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GROOP is an object-oriented toolkit for creating 
3D computer graphics applications. It is designed 
for application developers who are not familiar 
with computer graphics, but are familiar with 
object-oriented programming, While application 
programmers are able to quickly create animated 
3D graphical objects, the toolkit is also sophisti- 
cated enough for experienced programmers. 

In addition to creating stationary 3D objects,. the 
toolkit is used to construct animated objects. 
Sophisticated reusable articulated objects have been 
created for use in a variety of applications, similar 

to static 2D and 3D clip art available today. 

1. Introduction 

As 3-D computer generated graphics becomes more 

affordable, there is an increasing need to provide 

tools for application programmers that are easier to 

learn and use, yet retain flexibility for a wide range 

of modelling, animation, visualization and Virtual 

Reality applications. The challenge is to define the 

programming interface so that it is intuitive for 

programmers who have a rudimentary under- 

standing of 3-D geometry, yet have no prior know- 

ledge of computer generated graphics. 
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GROOP, GRaphics using Object-Oriented Pro- 

gramming, is a toolkit for animated 3D computer 

generated graphics. The basic metaphor is derived 

from theater or motion pictures -- a scene -- com- 

posed of a stage (display), actors (3D objects), 

lights and a camera. For the novice, simple ani- 

mated models can be quickly constructed by cre- 

ating objects, adding them to a scene, and applying 

transformations (scale, rotate and translate) to gen- 

erate animation. To simplify learning and provide 

consistency, an object-oriented language with 

inheritance, operator overloading and 

polymorphism is employed, yielding code reuse 

and permitting the construction of reusable 3D 

objects with behavior. 

GROOP is designed to be portable across 

graphics systems and operating environments. The 

system is divided into two major components - 

scene construction/animation, and rendering (dis- 

plays). Scenes contain 3D objects, lights and a 

camera. Scenes are renderer independent. There- 

fore different renderers can be used to display the 

same scene description. The current implementa- 

tion uses the Graphics Library (GL) for rendering 

[2]. However, a new Display object using a dif- 

ferent graphics package, having the same func- 

tional interface as the GLwindow renderer object, 

will be able to display the same set of scenes. 

This separation of the scene from displays makes it 

possible to quickly port applications from one 
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system to another, even when the rendering soft- 

ware is different. 

The separation of scenes from displays and the 

simplified object-oriented design of GROOP all fit 

into the theme of making it easier for application 

programmers to write portable 3D graphics applica- 

tions. Many of the aspects of GROOP that make it 

easier to learn and use by novices also make pro- 

gramming more productive for experienced 

graphics programmers. Libraries of 3D objects 

with behavior can be quickly constructed and 

included in a variety of applications and problem 

domains. 

2. Bclckgrormd 

A number of graphics systems support application 

programming interfaces (APIs) making it easier to 

develop 3D graphics applications portable to a 

number of different graphics hardware platforms 

and operating environments (c.f. 

[2, 6, 8, 13, 18, 221). These APIs present a 

number of challenges to an application developer. 

To develop some seemingly straightforward pro- 

grams, most of these systems require the applica- 

tion developer to cultivate a thorough 

understanding of a complex programming model 

that includes matrix operations, 3D geometry, and 

lighting models. These graphics systems can 

contain hundreds of functions, many of which gen- 

erate system state changes that affect subsequent 

graphics function calls. Thus, creating interesting 

graphics applications requires significant invest- 

ments of time and effort to become proficient at 

creating even relatively simple applications. 

Some graphics tools have taken on a more 

object-oriented design [l, 5, 121. Others employ 

object-oriented technology in the programming 

model (e.g. C++) [3, 211. However, they retain 

significant aspects of their graphics programming 

heritage. The interface explicitly requires that a 

display list, or scene graph, be constructed with 

separate components for geometry, material proper- 

ties (surface lighting) and geometric transforma- 

tions. It is the responsibility of the programmer to 

build and traverse the display lists in the correct 

order so they can be fed into the graphics pipeline 

for rendering and other operations. 

Researchers at Brown University use delegation 

rather than inheritance in their object-oriented 

system [25]. The approach allows instancing of 

objects and class methods. Objects communicate 

with each other through message objects. Interpre- 

tation of the messages is left up to the receiving 

objects, where the interpretation of the message 

may change over time. The work is oriented 

towards animation tools. However, delegation is 

not a widely used technique, and object-oriented 

programmers are currently more familiar with 

inheritance-based object-oriented languages. 

Grams, recently reported work from the Univer- 

sity of Illinois, employs an approach similar to 

ours [9, lo]. Grams uses an object-oriented lan- 

guage, C++, and also separates the specification of 

geometry from that of rendering, permitting an 

application to select from a number of different 

renderers. The primary differences between Grams 

and GROOP are in the class hierarchy and the 

approach we have taken to extensibility, 3D object 

construction, optimization and defining of objects 

that have behavior. 

3. GROOP 

GROOP is designed to be used by application pro- 

grammers familiar with object-oriented program- 

ming and design. As shown in Figure 1, the 

system is layered. The top-most layer is the appli- 

cation that takes advantage of a number of 

graphics-oriented objects in the middle layer. 

Below these is the software interface to the 3D 

graphics rendering. 

The top layer contains application objects. They 

are designed and implemented by the application 
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Application 

GROOP Geometry Specification / 

Transformations / Material Properties 

GROOP Display (Rendering) Interface 

Figure 1. Graphics layers. At the top is the application. This includes, but is not limited to, animation 
systems, 3D modellers, visualization and Virtual Reality. This interfaces with GROOP by generating 
object descriptions (or reading them from a file) and defining object surface material properties such as 
color and texture. The next layer is the GROOP interface to the rendering software package. It performs 
data management, such as optimization and caching of data values from the layer above, and appropriately 
sequences all of the calls to the rendering software. The renderer and graphics hardware are provided by 
systems manufacturers and/or third party vendors (e.g. [l, 2, 6, 8, 18, 221). 

programmer. These include simulations, 3D object 

modellers, animation and data visualizers, among 

others. The application defines the geometry of 

and relationships between the objects to be dis- 

played, along with the material properties. These 

properties include the color, reflection, and surface 

textures. The application determines the visual 

behavior (animation) of the 3D objects to be dis- 

played through the use of tmnsfomar~ons: scaling 

of the object size, rottzfions (about the origin) and 

translations (movement away from the origin). 

The scene description can be computed by the 

application, read from files, or imported from other 

external sources. 

An example application is the spinning top sim- 

ulator (Figure 2). In this program, a top is created 

by constructing an inverted cone and combining it 

with a cylinder to create the top. The geometry of 

the cone and cylinder are computed when they are 

created. Each time through the simulation, the top 

is tilted and rotated, giving it the appearance of 

wobbling’ , 

The middle layer is a set of classes used to 

describe a scene (see Figure 3). The underlying 

concept is that all elements of a scene are 

GeometricObjects, which can be transformed and 

given material properties. 

3.1 GEOMETRICOBJECTS 

All GeometricObjects contain three basic elements: 

3D geometry, material (surface or lighting) proper- 

ties, and lists of geometric transformations. 

A number of classes provide flexibility in 

defining the geometry of 3D objects. Surfaces are 

often defined by polygons and strips of simple tri- 

angles. These objects along with polylines (multi- 

segment lines) are defined by a list of verticies, 

points represented in Cartesian coordinates by 

(X, Y, 2). They inherit from the VertexList class, 

I If the spinning top application were to be written as a GL program, the following 26 functions would be used: winopen(), 
prefposition0, winconstraint.% viewport lookat(), RGBmode(), doublebuffero, gconfig(), zbuffer(), czclear(), swapbufferso, 
mode-0 perspective0, loadmatrixo, popmatrixo, multmatrix(), rot(), scale(), lmdef(), lmbind(), bgnpolygon(), endpolygon(), 
bgntmesh(), endtmesh(), n3f(), v3f(). Many of these have complex options and change the system state. Programmers would have 
to understand how the state changes affect subsequent graphics system function calls. 
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main (void) 
1 

GLwindow mywindow("Spinning Top"); // create GL window 
// with a title bar 

CappedCone* conertr = new CappedCone; 
CappedCylinder* cylinderptr : new CappedCylinder; 
Composite* topptr = new Composite; 

topPtr->Add(conePtr); // add cone and cylinder to the top object 
topPtr->Add(cylinderPtr); 
mywindow.Add(topPtr); // put the top in the window 

conePtr->material.Diffuse(rgb_RED); // set object colors 
cylinderptr->material.Diffuse(rgb-YELLOW); 

cylinderptr->SetScale( 0.1, 1.0, 0.1 ); // make it tall & skinny 
conePtr->SetRotate( 0.0, 0.0, 180.0 ); // default cone is base down. 

// flip it over. 

// simple simulation -- the top wobbles as it spins 
for (float index = 0.0; index < 2000.0; index += 1.0) { 

topPtr->RotateZ( 45.0 * index / 2000.0 ); // make it wobble 
topPtr->RotateY( index ); // spin the top 

mywindow.Display(); // display the top 
1 

I 

Figure 2. Spinning Top. A simple animated object program. A Display object is created (mywindow). A 
number of GeometricObjects are created: two Composite objects are put into another Composite (topPtr) 
and given colors. Since their default shape and orientation need to be changed to create the desired model 
(a top), they are transformed. The “simulator” is a simple animation loop where the top is given tilt and 
rotated to give the appearance of wobbling. See color plate 2 located near the end of the conference pro- 
ceedings. 

which maintains a list of verticies and normals* 

that define the object, For example, a cube can be 

represented as six polygons, one for each of the 

faces. To create a face, a polygon object is created 

and the Add{) member is called, inherited from 

VertexList, with the vertex and normal for each 

corner. Other primitive 3D objects include points, 

curved surfaces such as nurbs3, and text. 

Interesting objects are usually composed of 

many smaller parts. Composite objects are con- 

tainers, either of heterogeneous or homogeneous 

objects. They are used to aggregate a number of 

GeometricObjects that can be manipulated as a 

group. A transformation applied to a Composite is 

applied to each of the sub-objects. In addition, 

default material properties can be defined that 

2 Unit vectors perpendicular to a surface at a point. 

3 non-uniform rational B-splines 

apply to the sub-objects, unless the sub-objects 

define their own material properties. 

Heterogeneous Composite objects are collections 

of objects where the geometric descriptions are of 

different types. A candlestick may be composed of 

a vertical component defined by polygons and the 

base consisting of a nurbs surface. The compo- 

nents of the Composite object are individually 

created and added to the Composite. In addition, 

the individual GeometricObjects may each have 

surface material properties and geometric transfor- 

mations. 

Composites can contain Composites. This leads 

to the construction of hierarchically composed 

complex objects. GROOP automatically handles 

the resulting nesting of the transformation hierar- 
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Camera (see below) 
StereoCamera -(see below) 

GeometricObject 

Light 
Composite - (see below) 

Nurbs 

Composite 

CappedCylinder 
CappedCone 
Cube 
Torus 
Sphere 

Camera -[ 
SimpleCamera 
SimpleFixedScreenCamera 

StereoCamera 4 SImpleStereoCamera 
SlmpleStereoFixedScreenCamera 

Figure 3. Geometric objects class hierarchy. Part of the class hierarchy that deals with GeometricObjects. 

Other primitive classes in GROOP include MaterialProperties, GeoTransforms, Vertex, Matrix, rgb, Scene, 

Display, GLwindow, and a number classes used for reading files of various formats. Domain and applica- 

tion specific classes are added to extend the system. (Currently IndexedPolygon, IndexedTriMesh and 

Nurbs are not implemented, but can easily be added.) 

chies. This ability to nest Composites within Com- 

posites enables the construction of complex 

articulated objects, objects with behavior. A 

simple example is in the Spinning Top, where the 

cone and cylinder objects (CappedCone and 

CappedCylinder) are subclasses of Composite. 

These Composite objects are nested in another 

Composite object, topPtr, where they are manipu- 

lated as a group. 

Special cases are automatically optimized. 

Homogeneous Composites are constructed from 

two or more objects of the same type. A cube is 

such an object, consisting of six Polygons, where 

each of the six faces is created and added to a 

Composite object. Often the individual sub-parts 

of the Composite object do not need to be inde- 

pendently transformed. Similarly, each of the sub- 

parts do not need to be given different material 

properties. GROOP transparently optimizes these 

different special cases. 

3.2 LIGHTS 

Scenes can contain multiple lights. Lights have 

properties in addition to those of 

GeometricObjects. By default, lights are omni- 

directional. However, they can be redefined as 

spotlights by setting the spotlight direction, angle 

of focus (the cone of light spread) and light atten- 

uation values. Generation of shadows is not pro- 

vided by GROOP, but is left to the renderer being 

used. For example, a Gouraud or flat shading 

renderer may not necessarily provide automatic 
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generation of shadows. Other renderers, such as 

RenderMan [22], will generate shadows. 

3.3 CAMERAS 

A number of full-featured and simplified camera 

classes are provided. The base camera class allows 

setting of the camera location and a number of 

screen parameters.4 The settings include the width, 

height, a normal vector, near and far clipping 

planes, among other parameters. Understanding 

and setting these parameters can be a daunting task 

for the average programmer. A number of simpli- 

fied camera models have been created that employ 

the basic camera. 

Class SimpleCamera behaves like a video 

camera. Its location, a direction it is facing and a 

rotation can be set. The class member functions 

compute the new values for the underlying Camera 

object. This is an intuitive camera model usable in 

a wide variety of applications. 

SimpleFixedScreenCamera creates the illusion 

that the observer is looking into a box in which the 

3D objects reside. When the camera’s location is 

coupled to the observer’s location (e.g., using a 3D 

position sensor [4, 17, 20]), the objects appear to 

remain stationary as the observer moves about -- 

up, down, left, right, towards and away from -- the 

computer monitor or display unit. 

Stereoscopic display units enhance the illusion 

that the computer generated objects are three 

dimensional [ll, 14-161. The most commonly 

used technique is for the graphics system to draw 

the scene twice, once for each eye. The 

stereoscopic display units make sure each eye sees 

only one of the images. A StereoCamera object, 

containing two Camera objects, can be inserted 

into a scene. To simplify the use of stereoscopic 

cameras, SimpleStereoCamera and 

SimpleStereoFixedScreenCamera classes were 

created. Similar to the monoscopic versions previ- 

ously described, these two simplified StereoCamera 

subclasses also take eye separation distance and 

head orientation into consideration. 

To reduce learning time and programming 

effort, all of the simple cameras (monoscopic and 

stereoscopic) have a common functional 

(polymorphic) interface. This allows rapid substi- 

tution of one camera type for another. 

3.4 MATERIALPROPERTIES 

All GeometricObjects contain an object, material, 

that is of type MaterialProperties. The base set of 

properties are diffuse, ambient, emissive and 

specular colors, and a shininess parameter. Other 

renderer specific attributes can be attached to 

objects, such as texture maps. The base and other 

attributes are used primarily for 3D surfaces and 

objects. For lights, a subset of these attributes are 

employed, and camera objects ignore them. A 

number of material values are predefined to sim- 

plify the process of selecting suitable values, 

3.5 TRANSFORMATIONS - BASIC MODELLING 

AND ANIMATION 

For a programmer not familiar with 3D graphics 

concepts, learning to apply transformations (scale, 

rotate, translate) can be quite confusing. Graphics 

packages typically require the user to understand 

matrix operations and figure out the order in which 

the transformations should be applied. In GL, for 

a given set of transformations to an object, the 

transformations need to be fed into the graphics 

pipeline in the reverse order (bottom-up). When 

hierarchically composing objects (nested Com- 

posite objects), the transforms for the Composites 

are fed into the pipeline in a top-down fashion. 

This is certainly not intuitive. 

Even for simple scaling, rotating and translating, 

transformation usage is not always intuitive. 

Transformations are order dependent. For 

4 Informally, a screen is a rectangular 2D area onto which images of the 3D objects are projected. 
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example, this means that performing a rotate before 

a translate will most likely produce a result dif- 

ferent then if the order were reversed. Also, the 

means for applying transformations to lights and 

cameras may be different than for other 

GeometricObjects. 

GROOP hides the details of feeding the graphics 

pipeline with the list of transformations and their 

composition. The programmer adds the transfor- 

mations in the sequence that is intuitive - in the 

forward (top-down) direction, and through hierar- 

chical nesting of GeometricObjects (the Composite 

class). 

Many times primitive objects or composite 

objects are not oriented, located or scaled appropri- 

ately for a given scene. Transformations need to 

be applied to these objects at the time they are dis- 

played to create the necessary model. In addition, 

these models need to be animated. GROOP 

addresses the modelling and animation issues in 

two ways (see the Spinning Top example in 

Figure 2). 

The first is to provide a simple interface that 

performs transformations -- SetScale(), SetRotate 

and SetTranslate -- in a fixed order every time an 

object is displayed. Once defined for an object, 

these transformations remain with the object unless 

subsequently changed by the application. 

The second method permits transformations on 

GeometricObjects to be specified in any order 

when they are displayed. The transformation func- 

tions are Scale(), RotateX(), RotateY(), RotateZ(), 

Translate(), GenericTrans(), where the latter func- 

tion accepts any 4x4 transformation matrix. These 

functions generate a list of operations 

(GeoTransform objects) to be performed on the 

next display update (rendering). These transforms 

are frequently used for animating objects. Each 

time through the animation loop, the appropriate 

transformations are specified to define the new 

scale, location and orientation of the objects. By 

default, the display object’s Display0 function 

(which performs the rendering) will discard the list 

of transformations every time the object is dis- 

played. This simplifies the animation loop by not 

having to add extra code just to reset the objects’ 

transformations. 

To correctly model some objects, the simple 

Set*() functions described above may be insuffi- 

cient, so the general transformation functions need 

to be used. To prevent Display{) from discarding 

the transformations, a SaveTransforms is added to 

the object’s list of transformations. This causes the 

list of transformations prior to the 

SaveTransforms{) to be computed and saved with 

the object, and used by subsequent Display0 calls. 

Also, transformations can still be added after the 

SaveTransforms call to perform object animation, 

as previously described.5 

3.6 COPYING INSTANCES 

Once an object has been modelled, it is sometimes 

desirable to make copies. It is intuitive to use the 

assignment operator to make that copy. GROOP 

supports this by providing an assignment operator 

for GeometricObject classes. In Figure 4, the code 

fragment shows how four wheels for a wagon are 

created from the original wheel. Each of these 

wheels can be independently transformed into their 

desired location to be part of the wagon. 

GROOP can handle the assignment operation in 

two ways. The simplest is copy-by-value (deep 

COPY). However, for large complex objects, the 

memory allocation overhead may be severe. In 

this case, copy-by-reference is possible (shallow 

copy). (A compromise between these extremes 

would be to have copy-on-change.) 

5 A different approach would be to provide a set of modelling functions to transform the original data points rather than trans- 
forming the data every time through the animation loop. 
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. . . 

Composite Wheel-l, Wheel-2, Wheel-3, Wheel-B; 

. . . // code to construct the Wheel-l object 

Wheel-2 = Wheel-l; // copy the wheel 
Wheel-3 = Wheel-l; 
Wheel-4 = Wheel-l; 

Wheel-l->Translate( 3, 0, -1); // move wheels to new locations 
Wheel-2->Translate( 3, 0, 1); 
Wheel-3->Translate(-3, 0, -1); 
Wheel-4->Translate(-3, 0, 1); 

. . . // code to construct the rest of the wagon 

Figure 4. Wheel objects. Multiple wheels are created from a single wheel by using the assignment oper- 
ator. They are then transformed into their final location for use in a wagon. See color plate 2 located near 
the end of the conference proceedings. 

3.7 MEMORY MANAGEMENT 

GROOP provides automatic memory management 

for GeometricObjects. That is, when a Scene or a 

Composite object is deleted, then all of the objects 

contained in these objects and their attributes are 

also deleted. This is important especially for pro- 

grammers who want to focus on constructing 

models and animating them. They do not want to 

worry about keeping track of hundreds, thousands 

or millions of objects. These objects may be 

created by modeling applications and imported into 

GROOP through one of the file reader classes, 

Keeping track of the thousands of objects would be 

impractical if not handled by GROOP. However, 

there are circumstances where automatic memory 

management may be undesirable. So, functions are 

provided to turn off this feature. 

4. Scenes and Displays 

Scenes are a collection of GeometricObjects: 3D 

objects, lights and a camera.6 Scene’s Add0 and 

Delete0 functions are used to insert and remove 

GeometricObjects. The only constraint is that a 

scene can have just one Camera or StereoCamera 

at a time. 

Displays interpret scene descriptions. The 

Display object sends a message to each of the 

GeometricObjects in the scene to obtain the 

GeometricObjects’ geometry, set of transforma- 

tions, MaterialProperties and other attributes. 

Display classes interfacing to renderers, such as 

GLwindow, use the information to make the appro- 

priate graphics system calls. While GLwindow 

uses the GL graphics library for rendering, a 

Display does not have to be a renderer. For 

example, different Display subclasses can be 

defined to write scene descriptions to files in any 

desired format. 

To achieve renderer independence, Display is 

defined as a C++ virtual base class. The class 

defines a set of member functions that must be 

implemented by all subclasses, Most of these 

functions are the routines that will interpret the 

objects’ geometry data (e.g., triangles, polygons, 

nurbs, etc.) and other object attributes. By imple- 

menting the minimal set of functions defined in 

Display, any scene description can be rendered or 

written to a file. 

As a convenience, Display is a subclass of 

Scene. This alleviates the extra step of creating a 

6 Displays contain a default light and camera when none are otherwise specified. 
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enum LeftRight { LeftHand, RightHand 1; 

class Hand : public Composite { 
private: 

. . . 
public: 

// private declarations 

Hand(LeftRight handedness); // create the hand 
BendFingers{ 

float, float, // thumb joints 
float, float, float, // index joints 
float, float, float, // middle joints 
float, float, float, // ring joints 
float, float, float // pinky joints 
); 

Figure 5. Hand object. A simple interface to an object defining a 3D hand with behavior. Hand is a sub- 
class of Composite, which is a subclass of GeometricObject. This means that the palm and fingers can be 
transformed (scaled, rotated, translated) as a single unit rather than having to perform the transformations 
on the individual components. The details of managing the complex geometric relationships are hidden 
within the class. 

Scene object and adding it to a Display object. gesture (bending of the fingers). Another example 

Also, multiple scenes can be added to a Display. is the Lathe (see Figure 6). An object is inserted 

Scene objects can be used to contain scene seg- into the lathe for turning. Member functions 

ments that are added and deleted from the display define the lathe’s rotation, plus the location and ori- 

as needed. entation of the cutting tool. 

5. Reusable objects with behavior 

One goal of GROOP is to afford the construction 

or importation of reusable 3D graphical objects 

that have behavior. Many 3D modelling products 

are commercially available. However, for ani- 

mation tasks, visualization and Virtual Reality 

applications, among others, there is a need to give 

these objects programmable behavior. For 

example, it is straightforward to build a graphical 

model of a hand. However, it is cumbersome to 

take the geometry from a modelling program and 

animate it. More desirable would be the ability to 

define the palm and fingers as a Composite object 

with behavior. This object would have an interface 

for creating instances as either left or right hands, 

and bending the fingers (e.g. Figure 5). The 

Bend0 member function takes care of the details of 

how the finger bending is modelled. The applica- 

tion developer can now focus on where the hand 

should be rotated and translated, and the hand 

By defining 3D objects with behavior, it 

becomes much easier for application developers to 

write applications containing 3D graphics. Much 

of the laborious work entailed in building the 

models, specifying the geometric relationships and 

their dynamics (motions relative to each other) can 

be hidden inside the classes. 

GROOP is effective in constructing objects with 

behavior. They are usually defined as a Composite 

so they can contain any number of other 

GeometricObjects. Since it is also a 

GeometricObject, it can be transformed to create 

the desired model for the scene in which it is to be 

used. The constructor can create the necessary 

GeometricObjects and add them to itself, defining 

the geometric relationships needed between the 

sub-objects. For example, the Hand object con- 

tams a number of Finger objects. The finger is 

modelled in a separate class that defines the geom- 

etry of the parts of the fingers and defines a 

member function for finger bending. The Hand 
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class Lathe : public Composite { 
private: 

. . . 
public: 

// private declarations 

Lathe(GeometricObject object); // object to be turned in the lathe 
Turn(float angle); // angle to rotate object 
ToolOrientation(float anglel, float angle2); // cutting tool angle 
ToolLocation(float x, float y, float z); // location of tool 

I; 

Figure 6. Lathe object declaration. 

class creates five fingers, transforms (scales and 

translates), and adds them to itself. When Hand’s 

Bend0 function is called, the Finger’s Bend0 func- 

tion is called for each finger with the appropriate 

parameters. All of these low-level details are 

hidden from the end-user of the Hand class. It is 

the combination of hierarchical object construction 

and object-oriented programming that makes reus- 

able objects easy to create. 

6. Using GROOP in applications 

GROOP was designed to be embedded in a variety 

of applications rather than being a domain specific 

tool. Hence, it does not have a specific user inter- 

faces, such as a 3D modeller, animation classes, 

Virtual Reality or scientific visualization functions. 

Instead, these can be added to suit the application 

needs. For example, at IBM we have created a 

simple interactive 3D modeller by using standard 

X Windows widgets. We routinely use GROOP in 

our Virtual Reality toolkit. 

6.1 ANIMATION 

GROOP is a library that is flexible enough to be 

used in the creation of a generic animation system. 

Hierarchical composition of objects through the use 

of the Composite class makes it is easier to create 

articulated figures such as humans and animals. 

Code which uses inverse-kinematic techniques can 

then be used to drive the joints of the articulated 

figures (cf. [19, 231). In addition, actual 

dynamics simulations can be used to drive the joint 

angles of the exact same GROOP model, with no 

modifications to the articulated figure code. Only 

the simulation changes, the actual GROOP model 

can be reused. 

6.2 VR 

GROOP has been used extensively in the con- 

struction of Virtual Reality applications. While 

GROOP can be used in stand-alone applications, it 

has also been embedded into a distributed runtime 

environment that supports a variety of input and 

output devices [7]. A number of reusable objects 

have been created, including an object similar to 

the Hand object previously described. Objects 

modelled in systems such as CATIA and 

WaveFront have been imported into GROOP appli- 

cations. File import is accomplished by writing 

tile reader classes, subclassed from the virtual base 

class FileReader, which are written to read data of 

different formats. 

6.3 SIMULATIONS 

Both discrete and continuous systems can be easily 

accommodated (Figure 7). The two simulation 

classes (Discrete and Continuous) are the objects to 

be included in the simulation. The actual simu- 

lation objects are subclassed from either the Dis- 

crete or Continuous class, and are also a subclass 

of one of the GeometricObject classes. By using 

multiple inheritance, the object can be both a simu- 

lation object and a 3D graphics object. The Simu- 

late class is a container, holding a list of objects to 
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class Discrete ( 
private: 

. . . // private declarations 
public: 

. . . 
virtual void TimeStep(int step) = 0; // called every time step 

); -.. 

class Continuous { 
private: 

. . . // private declarations 
public: 

. . . 
virtual float TimeStep(float time) = 0; // accept current clock 

// return next time to be called 

1; --- 

class Simulate { 
private: 

. . . // private declarations 
public: 

. . . 
void Add(Discrete* object) ; // add objects to be simulated 
void Add(Continuous* object); 

void Delete(Discrete* object) ; // delete objects from simulation 
void Delete(Continuous* object); 

); ... 

Figure 7. Simulations. The two simulation classes (Discrete and Continuous) are virtual base classes, 
which are subclassed by applications. The subclasses implement the function of the simulation by creating 
the actual TimeStep functions. The Simulate class manages the clock used in the simulation. 

be simulated. Simulate objects increment the time 

step or clock and call the TimeStep member 

function for each of the simulation objects. The 

application would create these simulation objects 

and insert them into a Simulate object, which 

drives the simulation, and a Display object (e.g., 

GLwindow) for display at an appropriate time 

determined by the application. 

7. Comparisons with other object-oriented systems 

7.1 IRIS INVFNTOR 

One of the main advantages GROOP has over Iris 

Inventor [3, 211 is that it is not dependent on the 

GL graphics library [2]. The GROOP system was 

designed so that drivers for other renderers or 3D 

display libraries could be written, High perform- 

ance can be maintained by having the new display 

class performing optimizations that are specific to 

the renderer. Applications using one renderer 

could be used with another renderer by simply 

changing declaration of the display (renderer) 

object. 

Another main difference is in the class structure. 

In Inventor the scene database is designed as a tree 

of nodes which contain objects that are used to 

draw the scene. The objects include shapes, lights, 

cameras, transformations, and materials. To build 

a scene in Inventor one has to remember to insert 

all of the objects into the tree in the correct order. 

For example, if a material node is inserted after a 

shape node, then the material will not apply to that 

shape. Inventor allows node-kits to be built that 

provide materials, transforms, and geometry to 

exist together in a branch of the scene tree. 
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// This function will be called by the Timer sensor to spin the top. 
static void 
myCallback( void *dataP, SoSensor * ) 
c 

static float index = 0; 

// Modify the transformation a little 
SsTransform *transformP = (SoTransform *) dataP; 
SbRotation rl( SbVec3f( 0, 0, 1 ), (5.0*index/2000.0) l M-PI/180.0); 
SbRotation r2( SbVeclif( 0, 1, 0 ), index*M-PI/lEO.O ); 
transformp->rotation.setValue( r2 * rl ); 
index += 3.0; 

main( int argc, char **argv ) 

Widget mywindow = SoXt::init(argv 0"); // Initialize Inventor 
if ( myWindow == NULL ) exit{ 1 ); // and X Windows 

SoSeparator +rootP = new SoSeparator; 
rootP->ref(); 
SoPerspectiveCamera *cameraP = new SoPerspectiveCamera; 
rootP->addChild( cameraP ); 
rootP->addChild( new SoDirectionalLight ); 

// Rotate the whole world so it is upright 
SoRotationXYZ *rotateP = new SoRotationXYZ; 
rntateP->angle = -M-PI; 
rotateP-taxis = SoRotationXYZ::Z; 
rootP->addChild( rotateP ); 

// This transformation is modified to rotate the cone 
SoTransform *transformP = new SoTransform; 
rootP->addChild( transformp ); 

// This is transform is used to make the cylinder skinny 
SoScale *scaleP = new SoScale; 
scaleP->scaleFactor.setValue ( .l, 1.0, .l ); 
SoTranslation *translateP = new SoTranslation; 
translatep->translation.setValue ( 0, -.5, 0 ); 

// These are the shape nodes with colors 
SoMaterial l materialP : new SoMaterial; 
materialp->diffuseColor.setValue( 1.0, 0.0, 0.0 ); // Red 
rootP->addChild( materialP ); 
rootP->addChild( new SoCone ); 
SoMaterial *material2P = new SoMaterial; 
material2P->diffuseColor.setValue( 1.0, 1.0, 0.0 ); // Yellow 
rootP->addChild( material2P ); 
rootP->addChild( scaleP ); 
rootP->addChild( translatep ); 
rootP->addChild( new SoCylinder ); 
cameraP->viewAll( rootP ); 

// A TimerSensor rotates the object 
SoTimerSensor *mySensorP = 

new SoTimerSensor( mycallback, transformp ); 
mySensorP->schedule( SbTime( 0, 2 ) ); 

SoXtRenderArea l renderAreaP = new SoXtRenderArea; 
(void) renderAreaP->build( myWindow ); 
renderAreaP-zsetSceneGraph( rootP ); 
renderAreaP->show(); 

SoXt::show( myWindow ); 
SoXt::mainLoop(); 

Figure 8. Iris Inventor. This SpinningTop program is similar in function to the GROOP version (see 
Figure 2), yet is much longer and more complex. 
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However, it is up to the user to build node-kits not 

provided by Inventor. 

The approach taken by Inventor is to build 

display lists where attributes need to be placed into 

the list. As noted by [24] in his critique of 

PHIGS, this style violates the principle of Zocdily 

because visible-object attributes need not be placed 

near the object a programmer wants to modify. If 

the programmer wants to change a color of an 

object, it is necessary to know where in the tree 

the color attribute and/or object is located. In 

addition, Wisskirchen also notes that when imple- 

mented on a parallel processor, it is harder to 

parallelize this code. In GROOP the programming 

model is more intuitive. Materials, transformations 

and geometric data are all attributes of a 

GeometricObject, and are maintained as a single 

unit, thus maintaining the principle of locality. 

Since Inventor is based on a tree, in which only 

certain types of nodes can be placed into the tree, 

it is difficult to build higher level objects using the 

inheritance features of the C++ language. GROOP 

on the other hand easily allows higher-level 

complex objects to be designed using inheritance 

from the GeometricObject or Composite classes, as 

was described in section 5 (Reusable objects with 

behavior). These higher-level objects can have 

their own member functions while also maintaining 

all of the capabilities of a GeometricObject. 

Inventor is an event driven system and provides 

a selection of interactors. These allow users to 

choose objects in a scene and manipulate them 

interactively. While GROOP does not currently 

provide this level of interaction, it can easily be 

added. The fact that GROOP is not event driven 

makes it easier to write code to generate animation 

sequences. In Inventor a timer sensor must be 

used to edit transformations in the scene tree over 

time in order to generate animations. 

In conclusion GROOP provides a simpler, more 

intuitive, and extensible class structure based on a 

camera/stage/actor paradigm. The code in 

Figure 8 is the Inventor code to create a spinning 

top similar to the one shown in Figure 2. The 

GROOP code is much simpler and easier to create 

and understand. 

7.2 GRAMS 

Of all the object-oriented 3D graphics systems, 

GRAMS [9, lo] is the most similar to GROOP. 

Many of the basic design issues, such as separation 

of geometry and lighting/material specifications 

from the rendering process. This permits a scene 

to be rendered by more than one renderer. Many 

of the differences between GRAMS and GROOP 

are in the class hierarchy and some design differ- 

ences (cf. [lo], page 86). 

GRAMS specifies the renderer as an argument 

when passing a geometric (Application) object to 

the world object. When the world object is told to 

display a scene, the world object passes the 

geometric object to the renderer. 

GROOP works with a simpler model. The pro- 

grammer builds a Scene, typically a renderer (e.g., 

GLwindow is a subclass of Scene). When appro- 

priate, the Scene is told to display itself. GROOP 

is not concerned with mixing renderers in a single 

window. In addition, “application” classes are left 

up to the programmer, whereas GRAMS requires 

displayable objects to be subclasses of an Applica- 

tion class. Also, GROOP offers a richer set of 

primitives for specifying surface material proper- 

ties, and has a richer set of camera objects. 

GROOP makes extensive use of inheritance and 

virtual base classes to simplify the design of the 

system as well as allow for future expansion (e.g., 

new renderers, file readers, file writers). 

7.3 GEO++ 

Many of the object-oriented concepts described by 

[24] are employed by GROOP. GEO++ is a 

Smalltalk-based system that provides an object- 
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oriented interface to a 3D graphics system. In the 

case of GEO++, the underlying graphics system is 

PHIGS. Wisskirchen provides an in depth review 

of GKS and PHIGS and describes their shortcom- 

ings with respect to object-oriented approach as 

embodied by GEO++. 

As in GROOP, GEO++ makes extensive use of 

part hierarchies to construct complex multi-part 

objects. The construction of part hierarchies in 

both systems is is somewhat similar. GEO++ 

makes extensive use of paths and subpaths for the 

construction and traversal of the parts hierarchy. 

While an interesting and perhaps useful concept, it 

can be confusing to some programmers. For that 

reason, GROOP does not expose the hierarchy 

paths/subpaths. 

“GEO++ supports part hierarchies quite exten- 

sively, but lacks in supporting connectivity” ([24], 

page 210). For example, in the case of the hand 

object (Figure 5), it is not possible to specify the 

transformation relationships between each of the 

parts of the fingers. That is, GEO++ does no 

support concatenation (or composition) of transfor- 

mations. GROOP supports the composition of the 

transformations in order to create articulated and 

animated objects. 

8. Conclusions 

GROOP set out to achieve a number of goals. It is 

an object-oriented toolkit for application program- 

mers who are not familiar with 3D graphics and 

graphics programming concepts, yet are familiar 

with object-oriented design and programming. It is 

designed to allow them to quickly build 3D 

graphics applications without having to learn and 

understand the intricacies of graphics geometry and 

pipelines. The toolkit is also for experienced 

graphics programmers who would like to focus on 

the high-level application development issues 

rather than devoting effort to write to the low-level 

graphics interface. To succeed, the toolkit must be 

flexible and maintain sufficient performance, It 

must be possible to read geometric object 

descriptions generated by other programs such as 

3D modellers. One highly desirable benefit is the 

ability to create reusable 3D objects with behavior. 

A toolkit should also be able to be part of a larger 

application, such as a modeller, animation, visual- 

ization or Virtual Reality system. 

3D Objects with behavior are straightforward to 

create when using GROOP. Libraries of these 

objects can be developed and made available to 

application developers, similar to 2D and 3D clip 

art that is commercially available today. These 

libraries will make 3D graphics programming 

accessible to increasing range of application devel- 

opers. 

GROOP has been successful in its goals of 

quickly allowing non-graphics programmers to 

develop 3D graphics applications for Virtual 

Reality applications. They were able to do so 

without having to understand low-level graphics 

primitives. The toolkit has sufficient function that 

experienced graphics programmers did not have to 

resort to low-level graphics systems calls. It 

allowed them to be more productive by focusing 

their effort on the high-level design tasks rather 

than coding to the graphics system interface. 

GROOP performs a variety of optimizations that 

boost overall graphics system throughput and can 

reduce memory utilization. 

Object-oriented programming simplified a 

number of important aspects of GROOP’s design. 

The class GeometricObject is the basis of objects 

in scenes. This permits a number of uniform oper- 

ations to be performed, such as transformations and 

assignment of material properties. VertexList 

allows the creation of objects whose geometry is 

defined by a series of Cartesian coordinates. 

GROOP is able to remain independent of renderers 

and file formats by using a virtual base class, 

Display, and virtual file reader classes. Objects 
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can be hierarchically nested to create complex 

objects by using the Composite class, which allows 

the aggregation of GeometricObjects, including 

other Composite objects. A variety of simplified 

camera classes were subclassed from the base 

camera classes, Camera and StereoCamera. 

The regularity of GROOP’s design, through the 

extensive use of polymorphism, operator over- 

loading, and virtual base classes GeometricObject, 

Camera, Display and FileReader simplifies its 

implementation. It also eases the learning curve 

for novices and improves the productivity of expe- 

rienced graphics programmers. This is true 

because fewer programming concepts need to be 

presented in order to use the system. Many of the 

complex details of graphics programming and opti- 

mization techniques are transparently handled 

inside the classes. 

GROOP is extensible in a number of ways. 

Additional graphics primitives and geometric 

objects can be built on top of the base provided by 

the toolkit. In addition, GROOP is not tied to any 

specific file formats, renderers or application 

domains, For example, a number of the 3D 

objects in the Virtual Reality system at IBM were 

designed by 3D modellers and imported into 

GROOP. New domain or application specific 

classes can be created and can inherit directly from 

GROOP classes, or multiple inheritance can be 

used to create composite behavior, such as in the 

case of the simulation classes previously described. 

9. Future work 

The Virtual Reality and animation applications are 

on-going activities. As such, GROOP will con- 

tinue to be extended to meet the needs of these 

projects. Many of the extensions will most likely 

be add-ons to the base system, such as animation 

and simulation classes. We also intend to port 

GROOP to platforms other than the IBM RISC 

System 6000 and Silicon Graphics IrisTM com- 

puters. As personal computers become faster, it 

becomes desirable to run 3D graphics applications 

on these low-end systems. GROOP is being ported 

to PC-DOS-based systems. 

One notable omission from GROOP at this time 

is its lack of interaction classes (e.g., keyboard, 

mouse, dials and window management). For the 

applications we have developed to date, the inter- 

action elements were provide by X Window 

widgets or the Virtual Reality system. While not 

immediately needed, interaction classes will be 

added in the future. 
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