
Language Constructs for Improving Reusability in
Object-Oriented Software

Marko van Dooren
University of Leuven

Leuven, Belgium

Marko.vanDooren@cs.kuleuven.be

Eric Steegmans
University of Leuven

Leuven, Belgium

Eric.Steegmans@cs.kuleuven.be

ABSTRACT
The objective of this research project is to improve the reusability
of object-oriented software. We have introduced anchored excep-
tion declarations to allow checked exceptions to be used conve-
niently in reusable software elements such as design patterns. We
are now investigating an innovative inheritance mechanismbased
on existing inheritance mechanisms like that of Eiffel and on traits.
The resulting mechanism should allow a programmer to construct
a class from existing components with little effort.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures; D.3.1 [Programming Languages]: Formal Definitions and
Theory—Semantics; D.2.5 [Software Engineering]: Testing and
Debugging—Error handling and recovery; D.1.5 [Programming
Techniques]: Object-oriented Programming

General Terms
Languages, theory, reliability, verification, design

Keywords
Exception handling, anchoring, inheritance, component

1. DESCRIPTION OF PURPOSE
The purpose of this research project is to increase the reusability

of object-oriented software.
With current programming languages, it still takes too muchef-

fort to transform a high-level design into a working program. Sim-
ilar code is written over and over again because either the program-
ming language does not provide the necessary reuse facilities, or
reuse incurs too much overhead compared to the amount of work
that would be saved. In particular, we found that checked excep-
tions are difficult to use in most design patterns, and we think that
current inheritance mechanisms do not suffice.

Checked Exceptions
An exception handling mechanism increases the reusabilityof soft-
ware by removing specific exception handling code from a compo-
nent. Exceptions can be divided into two categories:checked ex-
ceptions andunchecked exceptions. Checked exceptions must be
propagated explicitly by listing them in the method header,while
unchecked exceptions are propagated implicitly. Note thatthis is

Copyright is held by the author/owner.
OOPSLA’05, October 16–20, 2005, San Diego, California, USA.
ACM 1-59593-193-7/05/0010.

different from the categorisationcaught-uncaught, which denotes
whether an exception can exit a method body. But while checked
exceptions increase the robustness of software, they also decrease
the adaptability and flexibility. It is often necessary to needlessly
adapt other methods when the exceptional behavior of a single
method has changed. In addition, checked exceptions must often
be handled even if they cannot be signalled [4]. As a result, many
programming languages completely omit checked exceptions, and
even if they are available, developers often do not use them.The
root of the problems is the lack of expressiveness of the exception
clause in current programming languages – e.g. thethrows clause
in Java.

Inheritance
Existing approaches to increase the reuse facilities of inheritance
either focus on multiple inheritance including subtyping,or on im-
plementation inheritance. No language however offers bothin a
convenient way, and we think that even the specialty of each ap-
proach has its problems.

Traits are composable units of behavior [3], which can be used,
like code inheritance, to reuse parts of related code without cre-
ating a subtype relation or using delegation. We think that traits,
which are used in Scala [2], are a big step in the right direction for
allowing better reuse of code, but that the approach is stilllimited.
First of all, traits do not provide multiple inheritance even when it
would be natural to use it. Implementation inheritance withtraits
technically works fine, but we think it is not convenient enough.
For example, to connect a trait to another, all required methods
must be connected one at a time. In addition, the contracts ofthe
required methods must be duplicated every time they are used. An-
other problem is that traits are invisible to the clients of aclass,
making it more difficult to understand the behavior of that class. If
a client is already familiar with a certain trait, she could understand
a part of a class by simply looking at the type of the trait. Butif that
type is hidden, she must reconstruct her understanding of that part
of the class by reading the contracts of the methods, which need-
lessly complicates matters. Traits are also less suitable for keeping
the interface of a class simple. While traits allow the programmer
to remove certain methods of a trait, meaning that the programmer
of the trait can provide as much methods as she wants without wor-
rying about bloat in the parent classes, they do not allow methods to
be hidden. By doing this, you may deprive certain clients of valu-
able methods. We think it would be better if a programmer could
choose to export methods based on the estimated use of the class,
but still make the others available. After all, it is difficult to predict
in advance how clients will use the class. In addition, traits cannot
contain state, resulting in more work for the client of the trait, even
when a default representation makes perfect sense.

118

Multiple inheritance in Eiffel can also be used to improve the
reusability, but its inheritance mechanism is not suited for imple-
mentation inheritance. Specifically, if a number of methodsis du-
plicated, and they invoke each other, such an invocation will always
be bound to the default method for the signature selected by that
invocation, which is selected in the subclass. As a result, the mech-
anism cannot be used to add a component – in the sense of a trait–
more than once to a class without modifying the inherited code to
use hook methods because all internal invocations are boundto the
default selections.

2. GOAL STATEMENTS

Checked Exceptions
We introduced anchored exception declarations for declaring the
exceptional behavior of a method relative to that of other methods.

Inheritance
We want to create a new inheritance mechanism based on the in-
heritance mechanism in Eiffel and on traits. The new inheritance
mechanism should allow a class to be constructed from relatively
small components – subclassing – but should still allow a limited
form of multiple inheritance – subclassing and subtyping. It should
also offer the possibility to hide methods inherited through imple-
mentation inheritance but still make them available to clients of the
inheriting class. We will also study to what extent it is possible to
allow the duplication of state without encountering the traditional
diamond problems.

3. APPROACH

Checked Exceptions
We have solved the problems with checked exceptions by intro-
ducing anchored exception declarations. They allow the excep-
tional behavior of a method to be declared relative to that ofothers,
denoted aslike t.m(args) propagating (Exception
List) blocking (Exception List). This way, we pre-
vent gratuitous adaptation of methods when the exceptionalbehav-
ior of a method further in the call-chain is modified. In addition,
anchored exception declarations allow call-site type information to
be used to limit the set of checked exceptions that can be signalled
by a method invocation, removing the need for inconvenient and
dangerous dummy catch clauses.

We have formalised the semantics of anchored exception decla-
rations, and to ensure soundness, we have defined rules that spec-
ify whether or not an exception clauseECa is stronger thanECb.
These rules are used to ensure that a method cannot signal more ex-
ceptions than the methods it overrides, and that the implementation
of a method cannot signal an exception when it is not specifiedby
the exception clause of the method.

On the methodological side, we have shown that anchored ex-
ception declarations can be used without violating the principle of
information hiding, and have provided a guideline for when to use
them. In addition, we have defined criteria to determine which
modifications – triggered by a change in the exceptional behav-
ior of a method – of code are bad and which are good. We have
shown that anchored exception declarations eliminate mostof the
bad modifications while still forcing all good modificationsto be
made.

We have implemented the construct in Cappuccino, an extension
to the ClassicJava programming language.

The work on anchored exception declarations will be presented
at the OOPSLA 2005 conference [4].

Inheritance
The new inheritance mechanism will make a distinction between
subtyping and subclassing relation, as done in e.g. the program-
ming language Timor. In this research project, we currentlyfocus
on the subclassing relation for implementation inheritance, and on
the combination of subclassing and subtyping for inheritance as it
is used in Eiffel. Duplication of methods and state will likely not be
allowed for the subtyping and subclassing combination, whereas it
will be allowed or maybe even be mandatory for subclassing rela-
tions. To prevent violation of the integrity of related state variables,
we intend to use the concept ofdata groups [1]. We will only allow
the duplication of entire data groups.

A novelty of our approach is to give a role name to an inheritance
relation. This name will be used to connect components (traits),
to document the type of the component and its role in the parent
class, and to make methods that are hidden but not removed avail-
able to clients of the parent class. Components can now require
to be connected to a particular type of component by listing it as
a required parameter for the parent class – like a generic param-
eter. This prevents duplication of the behavioral specification of
the required component. The name of the inheritance relation also
reduces the dependency of super calls on the hierarchy by provid-
ing an extra indirection. Instead of using a class name to select a
method, the name of the inheritance path can be used.

We also plan to introduce a facility for exploiting patternsin the
names of methods. For example, the methods of a component for
associations will be namedgetX, setX, containsX,. . . . If a
parameter can be used in these names, it becomes more practical to
use it as a building block for a class.

We plan to implement the resulting inheritance mechanism ina
modified version of Java, and provide a prototype compiler. To
demonstrate the mechanism, we are working on components to
model unary or binary associations, and plan to extend this work
to components for building a graph structure on top of those asso-
ciations. Such components should enable a developer to quickly
translate the structural part of his design into working code, and
easily add complex methods that traverse the associations among
classes by using the graph components.

4. REFERENCES
[1] K. R. M. Leino. Data groups: specifying the modification of

extended state. InOOPSLA ’98: Proceedings of the 13th ACM
SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 144–153, New
York, NY, USA, 1998. ACM Press.

[2] M. Odersky and al. An overview of the Scala programming
language. Technical Report IC/2004/64, EPFL Lausanne,
Switzerland, 2004.

[3] N. Schärli, S. Ducasse, O. Nierstrasz, and A. Black. Traits:
Composable units of behavior. InProceedings ECOOP 2003
(European Conference on Object-Oriented Programming),
volume 2743 ofLNCS, pages 248–274. Springer Verlag, July
2003.

[4] M. van Dooren and E. Steegmans. Combining the robustness
of checked exceptions with the flexibility of unchecked
exceptions using anchored exception declarations. In
OOPSLA ’05: Proceedings of the 20th annual ACM SIGPLAN
Conference on Object-oriented programming, systems,
languages, and applications. ACM Press, 2005.

119

