, actual

dynamics simulations can be used to drive the joint

angles of the exact same GROOP model, with no

modifications to the articulated figure code. Only

the simulation changes, the actual GROOP model

can be reused.

6.2 VR

GROOP has been used extensively in the con-

struction of Virtual Reality applications. While

GROOP can be used in stand-alone applications, it

has also been embedded into a distributed runtime

environment that supports a variety of input and

output devices [7]. A number of reusable objects

have been created, including an object similar to

the Hand object previously described. Objects

modelled in systems such as CATIA and

WaveFront have been imported into GROOP appli-

cations. File import is accomplished by writing

tile reader classes, subclassed from the virtual base

class FileReader, which are written to read data of

different formats.

6.3 SIMULATIONS

Both discrete and continuous systems can be easily

accommodated (Figure 7). The two simulation

classes (Discrete and Continuous) are the objects to

be included in the simulation. The actual simu-

lation objects are subclassed from either the Dis-

crete or Continuous class, and are also a subclass

of one of the GeometricObject classes. By using

multiple inheritance, the object can be both a simu-

lation object and a 3D graphics object. The Simu-

late class is a container, holding a list of objects to

318

class Discrete (
private:

. . . // private declarations
public:

. . .
virtual void TimeStep(int step) = 0; // called every time step

); -..

class Continuous {
private:

. . . // private declarations
public:

. . .
virtual float TimeStep(float time) = 0; // accept current clock

// return next time to be called

1; ---

class Simulate {
private:

. . . // private declarations
public:

. . .
void Add(Discrete* object) ; // add objects to be simulated
void Add(Continuous* object);

void Delete(Discrete* object) ; // delete objects from simulation
void Delete(Continuous* object);

); ...

Figure 7. Simulations. The two simulation classes (Discrete and Continuous) are virtual base classes,
which are subclassed by applications. The subclasses implement the function of the simulation by creating
the actual TimeStep functions. The Simulate class manages the clock used in the simulation.

be simulated. Simulate objects increment the time

step or clock and call the TimeStep member

function for each of the simulation objects. The

application would create these simulation objects

and insert them into a Simulate object, which

drives the simulation, and a Display object (e.g.,

GLwindow) for display at an appropriate time

determined by the application.

7. Comparisons with other object-oriented systems

7.1 IRIS INVFNTOR

One of the main advantages GROOP has over Iris

Inventor [3, 211 is that it is not dependent on the

GL graphics library [2]. The GROOP system was

designed so that drivers for other renderers or 3D

display libraries could be written, High perform-

ance can be maintained by having the new display

class performing optimizations that are specific to

the renderer. Applications using one renderer

could be used with another renderer by simply

changing declaration of the display (renderer)

object.

Another main difference is in the class structure.

In Inventor the scene database is designed as a tree

of nodes which contain objects that are used to

draw the scene. The objects include shapes, lights,

cameras, transformations, and materials. To build

a scene in Inventor one has to remember to insert

all of the objects into the tree in the correct order.

For example, if a material node is inserted after a

shape node, then the material will not apply to that

shape. Inventor allows node-kits to be built that

provide materials, transforms, and geometry to

exist together in a branch of the scene tree.

319

// This function will be called by the Timer sensor to spin the top.
static void
myCallback(void *dataP, SoSensor *)
c

static float index = 0;

// Modify the transformation a little
SsTransform *transformP = (SoTransform *) dataP;
SbRotation rl(SbVec3f(0, 0, 1), (5.0*index/2000.0) l M-PI/180.0);
SbRotation r2(SbVeclif(0, 1, 0), index*M-PI/lEO.O);
transformp->rotation.setValue(r2 * rl);
index += 3.0;

main(int argc, char **argv)

Widget mywindow = SoXt::init(argv 0"); // Initialize Inventor
if (myWindow == NULL) exit{ 1); // and X Windows

SoSeparator +rootP = new SoSeparator;
rootP->ref();
SoPerspectiveCamera *cameraP = new SoPerspectiveCamera;
rootP->addChild(cameraP);
rootP->addChild(new SoDirectionalLight);

// Rotate the whole world so it is upright
SoRotationXYZ *rotateP = new SoRotationXYZ;
rntateP->angle = -M-PI;
rotateP-taxis = SoRotationXYZ::Z;
rootP->addChild(rotateP);

// This transformation is modified to rotate the cone
SoTransform *transformP = new SoTransform;
rootP->addChild(transformp);

// This is transform is used to make the cylinder skinny
SoScale *scaleP = new SoScale;
scaleP->scaleFactor.setValue (.l, 1.0, .l);
SoTranslation *translateP = new SoTranslation;
translatep->translation.setValue (0, -.5, 0);

// These are the shape nodes with colors
SoMaterial l materialP : new SoMaterial;
materialp->diffuseColor.setValue(1.0, 0.0, 0.0); // Red
rootP->addChild(materialP);
rootP->addChild(new SoCone);
SoMaterial *material2P = new SoMaterial;
material2P->diffuseColor.setValue(1.0, 1.0, 0.0); // Yellow
rootP->addChild(material2P);
rootP->addChild(scaleP);
rootP->addChild(translatep);
rootP->addChild(new SoCylinder);
cameraP->viewAll(rootP);

// A TimerSensor rotates the object
SoTimerSensor *mySensorP =

new SoTimerSensor(mycallback, transformp);
mySensorP->schedule(SbTime(0, 2));

SoXtRenderArea l renderAreaP = new SoXtRenderArea;
(void) renderAreaP->build(myWindow);
renderAreaP-zsetSceneGraph(rootP);
renderAreaP->show();

SoXt::show(myWindow);
SoXt::mainLoop();

Figure 8. Iris Inventor. This SpinningTop program is similar in function to the GROOP version (see
Figure 2), yet is much longer and more complex.

320

However, it is up to the user to build node-kits not

provided by Inventor.

The approach taken by Inventor is to build

display lists where attributes need to be placed into

the list. As noted by [24] in his critique of

PHIGS, this style violates the principle of Zocdily

because visible-object attributes need not be placed

near the object a programmer wants to modify. If

the programmer wants to change a color of an

object, it is necessary to know where in the tree

the color attribute and/or object is located. In

addition, Wisskirchen also notes that when imple-

mented on a parallel processor, it is harder to

parallelize this code. In GROOP the programming

model is more intuitive. Materials, transformations

and geometric data are all attributes of a

GeometricObject, and are maintained as a single

unit, thus maintaining the principle of locality.

Since Inventor is based on a tree, in which only

certain types of nodes can be placed into the tree,

it is difficult to build higher level objects using the

inheritance features of the C++ language. GROOP

on the other hand easily allows higher-level

complex objects to be designed using inheritance

from the GeometricObject or Composite classes, as

was described in section 5 (Reusable objects with

behavior). These higher-level objects can have

their own member functions while also maintaining

all of the capabilities of a GeometricObject.

Inventor is an event driven system and provides

a selection of interactors. These allow users to

choose objects in a scene and manipulate them

interactively. While GROOP does not currently

provide this level of interaction, it can easily be

added. The fact that GROOP is not event driven

makes it easier to write code to generate animation

sequences. In Inventor a timer sensor must be

used to edit transformations in the scene tree over

time in order to generate animations.

In conclusion GROOP provides a simpler, more

intuitive, and extensible class structure based on a

camera/stage/actor paradigm. The code in

Figure 8 is the Inventor code to create a spinning

top similar to the one shown in Figure 2. The

GROOP code is much simpler and easier to create

and understand.

7.2 GRAMS

Of all the object-oriented 3D graphics systems,

GRAMS [9, lo] is the most similar to GROOP.

Many of the basic design issues, such as separation

of geometry and lighting/material specifications

from the rendering process. This permits a scene

to be rendered by more than one renderer. Many

of the differences between GRAMS and GROOP

are in the class hierarchy and some design differ-

ences (cf. [lo], page 86).

GRAMS specifies the renderer as an argument

when passing a geometric (Application) object to

the world object. When the world object is told to

display a scene, the world object passes the

geometric object to the renderer.

GROOP works with a simpler model. The pro-

grammer builds a Scene, typically a renderer (e.g.,

GLwindow is a subclass of Scene). When appro-

priate, the Scene is told to display itself. GROOP

is not concerned with mixing renderers in a single

window. In addition, “application” classes are left

up to the programmer, whereas GRAMS requires

displayable objects to be subclasses of an Applica-

tion class. Also, GROOP offers a richer set of

primitives for specifying surface material proper-

ties, and has a richer set of camera objects.

GROOP makes extensive use of inheritance and

virtual base classes to simplify the design of the

system as well as allow for future expansion (e.g.,

new renderers, file readers, file writers).

7.3 GEO++

Many of the object-oriented concepts described by

[24] are employed by GROOP. GEO++ is a

Smalltalk-based system that provides an object-

321

oriented interface to a 3D graphics system. In the

case of GEO++, the underlying graphics system is

PHIGS. Wisskirchen provides an in depth review

of GKS and PHIGS and describes their shortcom-

ings with respect to object-oriented approach as

embodied by GEO++.

As in GROOP, GEO++ makes extensive use of

part hierarchies to construct complex multi-part

objects. The construction of part hierarchies in

both systems is is somewhat similar. GEO++

makes extensive use of paths and subpaths for the

construction and traversal of the parts hierarchy.

While an interesting and perhaps useful concept, it

can be confusing to some programmers. For that

reason, GROOP does not expose the hierarchy

paths/subpaths.

“GEO++ supports part hierarchies quite exten-

sively, but lacks in supporting connectivity” ([24],

page 210). For example, in the case of the hand

object (Figure 5), it is not possible to specify the

transformation relationships between each of the

parts of the fingers. That is, GEO++ does no

support concatenation (or composition) of transfor-

mations. GROOP supports the composition of the

transformations in order to create articulated and

animated objects.

8. Conclusions

GROOP set out to achieve a number of goals. It is

an object-oriented toolkit for application program-

mers who are not familiar with 3D graphics and

graphics programming concepts, yet are familiar

with object-oriented design and programming. It is

designed to allow them to quickly build 3D

graphics applications without having to learn and

understand the intricacies of graphics geometry and

pipelines. The toolkit is also for experienced

graphics programmers who would like to focus on

the high-level application development issues

rather than devoting effort to write to the low-level

graphics interface. To succeed, the toolkit must be

flexible and maintain sufficient performance, It

must be possible to read geometric object

descriptions generated by other programs such as

3D modellers. One highly desirable benefit is the

ability to create reusable 3D objects with behavior.

A toolkit should also be able to be part of a larger

application, such as a modeller, animation, visual-

ization or Virtual Reality system.

3D Objects with behavior are straightforward to

create when using GROOP. Libraries of these

objects can be developed and made available to

application developers, similar to 2D and 3D clip

art that is commercially available today. These

libraries will make 3D graphics programming

accessible to increasing range of application devel-

opers.

GROOP has been successful in its goals of

quickly allowing non-graphics programmers to

develop 3D graphics applications for Virtual

Reality applications. They were able to do so

without having to understand low-level graphics

primitives. The toolkit has sufficient function that

experienced graphics programmers did not have to

resort to low-level graphics systems calls. It

allowed them to be more productive by focusing

their effort on the high-level design tasks rather

than coding to the graphics system interface.

GROOP performs a variety of optimizations that

boost overall graphics system throughput and can

reduce memory utilization.

Object-oriented programming simplified a

number of important aspects of GROOP’s design.

The class GeometricObject is the basis of objects

in scenes. This permits a number of uniform oper-

ations to be performed, such as transformations and

assignment of material properties. VertexList

allows the creation of objects whose geometry is

defined by a series of Cartesian coordinates.

GROOP is able to remain independent of renderers

and file formats by using a virtual base class,

Display, and virtual file reader classes. Objects

322

can be hierarchically nested to create complex

objects by using the Composite class, which allows

the aggregation of GeometricObjects, including

other Composite objects. A variety of simplified

camera classes were subclassed from the base

camera classes, Camera and StereoCamera.

The regularity of GROOP’s design, through the

extensive use of polymorphism, operator over-

loading, and virtual base classes GeometricObject,

Camera, Display and FileReader simplifies its

implementation. It also eases the learning curve

for novices and improves the productivity of expe-

rienced graphics programmers. This is true

because fewer programming concepts need to be

presented in order to use the system. Many of the

complex details of graphics programming and opti-

mization techniques are transparently handled

inside the classes.

GROOP is extensible in a number of ways.

Additional graphics primitives and geometric

objects can be built on top of the base provided by

the toolkit. In addition, GROOP is not tied to any

specific file formats, renderers or application

domains, For example, a number of the 3D

objects in the Virtual Reality system at IBM were

designed by 3D modellers and imported into

GROOP. New domain or application specific

classes can be created and can inherit directly from

GROOP classes, or multiple inheritance can be

used to create composite behavior, such as in the

case of the simulation classes previously described.

9. Future work

The Virtual Reality and animation applications are

on-going activities. As such, GROOP will con-

tinue to be extended to meet the needs of these

projects. Many of the extensions will most likely

be add-ons to the base system, such as animation

and simulation classes. We also intend to port

GROOP to platforms other than the IBM RISC

System 6000 and Silicon Graphics IrisTM com-

puters. As personal computers become faster, it

becomes desirable to run 3D graphics applications

on these low-end systems. GROOP is being ported

to PC-DOS-based systems.

One notable omission from GROOP at this time

is its lack of interaction classes (e.g., keyboard,

mouse, dials and window management). For the

applications we have developed to date, the inter-

action elements were provide by X Window

widgets or the Virtual Reality system. While not

immediately needed, interaction classes will be

added in the future.

10. Acknowledgements

We would like to acknowledge the support and

contributions of our colleagues in the Virtual

Worlds group at the IBM T. J. Watson Research

Center. Robert H. Wolfe provided invaluable con-

tributions to the camera models and testing the

system by building applications. James S.

Lipscomb provided general guidance on 3D

graphics issues. Christopher Codella was a won-

derful sounding board for C++ programming

issues. Reza Jalili wrote sample applications and

asked insightful questions. A former member of

the group, C. P. Wang helped in the initial stages

of learning GL. And, special thanks to the

manager of the Virtual Worlds Group, J. Bryan

Lewis.

11. Color figures

Four figures generated using GROOP are in color

plate 2 located near the end of the conference pro-

ceedings.

323

12. References 12. Michael R. Kaplan. The Design of the Dore

1.

2.

3.

4.

5.

6.

7.

8.

9.

-----. Dore Programmer’s Guide, Release 5.0.
Kubota Pacific Computer, Incorporated, Santa
Clara, CA, 1991.

-----. Graphics Library Programming Guide.
Silicon Graphics Computer Systems,
MountainView, CA, 1991.

-----. Iris Inventor Programming Guide.
Silicon Graphics Computer Systems,
MountainView, CA, 1992.

Ascension Technology Corporation, The Bird
Position and Orientation Measurement System
Installation and Operation Guide, POB 527
Burlington, Vermont, 1990.

E.H. Blake and P. Wisskirchen. Advances in
Object-Oriented Graphics Z. Springer-Verlag,
Berlin, 1991.

PHIGS+ Committee, Andries van Dam, chair.
PHIGS+ Functional Description, Revision 3.0.
Computer Graphics, 22(3):125-218, ACM, July
1988.

Christopher F. Codella, Reza Jalili, Larry
Koved and J. Bryan Lewis. A Toolkit for
Developing Multi-User, Distributed Virtual
Environments. Submitted to VRALS’93, IEEE,
September 1993.

Linda Kosko, ed. PHIGS Reference Manual:
30 Programming in X. O’Reilly & Associates,
Sebastopol, CA, 1992.

Parris K. Egbert. An Object-Oriented
Approach To Graphical Application Support,
PhD thesis. University of Illinois at Urbana-
Champaign, June 1992.

Graphics System. In E. H.-Blake and P.
Wisskirchen, editors, Advances in Object-
Oriented Graphics I, 177-198, Springer-Verlag,
Berlin, 199 1.

13. B. D. Kliewer. HOOPS: Powerful Portable 3D
Graphics. Byte, 14(7): 193-194, July 1989.

14. James S. Lipscomb. Experience with
stereoscopic display devices and output algo-
rithms. Three-dimensional Visualization and
Display Tech., 1083, Society of Photo-Optical
Instrumentation Engineers (SPIE), February
1989.

15. Lenny Lipton. Displays Gain Depth.
Computer Graphics World, PennWell Pub-
lishing Company, March 1988.

16. Lenny Lipton. The Crystal Eyes Handbook.
StereoGraphics Corporation, San Rafael, CA,
1991.

17. Logitech, Inc., 2D / 6D Mouse Technical Ref-
erence Manual, Fremont, CA, 1991.

18. International Standards Organization.
International Standard Information Processing
Systems - Computer Graphics - Graphics
Kernel System for Three Dimensions (GKS -
30) Functional Description. American
National Standards Institute, New York, 1988.

19. Cary B. Phillips and Norman I. Badler. Inter-
active Behaviors for Bipedal Articulated
Figures. Computer Graphics (SIGGRAPHPZ
Conference Proceedings}, 25(4):359-362, July
1991.

20. Polhemus Navigation Sciences Division of
McDonnell Douglass Electronics Company,
3SPACEB USER’S MANUAL, Colchester,

10. Parris K. Egbert and William J. Kubitz. Appli- Vermont, 1987.
cation Graphics Modeling Support Through
Object Orientation. Computer, 88-90, IEEE, 21. Paul S. Strauss and Rikk Carey. An Object-
October 1992. Oriented 3D Graphics Toolkit. Computer

Graphics (Proceedings of SIGGRAPH’92),
11. Phil Johnson. Hardware for stereoscopic com- 341-349, ACM, July 1992.

puter graphics and imaging. Information
Display, 5(7 & 8), Society for Information 22. Steve Upstill. The RenderMan Companion.
Display, July/August 1989. Addison-Wesley, Reading, MA, 1990.

324

23. Alan Watt and Mark Watt. Advanced Ani- 25. Robert C. Zeleznik, D. Brookshire Conner,
mation and Rerldering Techniques: Theory and Matthias M. Wloka, Daniel G. Aliaga, Nathan

Practice. Addison-Wesley, Reading, MA, T. Huang, Philip M. Hubbart, Brian Knep,

1992. Henry Kaufman, John F. Hughes and Andries
van Dam. An object-Oriented Framework for

24. P. Wisskirchen. Object-Oriented Graphics:
the Integration of Interactive Animation Tech-
niques. Comprtter Graphics (SIGGRAPHPZ

from GKS and PHIGS to Object-Oriented Conference Proceedings), 25(4):105-111,
Systems. Springer-Verlag, Berlin, 1990. ACM, July 1991.

325

