
Transformations to Automate Model Change Evolution
Yuehua Lin

Department of Computer and Information Sciences
University of Alabama at Birmingham, Birmingham, AL 35294, USA

1-205-934-5841
liny @ cis.uab.edu

Abstract
As models are elevated to first-class artifacts within the software
development lifecycle, new approaches are needed to address the
accidental complexities associated with current modeling practice
(e.g., manually evolving the deep hierarchical structures of large
system models can be error prone and labor intensive). This
research poster presents a model transformation approach to
automate model evolution and testing tools to improve the quality
of model transformation.

Categories and Subject Descriptors D.2.2 [Software
Engineering]: Design Tools and Techniques – Object-oriented
design methods, D.2.5 [Software Engineering]: Testing and
Debugging.
General Terms Design, Languages, Verification.

Keywords Model Transformation, Model Change Evolution,
Testing

1. Research Problem
As a standard modeling language proposed by OMG, the Unified
Modeling Language (UML) is a general purpose language for any
domain. Distinguished from UML, Domain-Specific Modeling
Languages aim to specify the solution directly using rules and
concepts familiar to a particular domain of end-users. Large
domain-specific system models often have repetitive and nested
hierarchical structures and may contain large quantities of objects
of the same type. For example, a model of a distributed real-time
and embedded (DRE) system can have multiple thousands of
coarse grained components. Because of such structural
complexity, the fundamental task of model construction and
maintenance can become manually intensive and error prone.
Meanwhile, a powerful justification for the use of models
concerns the flexibility of system analysis that can be performed
while exploring various design alternatives. This requires an
ability to rapidly evolve models in a reliable manner. To mitigate
these problems, one possible solution is to provide an ability to
automate model evolution.

To support automation of model evolution, there are several
approaches in current modeling practice. Many commercial and
research toolsuites provide APIs to manipulate models. However,
these APIs are usually at a low-level involving many accidental
complexities. Another approach uses domain-specific model
translators to specify changes in models. To improve the level of
abstraction and provide domain independency, this research
advocates a high-level and domain-independent transformation
language to define and execute tasks of model change evolution.

Although various model transformation approaches have been
developed [2], the role of model transformation in evolving
models has not been explored fully. Specifically, this research
poster describes the benefits that model transformation offers in
terms of dealing with the difficulties of model scalability.

Another important issue of model transformation is to ensure its
correctness. There are a variety of formal methods proposed for
validation and verification for models and associated
transformations (e.g., model checking [5]). However, the
applicability of formal methods is limited due to the complexity
of formal techniques and the lack of training of many software
engineers in applying them. Execution-based testing is a feasible
approach to finding transformation faults without the need to
translate models and transformations to formal specifications.
This research investigates testing techniques to model
transformation to improve the accuracy of transformation results.
A model transformation testing engine provides support to
execute test cases with the intent of revealing errors in the
transformation specification. Distinguished from classical
software testing tools, to determine whether a model
transformation test passes or fails requires comparison of the
actual output model with the expected model, which requires
model differencing algorithms and visualization.

2. Model Transformation Research
This research is conducted within the Generic Modeling
Environment (GME), which is a metamodeling environment that
can be configured and adapted from meta-level specifications that
describe the domain [7]. As a preliminary result of this research,
the core model transformation engine (C-SAW) has been
constructed as a GME plug-in [8]. The Embedded Constraint
Language (ECL) is the model transformation language of C-
SAW.

2.1 The C-SAW Transformation Engine
C-SAW evolved from an aspect weaver originally designed to
address crosscutting modeling concerns [3], which was
constructed two years prior to the initialization of OMG’s Query
View Transformation (QVT) request for proposal. My initial
work extended C-SAW to support additional modeling types and
provide new operations for model transformation. To perform a
model transformation, C-SAW takes source models and ECL
transformation specifications as input, and generates the target
models as output by weaving changes into source models.

Syntactically, ECL is an extension of the Object Constraint
Language (OCL), which is the de facto constraint language for
modeling. Although OCL does not allow altering the state of
models, the ECL supports an imperative transformation style. It
provides operations for model navigation and selection and also

Copyright is held by the author/owner(s).
OOPSLA’06 October 22–26, 2006, Portland, Oregon, USA.
ACM 1-59593-491-X/06/0010.

744

transformation operations such as dynamic creation and deletion
of model elements. Aspect and strategy are two kinds of modular
constructs in ECL. An aspect is used to specify a crosscutting
concern across a model hierarchy (e.g., multiple locations in a
model). A strategy is used to specify elements of computation
(e.g., transformation behaviors) that will be bound to specific
model nodes defined by an aspect.

Compared to many existing model transformation languages,
which focus on transformations between different domains, ECL
is a small language that supports transformations within one
domain to allow an in-place update where the source model
becomes the target model. From our experience, many model
evolution tasks can be defined concisely in ECL.

2.2 Model Scalability with C-SAW
One practical need for exploring design alternatives relates to
scalability issues of the modeled system. A typical approach to
address scalability is to create a base model that captures the key
elements and their relationships. A collection of base models can
be adorned with necessary information to characterize a specific
scalability concern as it relates to how the base modeling
elements are replicated and connected together. In current
modeling practice, replication is usually accomplished by scaling
the base model manually. This is a time-consuming process that
represents a source of error, especially when there are deep
interactions between model components. As an alternative to the
manual process, we are investigating the idea of automated model
replication through a model transformation process that scales a
base model to a larger model. Recently, C-SAW has been used to
perform several model scalability tasks on numerous experimental
platforms [4].

3. Model Transformation Testing
To improve the quality of C-SAW transformations, testing is
applied to detect errors in transformation specifications. A
transformation testing engine supports execution of a finite set of
test cases against a specific model and associated transformations.
The basic functionality includes execution of the transformations,
comparison of the actual output model and the expected model,
and visualization of the test results. If there are no differences
between the actual output and expected models, it can be inferred
that the model transformation is correct with respect to the given
test specification. If there are differences between the output and
expected models, the errors in the transformation specification
need to be isolated and removed.

To construct such a testing engine, there are two issues that need
to be explored deeply: 1) model comparison for discovering
differences between the expected model and the target output
model; and 2) visualization of model differences to assist in
comprehending the comparison results. Our model comparison
algorithm determines whether the two models are syntactically
equivalent by comparing their elements and properties. In general,
the comparison starts from the top-level of the two containment
models and then continues to the child sub-models. Signature
(e.g., type and identifier) and structural similarity are combined to
detect the mappings and differences between two models. The
discovered model differences are displayed in a structural view
with graphical symbols and colors to indicate the possible kinds

of model differences (e.g., a missing element, or an element that
has different values for some properties [1]). Further details about
critical issues of model transformation testing are presented in [6].

4. Contribution and Evaluation
This research contributes to the long-term research goal of
alleviating the increasing complexity of modeling large-scale,
complex applications by assisting users in making changes into
models correctly and rapidly. This work is distinguished from
other model transformation works by the following contributions:
1) Investigating the new application of model transformation to
address model scalability concerns; 2) Applying a testing process
to model transformations, which assists in improving the quality
of a transformation; and 3) Developing algorithms to visualize the
differences among domain-specific models.

To evaluate the benefits of this model transformation research,
experimental validation is being performed using several
modeling languages from different domains. The results of the
evaluation will help us to determine the effectiveness of C-SAW
and its testing engine toward improving the capabilities to evolve
large system models in a reliable manner. The assessment metrics
include productivity (i.e., the ability to reduce human efforts) and
accuracy (i.e., the ability to reduce errors). More details,
including software and video demonstrations, can be found at the
C-SAW web site [8].

Acknowledgements
This project is supported by the National Science Foundation
under CSR-SMA-0509342.

References
[1] Alanen, M. and Porres, I., “Difference and Union of

Models,” Proceedings of the UML Conference, San
Francisco, CA, October 2003, pp. 2-17.

[2] Czarnecki, K. and Helsen, S., “Feature-model-based
characterization and survey of model transformation
approaches,” accepted to be published in IBM Systems
Journal.

[3] Gray, J., Bapty, T., Neema, S., and Tuck, J., “Handling
Crosscutting Constraints in Domain-Specific Modeling,”
Communications of the ACM, October 2001, pp. 87-93.

[4] Gray, J., Lin Y., Zhang J., “Automating Change Evolution in
Model-Driven Engineering,” IEEE Computer (Special Issue
on Model-Driven Engineering), February 2006, pp. 51-58.

[5] Holzmann, G. J., “The Model Checker SPIN,” IEEE
Transactions on Software Engineering, vol. 23 (no. 5), May
1997, pp. 279-295.

[6] Lin, Y., Zhang, J., and Gray, J., “A Framework for Testing
Model Transformations,” in Model-driven Software
Development, (Sami Beydeda, Matthias Book, and Volker
Gruhn, eds.), Springer, ISBN: 3-540-25613-X, 2005, Chapter
10, pp. 219-236, 2005.

[7] http://www.isis.vanderbilt.edu/Projects/gme/
[8] http://www.cis.uab.edu/gray/Research/C-SAW

745

