
Tool Support for Statically Checking the Structural Conformance of
an Object-Oriented System to its Runtime Architecture

Marwan Abi-Antoun Jonathan Aldrich

School of Computer Science, Carnegie Mellon University

{marwan.abi-antoun, jonathan.aldrich}@cs.cmu.edu

Abstract
Maintaining the conformance of an implementation to its
architecture is difficult in practice since developers often
make changes that degrade the architectural structure.

We present tools for statically checking the structural
conformance of a system to its runtime architecture.

Categories and Subject Descriptors D.2.2 [Software En-
gineering]: Design Tools and Techniques

General Terms Design, Documentation

Keywords runtime architecture, conformance checking

1. Introduction
Ensuring conformance of the code architecture or module
view has received much attention [5]. The code architecture
is useful for analyzing quality attributes such as modifia-
bility. Architecture-based analyses for performance, security
and reliability, however, use runtime views. A Component-
and-Connector (C&C) architectural view models runtime
entities and their potential interactions. Thus, in an object-
oriented system, a component is one or more objects.

2. Approach Overview
Following the extract-abstract-check model [5], we check
an implementation’s conformance by structurally comparing
an as-designed view to an abstracted as-built view. In the
terminology of Murphy et al. [5], the analysis identifies:

• Convergence: a node or edge that is both in the as-built
view and in the as-designed view;

• Divergence: a node or edge that is in the as-built view
but not in the as-designed view;

• Absence: a node or edge that is in the as-designed view
but not in the as-built view.

Copyright is held by the author/owner(s).
OOPSLA’08, October 19–23, 2008, Nashville, Tennessee, USA.
ACM 978-1-60558-220-7/08/10.

Methodology. The approach involves the following steps,
illustrated with CourSys, a prototypical three-tiered system:
1. Document the as-designed architecture using an Archi-

tecture Description Language such as Acme [4] (Fig.3(a));
2. Abstract an as-built architecture from the implementa-

tion, using the following sub-steps:
(a) Add ownership domain annotations to the code [1];
(b) Extract an Ownership Object Graph (OOG), which

is a sound hierarchical representation of any possible
runtime object graph (Fig. 1) [1];

(c) Map the extracted OOG to an as-built C&C view,
with architectural types and traceability information;

3. Structurally compare the as-built and the as-designed ar-
chitectures to check their conformance; and

4. Obtain a measure of conformance.

Architectural Conformance. A system conforms to its
as-designed architecture if the latter is a conservative ab-
straction of the system’s runtime structure. By the communi-
cation integrity principle, each component in the implemen-
tation may only communicate directly with the components
to which it is connected in the architecture.

View synchronization assumes that both views are equally
important and attempts to make them identical [3]. In con-
trast, conformance checking is asymmetric because the as-
built view often contains details that are irrelevant to the as-
designed view. Guided by the principle above, conformance
checking accounts for any communication in the as-built
view that is not in the as-designed view, without cluttering
the as-designed view with implementation details [2].

Displaying Conformance. The analysis produces a view
of the as-designed architecture (Fig.3(b)), to show the results
of the conformance check, in terms of convergences, diver-
gences and absences (Fig. 2). The analysis also enriches the
conformance view with traceability to the code.

Measuring Conformance. The analysis also computes
conformance metrics based on the graph edit distance be-
tween the as-built and the as-designed views [2].

Example. When checking the conformance for the CourSys
example, the analysis detects numerous renames between
the two views (Fig. 3(b)). For instance, dataTier in the
as-designed view corresponds to the DATA domain in the

741

 DATA

 STATE

 USER

 LOGIC

 OWNED

 OWNED OWNED

 LEGEND

 domain1

 domain2

vRegistered:
ArrayList<Course>

course:
Course

student:
Student

vCompleted:
ArrayList<String>

vStudent:
ArrayList<Student>

objData:
Data

objLogic:
Logic

objClient:
Client

logFileWriter:
FileWriter

log:
Logging

_mutex:
Object

Object2:
DeclaredType2

lock:
RWLock

Object1:
DeclaredType1

domain
link

field
 reference

Figure 1. CourSys Ownership Object Graph.

as-built view. Similarly, DataNode maps to objData, and
LogicNode maps to objData. Inside LogicNode’s sub-
structure in the as-designed view, Logging is mapped to
a log component in the as-built view. In the as-built view,
objData has additional substructure missing from the as-
designed view. The conformance check also detects a diver-
gence in the form of a SyncUseT Port on DataNode and
a Connector that attaches DataNode to the SyncProvideT
port on LogicNode. Such an “upcall” from a data to a logic
tier is often an architectural violation.

Using the traceability information in the as-built C&C
view, a developer can trace the unexpected edge to the code
without having to potentially review the entire code base.
She determines that the upcall is due to a field reference of
type ILogic declared inside class Data [1].

(a) (b) (c)

Figure 2. Fig. 2(a) indicates a convergence, Fig. 2(b) a
divergence, and Fig. 2(c) an absence.

(a) As-designed view. (b) Conformance results.

Figure 3. CourSys conformance results.

3. Conclusion
We presented tool support for a semi-automated approach
to statically check the structural conformance of an object-
oriented system to its runtime architecture. The approach
uses ownership annotations instead of using language exten-
sions or mandating specific implementation frameworks.

From an annotated program, an analysis extracts a hier-
archical view of the runtime object graph. Another analysis
converts that representation into an as-built C&C view. A
third analysis then structurally compares the as-built and the
as-designed views, highlights the key differences between
them and measures their structural conformance.

References
[1] M. Abi-Antoun and J. Aldrich. Tool Support for the Static

Extraction of Sound Hierarchical Representations of Runtime
Object Graphs. In OOPSLA Companion, 2008.

[2] M. Abi-Antoun and J. Aldrich. Static Conformance Checking
of Runtime Architectural Structure. CMU-ISR-08-132, 2008.

[3] M. Abi-Antoun, J. Aldrich, N. Nahas, B. Schmerl, and
D. Garlan. Differencing and Merging of Architectural Views.
ASE, 15(8):35–74, 2008.

[4] D. Garlan et al. The Acme Architectural Description
Language. http://www.cs.cmu.edu/~acme.

[5] G. C. Murphy, D. Notkin, and K. J. Sullivan. Software
Reflexion Models: Bridging the Gap between Design and
Implementation. TSE, 27(4):364–380, 2001.

742

