
Trace Oblivious Computation

Chang Liu
University of Maryland, USA

liuchang@cs.umd.edu

Abstract
In recent years, execution trace obliviousness has become
an important security property in various applications in the
presence of side channels. On the one hand, a cryptographic
protocol called Oblivious RAM (ORAM) has been developed
as a generic tool to achieve obliviousness, while incurring
an overhead. On the other hand, customized oblivious algo-
rithms with better performance have been developed. This
method, however, is not scalable in terms of human efforts.
This thesis work adopts a language design approach to facil-
itate users to develop efficient oblivious applications. I will
study sequential and parallel programs and different chan-
nels, design languages and security type systems to support
efficient algorithm implementations, while formally enforc-
ing obliviousness. My study on the secure computation ap-
plication shows that using our compiler, one PhD student can
develop an oblivious algorithm in one day which took a re-
search group of 5 researchers 4 months to develop in 2013,
while achieving 10× to 20× better performance.

Categories and Subject Descriptors D.3.0 [Programming
Languages]: General

Keywords Oblivious Computation, Secure Type System

1. Motivation
In recent years, a trending paradigm of data and computa-
tion outsourcing has arisen in a wide range of applications
ranging from privacy-preserving cloud computing, private
outsourcing storage, to secure computation. In these appli-
cations, users allow their delegates to run their code over
their sensitive data, and thereby relinquish control over both
their intellectual property and their private information.

One important issue is how to protect users’ data privacy
in these applications. A straightforward idea is to encrypt

their data. Though encryption is necessary, it is not sufficient
in the presence of adversary who can observe a program’s
execution trace. For example, let us consider a typical cloud
computing scenario where users transfer both their programs
and their data to the provider. Prior work [12] has demon-
strated that even if all data are encrypted, memory addresses
transferred over the memory bus in plaintext allow attackers
with physical access (e.g., a malicious employee of the cloud
provider) to gain sensitive information.

To mitigate these threats, a security notion, called obliv-
iousness, has been proposed. Intuitively, obliviousness re-
quires that a program’s execution trace patterns do not leak
any information about sensitive data. For example, Oblivi-
ous RAM (ORAM) [2] can obfuscate memory addresses and
protects memory access patterns. In particular, we can place
sensitive code and data into ORAM, which has the effect of
hiding the memory access pattern.

Prior work have demonstrated that generic ORAM sim-
ulation based approaches can achieve obliviousness for a
class of traces (e.g. memory traces [5, 7], and instruction
traces [6, 8]) at the expense of moderate ORAM overhead
in practice. On the other hand, customized oblivious algo-
rithms have been suggested for specific problems, to achieve
asymptotically better overhead [9]. This approach, however,
does not scale in terms of human effort.

My research focuses on developing novel programming
techniques to enable practical oblivious computation. The
idea is to develop tools to (1) reason whether a customized
program is oblivious; (2) translate a program into its oblivi-
ous counterpart; and (3) achieve efficiency.

Challenges arise from both theoretical and practical sides.
From a theoretical perspective, a general theory must be de-
veloped to provide principled methods to analyze programs’
obliviousness. From a practical perspective, programming
tools need be supplied to facilitate programmers to imple-
ment trace-oblivious applications. My dissertation will pro-
vide solutions addressing both concerns.

2. Problem
A general framework for trace obliviousness analysis.
The first problem is how to formally enforce a program’s
obliviousness. My prior work proposed security type sys-
tems to enforce a program to be memory trace oblivi-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

SPLASH Companion’15, October 25–30, 2015, Pittsburgh, PA, USA
ACM. 978-1-4503-3722-9/15/10...$15.00
http://dx.doi.org/10.1145/2814189.2814200

24

ous [5, 7], and instruction trace oblivious [6, 8]. It remains
unclear how to generalize these methods to model more side
channels and to support richer program construction. First,
my prior work most focused on leakage from the memory
trace channel, but it is also possible to extend the work
to protect timing channels, termination channel, program
counter channel, etc. A generalized approach can provide a
stronger security guarantee with respect to these additional
side channels. Second, we currently consider determinis-
tic programs, and many crytogrphic algorithms use random
numbers and random permutations. I propose to extend the
language with nondeterministic primitives to support these
algorithms, including the ORAM algorithm itself.

Reasoning obliviousness for distributed programs. Most
existing research focused on obliviousness of a sequential
program. The second research problem is to study how to
enforce obliviousness for distributed programs whose com-
putation logic can be expressed in distributed languages such
as Spark. Prior work [9] provides a specific oblivious solu-
tion for a class of parallel graph algorithms, but it lacks the
generality to apply to customized algorithms that cannot be
encoded as a graph algorithm (see Section 3 for more de-
tails). I will investigate language design and implementation
choices allowing obliviousness analysis of a general class of
parallel programs.

3. Approach
3.1 Generalizing Trace Obliviousness Analysis
I adopt a theory-practice combined approach to solve this
problem. My existing work focused on two application sce-
narios that require obliviousness: privacy-preserving cloud
computing and RAM-model secure computation.

Privacy-preserving cloud computing allows users out-
source their data and computation to a cloud while re-
taining data’s privacy. Particularly, we consider attackers
with physical access, and the cloud providers are equipped
with ORAM-capable secure processors. Using these se-
cure processors, a generic approach prevents the attackers
from learning any secrets by allocating all the data and
code within one ORAM. We identified, however, that such
a method is not always necessary, i.e., when data access
pattern does not leak information.

Based on this observation, I designed a compiler which
can allocate data intelligently into normal DRAM, encrypted
memory, and ORAM banks, a security type system which
can check if a program is memory trace oblivious with re-
spect to a data allocation, and an optimizer that can opti-
mize the code while enforcing the emitted target code is well
typed. The challenges are (1) how to define the security no-
tion, and show that the type system enforces security; and (2)
how to type check assembly code in ORAM-capable ISA. I
tackled these two problems in [5] and [7] respectively.

Secure computation allows two (or more) parties to
jointly compute a public function over their secret data,

while revealing no information except the output of the func-
tion. The basic idea is to express the computation in a cir-
cuit format, which can then be encoded using Yao’s Garbed
Circuits [3], and Garbed Circuits encrypts the computation
output automatically. Since programmers favor RAM-based
programming models, recent work focus on how to con-
vert a RAM-program (e.g. C program) into a circuit ef-
ficiently. One big challenge is how to efficiently support
secure computation over a random-access-machine (RAM)
model. In [4], a customized construction featuring ORAM
was presented to achieve better asymptotic performance for
the binary search problem.

My work [6, 8] generalized this technique to support ar-
bitrary RAM-model secure computation. Our idea is to pro-
vide a RAM-model programming language, which can be
compiled to a highly efficient circuit. The key challenge is
to achieve instruction trace and memory trace obliviousness
during the compilation. To enforce obliviousness, I designed
security type systems, which accept efficient program imple-
mentations (e.g. using ORAM for random-access patterns).
Using our language, one PhD student spent one day to im-
plement a secure a privacy-preserving matrix factor algo-
rithm, which used to cost 5 researchers 4 months to im-
plement in 2013 [1, 10]. Further, evaluation shows that our
implementation achieves 10× to 20× better performance
(see [8] for more details). The source code is available at
https://github.com/oblivm/ObliVMLang.

Proposed work. Following this line of research, I am gen-
eralizing these existing work to allow general obliviousness
analysis. I keep two design goals in mind during the devel-
opment. First, the general framework should allow reason-
ing not only memory channels, but also other side channels
within our interest. For example, my undergoing research
can enforce protection of leakage through side channels in-
cluding program counter channel, timing channel, and ter-
mination channel. The longer term goal will consider other
side channels. Second, different from all prior work which
considers ORAM as a black-box primitive, our framework
should provide a core-calculus using which efficient ORAM
protocols can be implemented, and their obliviousness can
be enforced. Particularly, this goal requires reasoning about
random numbers. My work solving these two challenges is
under preparation for submission.

3.2 Reasoning Obliviousness for Parallel Programs
We extend our discussion with parallel programs, whose
computation logic can be expressed in MapReduce-style dis-
tributed computation languages such as Spark, but the party
providing data will pose security requirements about the
computation. In this case, the cluster running the program
may not be trusted. Although secure computation is a gen-
eral solution to this class of problems, its computation cost
is too expensive to be practical.

25

One recent promising work to enable privacy-preserving
distributed computing is VC3 [11], which relies on Intel
SGX secure processor to establish code integrity and data
privacy on an untrusted party, while incurring little over-
head. However, Intel SGX does not protect against memory
address channels. Even replacing Intel SGX with an ORAM-
capable security processor, this approach still leaks informa-
tion through network IO. On the other hand, GraphSC [9]
provides a general framework to hide all access patterns of
computations which can be encoded into a graph algorithm
using primitives proposed in [9]. This approach lacks the
generality in the sense that some efficient algorithms may
not be encoded in GraphSC’s primitives.

Inspired by these work, optimizations are possible for
certain computations. We consider the scenario where two
parties each holding a list of numbers, and want to jointly
compute the summation of all numbers. One naive approach
is to leverage the secure computation solution from GraphSC
to compute the summation. One improvement to this method
is to ask each party to sum up their numbers before the secure
computation. Further, we can adopt VC3’s idea to replace SC
with Intel SGX to perform the joint computation.

Proposed work. Inspired by this observation, I adopt a
programming language design and system co-designed ap-
proach to build a secure distributed computing system. The
system provides a language to allow programmer to spec-
ify local and joint computations. The language has an ad-
vanced type system that allows reasoning about the oblivi-
ousness with respect to network communication traces. We
plan to supply an optimizer to allow programmers to specify
the computation in an intuitive way without having to worry
about optimization, and the optimizer can seek for an equiva-
lent alternative specification with optimal performance using
programs’ running statistics collected by the system.

4. Evaluation Methodology
My main research results will be rigorously proved theorems
to show that the security type systems can formally enforce
programs’ obliviousness in both dedicated application sce-
narios and the general framework. Secondary results are to
show that my compilers can generate optimized code com-
pared with the baseline approach which uses generic ORAM
simulation-based approaches and GraphSC.

Experimental Setup. To evaluate my compiler for privacy
preserving cloud computing, I implemented both the base-
line approach which allocates all data in one ORAM bank,
and an optimized approach that intelligently minimize the
usage of ORAM banks. We evaluate the code using both an
ORAM-capable secure processor prototype implemented in
a FPGA. This evaluation shows that the optimized approach
outperforms the baseline approach by a factor up to 10×, and
never slows down. The detailed results can be found in [7].

For evaluation of my compiler for secure computation,
I compared the circuits generated by my compiler, namely

ObliVM, over prior state-of-the-art work [6]. We can ob-
serve an up to 106 speedup due to the new architecture of
the ObliVM system, and among them a 2500× speedup is
attributed to the ObliVM compiler. More details about the
evaluation setup and results can be found in our paper [8].

ObliVM project1 has open sourced its compiler and Gar-
bled Circuit backend, and has genomic and medical appli-
cations. ObliVM participated in the iDASH Secure Genome
Analysis Competition2, and won a champaign in one task.

For the parallel compiler, we plan to build the system
along with the compiler and compare it with the existing
oblivious programm framework GraphSC. We will take into
account in our evaluation the following parameters: compu-
tation type (e.g. locally, joint); data distribution (balanced
or skewed) and number of machines in the cluster. We will
also evaluate the performance of our optimizer by compar-
ing the performance of the output program of the optimizer
and manually optimized programs.

References
[1] Personal communication with Nina Taft.

[2] O. Goldreich and R. Ostrovsky. Software protection and
simulation on oblivious rams. JACM, 1996.

[3] O. Goldreich, S. Micali, and A. Wigderson. How to play any
mental game. In Proc. of STOC, 1987.

[4] S. D. Gordon, J. Katz, V. Kolesnikov, F. Krell, T. Malkin,
M. Raykova, and Y. Vahlis. Secure two-party computation
in sublinear (amortized) time. In Proc. of CCS, 2012.

[5] C. Liu, M. Hicks, and E. Shi. Memory trace oblivious program
execution. In Proc. of CSF, 2013.

[6] C. Liu, Y. Huang, E. Shi, J. Katz, and M. Hicks. Automating
efficient RAM-model secure computation. In Proc. of S & P,
2014.

[7] C. Liu, A. Harris, M. Maas, M. Hicks, M. Tiwari, and E. Shi.
Ghostrider: A hardware-software system for memory trace
oblivious computation. In Proc. of ASPLOS, 2015.

[8] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi. ObliVM:
A programming framework for secure computation. In Proc.
of S & P, 2015.

[9] K. Nayak, X. S. Wang, S. Ioannidis, U. Weinsberg, N. Taft,
and E. Shi. Graphsc: Parallel secure computation made easy.
In Proc. of S & P, 2015.

[10] V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft,
and D. Boneh. Privacy-preserving matrix factorization. In
Proc. of CCS, 2013.

[11] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado,
G. Mainar-Ruiz, and M. Russinovich. VC3: Trustworthy Data
Analytics in the Cloud using SGX. 2015.

[12] X. Zhuang, T. Zhang, and S. Pande. HIDE: an infrastructure
for efficiently protecting information leakage on the address
bus. 39(11):72–84, 2004.

1 http://www.oblivm.com
2 http://www.humangenomeprivacy.org/2015/

26

