
Integrating Jason in a Multi-Agent Platform

with Support for Interaction Protocols

Bexy Alfonso Emilio Vivancos Vicent Botti Ana Garcı́a-Fornes

Departamento de Sistemas Informáticos y Computación

Universitat Politècnica de València

Valencia (Spain)

{balfonso,vivancos,vbotti,agarcia}@dsic.upv.es

Abstract

Agent communication is a core issue when studying all

possible ways for agents to organize and collaborate to

achieve their goals. We can count on communication stan-

dards, as the FIPA Interaction Protocols. On the other hand

we can count on high level agent programming languages,

like AgentSpeak, which allow us to model and represent

the agent and its knowledge and behavior. In this paper we

present a proposal to add to Jason (an interpreter of an ex-

tended version of AgentSpeak) a new level of abstraction

in the task of programming conversations between agents.

The agent communication follows the FIPA interaction pro-

tocols. A new entity called Communicator Manager acts as

an interface between the agent programming language (Ja-

son) and the platform communication facilities (Magentix

2). This approach allows the programmer to focus on pro-

gramming the agent knowledge and reasoning parts instead

of the interaction protocols. An agent can call the communi-

cation manager to start a conversation. The communication

manager will control the different steps of the conversation

and will modify the agent belief base to represent the results

of the different steps of the conversation protocol. Therefore,

the agents can use this knowledge in its reasoning process.

This approach can be easily transfered to others agent pro-

gramming languages and platforms.

Categories and Subject Descriptors I [2]: 5

General Terms Languages

Keywords Interaction protocols, agents, agents conversa-

tions, FIPA, Jason, agents communication

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

SPLASH’11 Workshops, October 23–24, 2011, Portland, Oregon, USA.
Copyright c© 2011 ACM 978-1-4503-1183-0/11/10. . . $10.00

1. Introduction

Nowadays multi-agent systems is one of the most active

and promising research fields in Computer Science. Multi-

agent systems provide adaptability, scalability, distribution,

fault tolerance, intelligence, and autonomy. All these fea-

tures make multi-agent technology an interesting approach

for a wide set of applications. Currently research topics on

multi-agent systems include definitions, standards, method-

ologies, programming languages, semantics, platforms and

communication. One interesting area in the development of

multi-agent systems is the study of agent programming lan-

guages [5, 9, 14] and more specifically all the language as-

pects related with the agents communication. An agent in

a multi-agent environment is a software entity which needs

to communicate with other agents in order to achieve its

goals. This communication is a crucial part when develop-

ing agents. An agent developer usually spends a big amount

of time programming the part of the agent that allows the

agent to maintain a conversation with other agents.

The two main agent communication languages proposals

are the USA DARPAS’s Knowledge Query and Manipula-

tion Language (KQML) [8] and the FIPA ACL [11]. In this

work we focus in the second language because has a high

degree of acceptance in the agent programming community.

A basic FIPA-ACL message is composed of several pa-

rameters including a performative (indicating the type of the

communication act of the message), the sender, the receiver,

the content, the used ontology, . . . A conversation between

agents is defined as a sequence of messages exchanged by

them. Obviously one of the most complex task program-

ming an agent conversation is to study all the possible se-

quences of messages exchanges that can be performed dur-

ing the conversation. The Foundation for Intelligent Physi-

cal Agents(FIPA) has defined a set of standard conversations

containing predefined patterns of valid message sequences.

These patterns have been defined as general as possible to al-

low to apply them in different situations and environments.

These protocols are called FIPA Interaction Protocols [12].

The FIPA has defined a set of basic predefined standard in-

221

teraction protocols including the more typical conversations

followed by the agents, but other ad hoc protocols could also

be defined. The set of FIPA interaction protocols includes:

”request”, ”query”, ”request when”, ”contract net”, ”iterated

contract net”, ”English auction”, ”Dutch auction”, ”broker-

ing”, ”recruiting”, ”subscribe” and ”propose”.

In this paper we present how to integrate the FIPA inter-

action protocols in Jason taking advantage of the platform

facilities. Jason [6] is an interpreter for an extension of the

AgentSpeak programming language [17]. It is written in Java

and its creators are R. Bordini and J. Hubner. An agent in Ja-

son is programmed using this extension of the AgentSpeak

language but it is also possible to write some parts of the

agent in Java. For instance, the programmer can write some

code in Java to program the environment, or to construct Ja-

son “internal actions”. Those internal actions are used to ex-

tend the language and they are designed to be executed as

“being outside the agent’s mind”. This execution is done as

one step of the agent reasoning cycle. Jason also provides

agent communication based on speech-acts. Unfortunately

it is the programmer’s responsibility to write the commu-

nicative actions to implement all steps included in the con-

versation. The main objective of our proposal is to facilitate

as much as possible the creation of agents that communicate

with others using the FIPA standard interaction protocols.

The rest of the paper is organized as follows: In the

next section a set of related works is presented. Section 3

introduces the guidelines followed to make the design of the

proposal and the design description itself. In section 4 the

main components that are part of the implementation are

shown. Finally section 5 presents a discussion and future

work.

2. Related works

Jade [1, 4] is a FIPA compliant platform that allows to com-

municate agents using the FIPA standards. That means that

messages in Jade follow the format specified by FIPA. More-

over, Jade provides Java classes to handle all the FIPA inter-

action protocols. The jade.proto package provides some Java

classes containing several callback methods that can be used

by programmers. These methods can be redefined by adding

the required logic to solve a specific problem. The classes

in the jade.proto package are divided into two groups de-

pending on the role performed by the agent using the class:

initiator or responder. The agent interactions must be pro-

grammed also in Java by using the constructions provided

by the platform. This leaves out the possibility of building

behaviors for those interactions in a language with a higher

level of abstraction.

Jadex [7, 16] is a multi-agent platform following a typ-

ical BDI model. Originally Jadex was implemented to be

executed under Jade, but currently it can be executed alone

or under other communication platforms using adapters.

A Jadex agent is composed of an agent definition file

written in XML and the Java classes that implement it.

Jadex agents could be FIPA compliant due to JADE, and

both JADE and Jadex agents can survive in the same plat-

form. One of the tools contained in Jadex is the “Interac-

tion Protocols Capability” with offers built-in support for

most of the FIPA interaction protocols. In Jadex, the dif-

ferent steps of the protocols have been analyzed and led

to the extended specification of goal-oriented protocols [2].

A protocol is started by creating an instance of an initia-

tor goal (“rp initiate”), setting the needed parameters, and

dispatching it. There are also three goals for the partic-

ipants: “rp receiver interaction”, “rp decide request” and

“rp execute request”). When the protocol has ended, the re-

sults are returned as out-parameters of the goal.

Jadex and Jade provide Java classes for implementing

FIPA interaction protocols, so the programmer can’t use

other specialized programming languages (like AgentSpeak)

with more facilities to model and describe agents. On the

other hand, none of the analyzed platforms allow to dynam-

ically modify the steps sequence in the interaction protocol

in order to create more open and flexible conversations.

Our proposal is more flexible because allows to use pro-

tocols that can be changed dynamically thanks to the fa-

cilities offered by the platform: New states and transitions

between the conversation steps can be created at execution

time. Other advantage of our proposal is that, as it is ex-

plained in the next section, a conversation manager stores

and automatically adds many information required in the

creation of messages during the conversation (initiator, par-

ticipants, the state of the conversation,. . .), so the program-

mer does not have to include it.

3. Design

3.1 Guidelines

Due to the current necessities of using interaction protocols,

the first goal of this proposal is to facilitate the task of

programming this part of the agent. The objective is to have

agents almost no aware that their reasoning is part of a

conversation they are having; agents who don’t need to know

which was the previous or the next step at any moment of the

interaction protocol. Given this level of abstraction, the agent

programmer just needs to focus on the reasoning, instead of

using the platform specific communication primitives or the

protocol specification details for managing it.

On the other hand, given the so generalized FIPA Inter-

action Protocols Specification, it is aimed to integrate them

with a high-level language to reach this objective. The aim

is to make easier for the programmers to use this standards.

Finally this proposal can be extrapolate to other agent

programming languages or platforms following the same

idea. This avoids the programmers to have to learn new con-

structors to use the communication interaction protocols and

makes the proposal versatile enough to facilitate this task re-

gardless of the tools, platform and language employed.

222

FIPA-ContractNet-Protocol

Initiator Participant

cfp
m

refusei≤n
n

dead-

line

proposej=n-i

reject-proposal
k≤j

l=j-kaccept-proposal

failure

inform-done:inform

inform-result:inform

Figure 1. FIPA Contract Net Interaction Protocol. [12]

3.2 Description

Based on FIPA specifications [12] an interaction protocol

can be seen as a sequence of messages between two roles

involved: initiator and participant. The initiator begins the

interaction notifying the participant with a message about

it’s interests, and the participant replies to the initiator re-

quests according to the protocol characteristics. Both roles

exchange messages until the end of the interaction. As ex-

ample, Figure 1 shows the Fipa Contract Net Protocols spec-

ification based on a extension of UML [15]. From now on,

this protocol is going to be taken as example for the further

descriptions.

According to [10], a conversation can be seen as a direct

graph composed of nodes and arcs; nodes represent the states

or steps of the conversation and arcs represent the transitions

between states. Having this, the purpose is to integrate the

steps of the communication with the reasoning cycle of a

BDI agent. First of all, it is necessary to know which are

those steps. Figure 2 shows an example of the FIPA Contract

Net Protocol steps, from the initiator perspective, according

to [12] seen as a directed graph. In Figure 2 there are also

some steps (nodes) colored; they represent the steps in which

the agent can perform its reasoning and/or take decisions.

The next thing to do for each role on each communication

protocol is to identify where a decision must be taken or a

particular reasoning must be done.

On each step a Conversation Manager (CM) indicates to

the agent that some reasoning is necessary. The conversation

is paused until the corresponding result is provided by an

Begin

Call for

proposals Wait f. p.

Receive

Not understood

Receive

Refuse

Receive

Propose

Time out

Evaluate

proposals

Wait for

results

Receive

Refuse

Receive

Inform

Final

Send

rejection

Send

acceptance

CNP INITIATOR

Figure 2. Steps of the Fipa Contract Net Protocol for initia-

tor agent.

interaction between the agent and the CM or until a specific

timeout. The reasoning cycle of the agent goes on with its

normal execution independent of the conversation.

The information provided to the agent at the different

steps during the communication, will act as triggering event

at the same time that it provides the necessary information

for the agent to reason about it. On those steps where no

reasoning is necessary, the CM will follow the sequence of

steps indicated in the protocol specification.

In the final step of the communication protocol the CM

ends the conversation, and performs other required tasks (de-

pending on the platform characteristics). Besides, the agent

is being informed about the results. On the other hand, the

agent can end the conversation at any time by interacting

with the CM. If something related to the conversations fails

(like exceeding the response times or if some communica-

tion error arise), the CM informs the agent.

4. Implementation

There are three main kind of technologies necessary to im-

plement this proposal. In the first place it is necessary a plat-

form to manage the multi-agent system, to deal with all sub-

sequent problems arising from the interaction and to control

agents performance. Secondly it is required a language for

defining the agents itself and its components. In this sense,

to use a language that supports the BDI agents model is an

adequate choice due to the fitness of this model to agents

with high reasoning skills. Finally, a CM is also necessary in

order to control the interaction between the reasoning of the

agent and the conversation flow.

4.1 Communication platform

There are several platforms and tools that help to build

communicative agents. For our approach we have looked

for a FIPA-compliant platform capable of supporting tech-

nologies and techniques related to communications between

agents, and able to allow programing reasoning agents using

a high level language. In this direction Magentix 2 [3] has

appeared as a promising platform. This platform supports

agent societies communication, security Besides, the

Magentix 2 platform is able to deal with the distributed and

223

autonomous nature of agents by using technologies able to

cope with the resulting dynamism and flexible interactions

of this kind of systems. Among this technologies we find the

support to indirect communication and interaction protocols

between agents organizations. In this way Magentix 2 pro-

vides support at the three levels stated in [13]: organization

level, interactions level and agent level.

4.2 Programing language

Magentix 2 provides support to program agents using a high

level language, which is Jason [6]. According to the AgentS-

peak model of agent, each Jason agent can be defined by

three main elements: beliefs, goals and plans. Beliefs rep-

resent the agent actual vision of the world in which it is

situated. They change continuously during the agent execu-

tion and there are different ways to make this happen. For

example, when the agent “perceives” its environment (the

world observable by it), when some information is sent to

him through a message or when it explicitly modifies those

beliefs as a consequence of some previous reasoning. More-

over, a Jason agent having a goal means mainly that it wants

to reach certain situation in which it believes this goal is

truth (“achievement goal”). Although there are other kind

of goals that are constructions to retrieve information from

the agent belief base(“test goals”). Finally the plans in Jason

allow, through a necessary sequence of steps, to reach some

goal, as it can be thought intuitively. This happens in such

way that the adding of this goal acts as a triggering event

for this sequence of actions. If the actions doesn’t fail the

goal would be reached. Besides the adding of achievement

goals, there are other triggering events for plans in Jason:

deletion of achievement goals, adding and deletion of beliefs

and adding or deletion of test goals.

The Jason Agent owns a reasoning cycle that determines

what to do and how to do it in each moment. This cycle

allows to create intentions based on the plans the agent has

to try to fulfill, making all the necessary actions. On each

reasoning cycle basically the agent must interact with it’s

environment, must check all messages that has been sent to

him, check if there is some applicable plan according to the

events that have happened and intend to fulfill them.

Another important facility provided by Jason are the in-

ternal actions. They allow to perform some processing that

the agent needs to do withing it’s code by accessing to legacy

code (Java in this case). Internal actions are going to play an

important role for the agent to interact with the Magentix 2

platform.

4.3 Conversation Manager

The support to FIPA interaction protocols by the Magentix 2

platform is given mainly by the “Conversations Factories”

[10]. It’s main goal is to offer the necessary tools to de-

velop conversations based on interaction protocols, allowing

to change them at execution time. The Conversation Man-

ager (CM) is an interface between the platform (Magentix 2

and its Conversation Factories) and an agent programming

language (Jason) which provides an easy way of implement-

ing the FIPA Interaction Protocols from a higher level of ab-

straction.

The Conversations Factory provides two kinds of struc-

tures: CProcessor and CFactory. The first one performs the

actions and manages the sent and received messages in each

step of the conversation that is having an agent (even initia-

tor or participant); this includes to determine the next step

to go in each moment when the conversation is taking place.

The CFactories, on the other hand, are in charge of starting

the conversation and creating CProcessors corresponding to

a specific protocol. The way it works change depending on

the role of the agent. If the role is initiator the conversa-

tions can start without needing an external event. If the role

is participant, an event is required to become part of the con-

versation.

As it was stated in Section 3.2, when a reasoning is

necessary, the conversations is paused, waiting for an event

to go on (results provided by the agent or a timeout). In

this sense it is important to take into account that there are

two threads interacting: the agent and the conversation. This

functionality has been added by using semaphores on each

conversation for each role, allowing to interact with agent

beliefs base and also facilitating the agent to interact with

the platform through internal actions.

4.4 Example

Returning to the example of the FIPA Contract Net Protocol,

lets analyze how to implement in Jason a step were a rea-

soning is necessary for the initiator role. The steps (circles)

colored in Figure 2 are the steps in which the agent must de-

cide an action. In the contract-net protocol those steps are:

Begin, Evaluate Proposals, Receive Refuse, Receive Inform

and Final. The Begin step must be explicitly implemented in

the agent that plays the initiator role so the agent must de-

cide when to start the conversation and with which agent it

is interested to interact. In the Evaluate Proposals step the

agent must know which are the received proposals to evalu-

ate them and chose some based on its own criterion. Finally

the agent must offer those results to the CM. In Figure 3 it

is shown the appearance of the code that implements this

actions.

The code of Figure 3 shows the plan (written in AgentS-

peak/Jason) that implements the reasoning corresponding to

the Evaluate Proposals step. Line 1 is the triggering event of

the plan, which is in this case, the adding of a belief to the

agent beliefs base. This belief was “perceived” by the agent

because the CM added it to the agent perceptions previously;

the CM also recovers the proposals made by participants and

takes care of all the necessary actions to get them. This pro-

posals are also added previously on the agent belief base so

when it is time to evaluate them, the agent knows already all

he needs to know (lines 1 and 2 of Figure 4 are an exam-

ple of the perceptions that the CM adds to the agent belief

224

1 +proposalsEvaluationTime (ConvID):

2 proposal(Prop ,Sender ,ConvID)

3 <- .print("PROPOSALS EVALUATION TIME.");

4 (...)

5 !evaluateProposals(ConvID ,Acc ,Rej);

6 (...)

7 .int_act_FCN_Init ("PropEvaluated",Acc ,

Rej ,ConvID).

Figure 3. Appearance of the plan for evaluating proposals

written in Jason in a Contract Net Protocol for the initiator

role.

1 proposal (23.0 ,bob ,fcn).

2 proposal (13.0 ,amy ,fcn).

3 (...)

Figure 4. Appearance of the initiator belief base before

evaluating proposals.

base). In Figure 3 the term ConvID will contain some kind

of identifier provided by the initiator to the CM when the

conversation is started. Line 2 is the condition for executing

this plan: the matching between this literal and something

existing on the belief base, or, what is the same, there must

be at least one proposal to evaluate proposals. Line 3 is the

code to display a text on the screen; line 5 indicates the addi-

tion of a goal for evaluating the proposals, where terms Acc

and Rej will take the acceptances and rejections as result of

this evaluation. Finally, in line 7, an internal action is called

with the result as argument and also the identifier used by the

agent to know from which conversations are those results.

Additionally, an indicator (“PropEvaluated”) is also passed

as argument, to inform about the step of the conversation in

which the reasoning is.

On the steps Receive Refuse and Receive Inform of the

protocol maybe it is not necessary a reasoning but the agent

could perform some action depending on what happened in

the conversation, whether the participant refuses or informs

after the initiator sends its acceptance. The way of program-

ming those steps are the same than the one described previ-

ously. The Final step it similar, but it is just colored different

in Figure 2 because it is optional to “capture” the triggering

event associated with the addition of the belief of ending the

conversation.

4.5 Summary of the steps to use a protocol

To implement an interaction protocol in an agent using our

CM, the programmer should perform the following steps:

1. Ensure that the appropriate parameters for starting the

conversation are known by the agent. For example in the

case of the initiator of a Contract Net Protocol the time

out for the steps execution and the name of the participant

or participants it wants to interact with must be specified.

2. Implement a plan which contains the first call to the

internal action corresponding to the desired protocol (in

the case of the initiator role). If it is the case of the

participant, it must have a plan to join the conversation

when it receives this request from the initiator.

3. Implement a plan for each mandatory reasoning step;

this implies to have the predefined percept for a step as

the triggering event for the corresponding plan. The final

action of each one of this plans must be always a call to

the internal action of the protocol with the appropriate

parameters, which allows to execute the next step of the

protocol.

4. Optionally, implement a plan for each optional reasoning

step; generally this step is the final. If some kind of

conversation identifiers management is done, or some

post conversation actions are necessary, this is the place

where it must be performed.

5. Discussion and future works

The specification of standards for interaction protocols by

FIPA has promoted the development of communication

mechanisms under such standards. But when facing this

task, it is known that it is necessary to deal with several

arising problems, with no easy solutions. When implement-

ing interactions protocols, it is necessary to deal with syn-

chronization issues, communications and interaction fails,

information consistency and some other. This may lead, in

some way, to leave aside a core issue: the information that

agents must exchange and the information they must have at

the end of the interaction. Our approach tries to focus in this

line taking advantage of the benefits of using a high level

language to program agents and leaving away all “non core”

details when using interaction protocols.

This idea, in the way it is formulated, is applicable to

other platforms and high level agent programming lan-

guages, so it is itself a way to promoting the use of inter-

action protocols under certain standards.

Specifically the conversations factory that Magentix 2

platform provides, allows also to dynamically modify the

“standard structure” of the interaction protocol [10] , so

by using this technologies, it is possible to create dynamic

agents interactions too.

In our approach the communication is asynchronous so

the sender is not blocked until the receiver agent process the

received message. Therefore, the agents can maintain sev-

eral conversations with different agents and/or protocols at

the same time. The communication between agents is made

using the FIPA interaction protocols which are directly sup-

ported by the agent programming language (AgentSpeak/-

Jason) so the programmer only have to specify the agent’s

225

knowledge needed to take decisions. The agents involved

in a conversation directly receive the results of the differ-

ent steps of the conversation in the form of beliefs in their

belief base. Therefore, the agents can use this knowledge in

its reasoning process.

It is aimed to reach modularity in such a way that the

conversation structure and details not related with the infor-

mation to be exchanged by the agents are not included in the

own agent logic. Either implementing the whole conversa-

tion through Jason plans and communicative acts or doing

it by invoking callback methods as in Jade, it is necessary

to deal with details as the messages creation and prepara-

tion. On the other hand, in Jason plans it would be necessary

to consider exceptions and timeouts etc, and if using Jade

for example, it wouldn’t be possible to exploit the advan-

tages of a high level language made for agents with under a

BDI model. With this proposal it is searched efficiency, im-

provement for the applications validation, reduction of the

computational load by having a CM in charge of the man-

agement and execution of each conversation independently.

It is also intended to reach simplicity by offering a set of al-

ready implemented protocol templates which will allow to

use protocols in an easier way.

The future direction of this work is focused on elaborate

a guide or methodology for extending this approach to other

platforms and agent programming languages, so that the use

of interaction protocols becomes a simple task, allowing to

implement more sophisticated interactions in real world. It

is intended too, to develop a set of protocols templates to

be used by all Jason programmers over the Magentix 2 plat-

form. Other future works include the performance evaluation

and scalability of the implemented interaction protocols, by

comparing the results with Jason native implementations.

Acknowledgments

This work has been partially funded by TIN2008-04446,

TIN2009-13839-C03-01 and PROMETEO 2008/051.

References

[1] Jade. http://jade.tilab.com .

[2] Jadex user guide. http://jadex.informatik.

uni-hamburg.de/docs/jadex-0.96x/userguide .

[3] J. M. Alberola, J. M. Such, A. Espinosa, V. Botti, and

A. Garcı́a-Fornes. Magentix: a Multiagent Platform Integrated

in Linux. In EUMAS, pages 1–10, 2008.

[4] F. Bellifemine, G. Caire, and D. Greenwood. Developing

Multi-Agent Systems with JADE. John Wiley and Sons, 2007.

[5] R. H. Bordini, M. Dastani, J. Dix, and A. E. Fallah-

Seghrouchni, editors. Multi-Agent Programming. Languajes,

Platforms and Applications. Springer, 2005.

[6] R. H. Bordini, J. F. Hübner, andM.Wooldridge. Programming

Multi-agent Systems in Agent Speak Usign Jason. John Wiley

& Sons, 2007. ISBN 978-0-470-02900-8. URL http://

jason.sf.net/jBook/jBookWebSite/Home.php.

[7] L. Braubach, A. Pokahr, and W. Lamersdorf. Jadex: A BDI

agent system combining middleware and reasoning. In M. C.

M. K. R. Unland, editor, Software Agent-Based Applications,

Platforms and Development Kits, pages 143–168. Birkhäuser-

Verlag, Sept. 2005.

[8] T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML

as an agent communication language. In CIKM ’94 Proceed-

ings of the third international conference on Information and

knowledge management.

[9] M. Fisher, R. H. Bordini, B. Hirsch, and P. Torroni. Compu-

tational logics and agents: A roadmap of current technologies

and future trends. Computational Intelligence, 23, 2007.

[10] R. L. Fogués, J. M. Alberola, J. M. Such, A. Espinosa, and

A. Garcı́a-Fornes. Towards Dynamic Agent Interaction Sup-

port in Open Multiagent Systems. In Proceedings of the 13th

International Conference of the Catalan Association for Arti-

ficial Intelligence, volume 220, pages 89–98. IOS Press, 2010.

[11] Foundation for Intelligent Physical Agents. FIPA XC00061D:

FIPA ACL Message Structure Specification .

[12] Foundation for Intelligent Physical Agents. FIPA XC00025E:

FIPA Interaction Protocol Library Specification .

[13] M. Luck and AgentLink. Agent technology : computing

as interaction: A roadmap for agent-based computing. Com-

piled, written and edited by Michael Luck et al. AgentLink],

[Southampton, U.K. , 2005. ISBN 0854328459.

[14] V. Mascardi, D. Demergasso, and D. Ancona. Languages for

programming BDI-style agents: an overview. In F. Corradini,

F. D. Paoli, E. Merelli, and A. Omicini, editors, Proceedings

of WOA 2005: Dagli Oggetti agli Agenti. 6th AI*IA/TABOO

Joint Workshop “From Objects to Agents”, pages 9–15.

Pitagora Editrice Bologna, 2005. ISBN 88-371-1590-3. URL

citeseer.ist.psu.edu/mascardi05languages.html.

[15] J. J. Odell, H. V. D. Parunak, and B. Bauer. Representing

agent interaction protocols in uml. In IN OMG DOCUMENT

AD/99-12-01. INTELLICORP INC, pages 121–140. Springer-

Verlag, 2001.

[16] A. Pokahr, L. Braubach, A. Walczak, and W. Lamersdorf.

Developing Multi-Agent Systems with JADE, chapter Jadex

- Engineering Goal-Oriented Agents, pages 254–258. Wiley

and Sons, 2007.

[17] A. S. Rao. AgentSpeak(L): BDI agents speak out in

a logical computable language. In R. van Hoe, edi-

tor, Seventh European Workshop on Modelling Autonomous

Agents in a Multi-Agent World, Eindhoven, The Nether-

lands, 1996. URL citeseer.ist.psu.edu/article/

rao96agentspeakl.html.

226

