
�������������	
����
�����������
��������
��������

�����������������
�������
��������
�

���������	��
��	�
���
��������	�	�����������

����������������
���� ��� �
�
��	������!����"#�$%��

$�&�����"��"�&�
�'	��
��	(��
����	'�

ABSTRACT

The development of modern loosely coupled distributed
applications requires extensive use of asynchronous processes.

The ability to manipulate execution context could simplify
development of such applications, helping to separate business
logic from handling asynchrony.

This paper describes a framework that implements Execution
Context Reification for Java Virtual Machine (JVM). The
framework uses built-in secondary bytecode interpreter that
provides access to Execution Context as a first class serializable
object. Asynchronous Transfer of Control Threading (ATCT)
mechanism is used to manage the execution process using well-
known thread semantics. The framework allows the process to be
suspended for unlimited amount of time without locking system
threads. Next, the process can be instructed to resume execution
from the point where it was stopped. Described approach will
allow to simplify development of asynchronous processes by
enabling use of sequential programming style.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]; D.1.4 [Sequential
Programming]; D.1.5 [Object-oriented Programming];

General Terms
Algorithms, Design

Keywords
Asynchronous processes, execution context reification, Java
framework.

1. INTRODUCTION

Most languages lack a representation of the execution context
as an accessible object. However, this is much desired
functionality that would allow one to implement innovative
approaches to application development simplifying many
programming tasks. One of the more important problems is
programming asynchronous processes. Asynchronous processes

are typically implemented by programming a state machine that
manages the process flow, driven by asynchronous messages or
events. Access to the execution context as a first class object,
could simplify the development of such processes transforming
relatively complex event-driven programming style to well-known
sequential approach. Some programming languages offer an
abstraction to the execution context, using semantics of
Continuations. However, this semantics is not well understood by
the masses of developers preventing wide use of continuation
based approach.
2. THREADS

Thread abstraction is offered in many modern programming
languages. Java and C# for example, offer an abstraction of
Thread as a first class object, encapsulating functionalities such as
suspend and resume. However, Thread’s capacity to remain
suspended is limited by the inability of capturing its execution
stack and recreating it in another thread to continue execution,
starting at the point of capture. As developers are very acquainted
with the semantics of threads, its extension to provide Execution
Context Reification functionality, could receive a better
acceptance by the developer community than using continuations.
3. ATC THREAD
 ATCT framework provides ATCThread class that in general
follows threads semantics and adds the capability to access the
execution context as a first class serializable object. Additionally,
ATCThread provides a mechanism of Asynchronous Transfer of
Control (ATC) to manage process execution. ATCThread is a
serializable Java object and as such can be easily persisted or
moved to another location. This makes it particularly useful for
implementation of long running transactions, load balancing, and
improving application scalability and robustness. ATCThread is a
‘cornerstone’ class of the framework that manages the execution
context and is used to access most of the functionality of the
framework. It encapsulates the byte code execution engine that
maintains the execution stack and makes it available for
manipulation.
4. BYTECODE EXECUTION ENGINE

The framework’s built-in bytecode execution engine uses a
mixed execution model, interpreting only parts of the byte code
and delegating the rest of the execution to JVM. The byte code
execution engine makes a distinction between three types of
methods: methods that it interprets and offers the Execution
Context Reification functionality for, methods which execution is
delegated to the JVM and methods that command the execution
engine to interrupt interpretation returning the control to the code
that started ATCThread. ATCT manages the execution stack only
for the methods it interprets and offers a flexible mechanism for
defining the criteria according to which the method discrimination

Copyright is held by the author/owner(s).
OOPSLA’03, October 26–30, 2003, Anaheim, California, USA.
ACM 1-58113-751-6/03/0010.

86

is performed. The execution engine takes an efficient approach to
executing byte code by delegating execution to the JVM
whenever possible. In addition, such operations as creation of
objects, garbage collection and memory management are
delegated to the JVM as well.
5. METHOD DISCRIMINATION
MECHANISM

Method discrimination mechanism allows the execution engine
to distinguish between the three types of methods. Each
ATCThread can have an associated instance of
MethodDiscriminator. A custom implementation of
MethodDiscriminator can be based on a variety of approaches, for
example on a result of applying a regular expression to the names
of the methods being called. It can also be based on the package
name, class name, or any other reflective information that is
available from the context. In ATCT, default
MethodDiscriminator uses subclasses of Throwable in method
signatures to discriminate between methods.
6. ASYNCHRONOUSLY INTERRUPTIBLE
METHODS

Dedicated methods, executed by the ATCT execution engine,
are called Asynchronously Interruptible (AI) methods. Execution
context reification functionality is only available for the methods
interpreted by the execution engine. Because the ATCT
Framework interprets AI methods using its built-in execution
engine, an AI method will be executed slower in comparison to
the same method being executed by the JVM. As discussed
earlier, it is important to maintain a good ratio between AI
methods and the methods delegated to the JVM.
7. ATC METHODS

ATC methods are used to initiate Asynchronous Transfer of
Control. When the execution engine, during execution of AI
method, encounters call to such method it returns control to the
code that started an instance of ATCThread. At this moment
ATCThread will be suspended and will contain execution context,
relevant to the stack of AI methods being executed. In the
suspended state, the ATCThread can be preserved or sent to
another location and resume interpretation when desired. The
ATCThread can be resumed using its resume method to continue
execution of the AI method. ATC methods can return data that
can be used inside the AI method after an ATC thread is resumed.
8. TECHNOLOGY USES
8.1 Asynchronous process programming

Business processes logic often can be easily represented in
pseudo code using a sequential (linear) style. However, this is
different from how they are programmed, due to the asynchronous
nature of communication between participating parties and the
limitations of mainstream programming languages.

Most often, implementing such a process involves creating a
state machine that helps to manage flow processing and state
transitions, triggered by asynchronous events. The business logic
of such implementations is exposed to a high risk of being
obfuscated by the code that performs state machine management
and event handling routines.

One of the more strong advantages of ATCT technology is
seen in enabling programming of asynchronous processes in a
sequential manner. In this case, the code that implements business
process may be as simple to understand as a pseudo-code used to
define the business flow.

8.2 Using common programming languages
for implementing workflow and process
composition

Normally traditional programming languages cannot be used
for workflow development. That’s why commonly used workflow
engines usually provide special flow definition languages that
don’t have power and flexibility available in general-purpose
programming languages. ATCT ability to suspend and resume the
execution at any time enables the implementation of a process
flow composition using well-known OOP techniques. Such useful
workflow patterns as parallel split, simple merge, multi merge and
synchronization can be implemented gracefully in Java using the
ATCT framework.
8.3 Mobile Agents
Mobile agents may become more “mobile” if they have the ability
to preserve its state at any time and continue execution on a
different machine. Due to the assistance provided by the
framework in handling the complexity of preserving and restoring
an agent’s state, moving an agent from one machine to another
can also be used to create highly sophisticated distributed
applications. For example in some situations it would be more
appropriate to transfer code (mobile agent) to the secure data
source than move sensitive data to the unsecured server.
8.4 Web Application Flow

Web applications often implement multi step processes such
as performing banking transaction, filling application forms etc.
Implementations of such processes using ATCT allows creating
more manageable code explicitly reflecting business process flow.
8.5 Gaming

In game programming, there is often a requirement to manage
thousands of objects, where each object exhibits a particular
behavior. Normally, proprietary scripting languages are developed
to describe the object’s process flows, with a preemptive approach
to context switching. ATCT can be easily used in such
applications, using all the power of standard Java programming
including OOP, modularity and exception mechanisms.
9. LEVERAGING EXISTING TOOLS AND
SKILLS

ATCT offers a powerful extension to Java allowing use of
existing language features and tools, thus leveraging the
investments companies made in IDEs, UML tools and
development processes. Such important features of IDEs as code
complete and contextual help for APIs remain available to the
developers without need to change tools. In addition, ATCT
allows developers to use well-known OOP approaches such as
inheritance, encapsulation, abstract behavior, as well as design
patterns for programming business processes.
10. MANAGEABILITY

Code that takes advantage of the ATCT framework carries
clarity of pseudo code into the real implementation, allowing
greater level of comprehension and reducing the probability of
introducing subtle bugs during the implementation and
maintenance phases.

87

