

Aspect-Oriented Frameworks: The Design of
Adaptable Operating Systems

P. Netinant1, C. A. Constantinides1, T. Elrad1, and M. E. Fayad2

ABSTRA

With softwar
of their comp
limit reusabil
design and c
of these syste
There is a
expandability
of these issu
specifically
[4]. Operatin
separation of
of operating
reusability,
However, suc
Programming
separating co
software lif
implementati
promotes the
the system i
software eng
system, whi
Therefore as
adapted from
Object-Orien
and layers a
design model
in the design
to inflexibili
make it hard
Aspect-Orien
design by exp
supporting
framework is
produce cust
Framework i
components,

Permission to
personal or cla
not made or di
bear this notic
to republish, to
specific permis
 OOPS
 (c) Cop

{ne

2Department of Computer Science and Engineering
University of Nebraska - Lincoln

Lincoln, NE, U.S.A.
fayad@cse.unl.edu
1Concurrent Research Group
Computer Science Department
Illinois Institute of Technology

Chicago, IL, U.S.A.
tipan,elrad,conscon}@iit.edu

CT

e systems such as operating systems, the interaction
onents becomes more complex. This interaction may
ity, adaptability, and make it difficult to validate the
orrectness of the system. As a result, re-engineering
ms might be inevitable to meet future requirements.
general feeling that OOP promotes reuse and
 by its very nature. This is a misconception as none
es is enforced. Rather, a software system must be
designed for reuse, expandability, and adaptability
g systems are dominated in many aspects. Supporting
 concerns and aspectual decomposition in the design
 systems provides a number of benefits such as
expandability, adaptability and reconfigurability.
h support is difficult to accomplish. Aspect-Oriented
 (AOP) [7] is a paradigm proposal that aims at
mponents and aspects from the early stages of the

e cycle, and combines them together at the
on phase. Besides, Aspect- Oriented Programming
 separation of the different aspects of components in
nto their natural form. However, Aspect-Oriented
ineering can be supported well if there is an operating
ch is built based on an aspect- oriented design.
pects can be created in applications, reused and
 the aspects provided by the operating systems.

ted Operating Systems treat aspects, components,
s a two dimensional models, which is not a good
. Aspects in the operating system cannot be captured
 and implementation. Two-dimensional models lead
ty, limit possibilities for reuse and adaptability, and
 to understand and modify. The poster will show an
ted Framework [1, 8], which simplifies system
ressing its design at a higher level of abstraction, for

the design of adaptable operating systems. A
 more than a class hierarchy and it is a reusable to
om systems and applications [5]. Aspect-Oriented
s based on a three-dimensional design that consists of
aspects, and layers.

make digital or hard copies of all or part of this work for
ssroom use is granted without fee provided that copies are
stributed for profit or commercial advantage and that copies
e and the full citation on the first page. To copy otherwise,
 post on servers or to redistribute to lists, requires prior
sion and/or a fee.

LA 2000 Companion Minneapolis, Minnesota
yright ACM 2000 1-58113-307-3/00/10...$5.00

Components consist of the basic functionality modules of the
system. Aspects are the properties in the systems that cut across
the components in the operating systems. Some aspects in
operating systems such as synchronization, scheduling, fault-
tolerance cut across, in horizontal and vertical, the basic
functionality of the systems. Layers consist of the components and
aspects. By separating aspects and components of the operating
systems in every layer, we can provide a better generic design
model of the operating systems. The framework uses design
patterns [6]. The overall architecture is divided into two
frameworks: Base Layer and Application Layer Framework. The
poster will show The UML model of frameworks and how to
maximize separation of aspects, components, and layers from
each other. Our goal is to achieve a better design model and
implementation of operating systems, in terms of reusability,
adaptability, extensibility, and reconfigurability.

1. Problem: Cross-Cutting of Design Issues

The principle of separation concerns introduces a number of
benefits, originally addressed by [3, 9]. These include better
understanding, modifiability, extensibility, debugging of the
system, and better reuse of the concern. The primary idea for
operating system design has traditionally been based on functional
decomposition where a problem is broken into sub-problems that
are addressed relatively separately. Traditional languages and
techniques have been supportive to functional decomposition.
However, no decomposition technique has yet managed to address
a complete separation of concerns. Further, certain properties in
the system seem to cut across a number of functional components,
making the system difficult to understand. Example properties
include fault-tolerance, scheduling, synchronization, and
distribution. The tangling of concerns in the designing system
leads to increase the implementation dependency between
functional components and aspects, which makes its source code
difficult to understand, evolve, and maintain. Aspect-Oriented
Programming [7] suggests that these properties should be
addressed relatively separately at the analysis and design phases,
and be combined with the main functionality of the system at the
implementation phase.
 We address a number of operating system design issues in the
context of AOP and we discuss our approach in the context of the
supporting aspectual decomposition for the designing of the
operating systems. Our goals are to provide a clean separation of
design concerns, flexibility, reusability, as well as to provide a
methodology that would be practical to implement. We want to
provide the design that aspects of the operating system can be

61

captured in both the design and implementation. We want to
demonstrate that AOP can be used effectively in this area, as an
alternative design approach.

2. The Aspect-Oriented Frameworks

Our observation suggests that AOP could support designers and
programmers in cleanly separating components and aspects from
each other on each layer. AOP can provide a mechanism that
would make it possible to abstract and compose components and
aspects to produce the overall system such as aspect moderator
framework [2]. We argue that a cross-cutting property of the
system should not be seen within a two-dimensional model, and it
should not be treated as a single monolithic aspect.
 Our proposed framework is based on a three-dimensional
system design that consists of components, aspects, and layers.
1). Components consist of the basic functionality modules of the
system such as the file system, communication, and process
management etc. 2). Aspects are cross-cutting entities, and they
include fault tolerance, synchronization, and scheduling, naming
etc. 3). Layers consist of the components and aspects decomposed
into a number of more manageable sub-problems. In general,
lower layers deal with a far shorter time scale. The lower the
layer, the closer the hardware is. The higher layer deals with
interaction with the user.
 By separating the different aspects of each component, we can
separate components, aspects, and layers from each other
(components from each other, aspects from each other, layers
from each other, components from aspects, components in each
layer, and aspects in each layer). It would thus be possible to
abstract and compose them to produce the overall system. This
would result in the clarification of interaction and increased
understanding aspects of each component in the system. High-
level of abstraction is easier to understand. Further, the reusability
achieved by the higher level can use the lower level of the
implementation not only to promote extensibility and refinement,
but also to reduce cost and time in system development. A change
in the implementation at a lower level would not result in a
change at the higher level if the interface level has not been
changed. Thus the design can achieve stability, consistency, and
separation of concerns. An aspect might have multiple domains.
Some aspect (scheduling, synchronization, naming, and fault
tolerance e.g.) is scattered among many components in the system
with varying policies, different mechanism, and possibly under
different application. To reduce tangling of aspects in an operating
system each aspect can be considered and analyzed separately.
For example, an aspect of scheduling in the file systems can be
considered in different domains in each layer. It would separate
policy from an aspect of each layer. Aspects would represent the
general specifications needed to provide the abstraction. Further, a
policy can be added or modified in each layer to specific domain.
This approach can support reusability.
 The overall framework architecture is divided into two
frameworks based on two layers: a base framework on the low
layer and an application framework on the upper layer. The Base
Framework corresponds to the system layer. On the upper layer
we may have more than one application frameworks.
 In this framework, aspects are created using the Abstract
Factory and the Bridge patterns. The Abstract Factory would
isolate aspects from implementation classes because the factory
encapsulates the responsibility and the process of creating aspect
objects. The class of concrete aspect appears only once in a
functionality, where it’s instantiated. The framework promotes
consistency when an aspect is modified. The Bridge pattern

avoids a permanent binding between an abstraction and its
implementation. An example where this would be beneficial is
when an implementation concern must be selected or switched at
run-time. This way, different aspect abstractions and
implementations can be combined and extended independently.
This implementation is still useful when a change in the
implementation of a class must not affect its existing components.
As a result, a class need not be recompiled, but just re-linked. This
approach supports polymorphism, and manages to avoid
proliferation. Changing the implementation of an aspect
abstraction should have no impact on functionality either. A
smart-protection proxy controls access to the aspects and allows
additional housekeeping tasks when an aspect is accessed.
 In the application framework, the Adapter pattern allows the
aspect factory to either convert the interface of an existing aspect
(super aspect or aspects in the lower layers) into another interface
functionality expect or to create a new aspect. Ideally, a new
aspect should reuse an existing aspect to create new aspects, when
it could be used. The upper layer can redefine existing aspects and
override them.
 The general architecture of the framework promotes
reusability (the upper layer can reuse aspects from the lower
layer), extensibility, and ensures adaptability of aspects and
components because both are designed and implemented
relatively separately from each other. Aspects in the application
framework can be extended and redefined by aspects provided by
the layer to meet new requirements. A new aspect can be added in
both system layer and application layer without interfering with
aspects or components in the other layer.

REFERENCES

[1] Constantinides, C.A., A. Bader, T. Elrad, M.E. Fayad, and P.

Netinant. Designing an Aspect-Oriented Framework in an
Object-Oriented Environment. ACM Computing Surveys,
Submitted for publication in March 2000.

[2] Constantinides C.A., A Bader, and T. Elrad. A Framework to
Adress a Two-Dimensional Separation of Concens. Position
paper to the OOPSLA’99 Workshop on Multidimentional
Separation of Concerns, Denver, CO, November 1999, np.

[3] Dijkstra, Edsger W., A Discipline of Programming, Prentice-
Hall, 1976.

[4] Fayad M.E., and M. Cline. Aspect of Software Adaptability.
Communications of ACM, Vol. 39, No. 10, 1996, pp.58-59.

[5] Fayad, M.E., W. Pree, and D.S. Hamu. Achieving Bottom-
Line improvements with Enterprise Frameworks. Position
paper to the OOPSLA’99 First Workshop on Enterprise
Frameworks, Denver, CO, November 1999, np.

[6] Gamma E., R. Helm, R. Johnson, and J. Vlissides. Design
Pattern: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1995.

[7] Kiczales G., J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J.M. Loingtier, and J. Irwin. Aspect-Oriented
Programming. ACM Computing Surveys, Vol. 28, No. 4es,
Articles No.154, December 1996, np.

[8] Netinant P., C.A. Constantinides, T. Elrad, and M.E. Fayad.
Supporting Aspectual Decomposition in the Design of
Adaptable Operating Systems Using Aspcet-Orinted
Frameworks. Proceedings of 3rd Workshop on Object-
Orientation and Operating Systems ECOOP 2000, Sophia
Antipolis, France, June 2000, pp.36-46.

[9] Parnas, D. On the criteria to be used in decomposing systems
into modules. Communications of ACM, Vol. 15, No. 12,
December 1972, pp.1053-1058.

62

	ABSTRACT
	1. Problem: Cross-Cutting of Design Issues

