Language Constructs for Improving Reusability in
Object-Oriented Software

Marko van Dooren
University of Leuven
Leuven, Belgium

Marko.vanDooren@cs.kuleuven.be

ABSTRACT

The objective of this research project is to improve the abilisy
of object-oriented software. We have introduced anchoreé g
tion declarations to allow checked exceptions to be usedezon
niently in reusable software elements such as design pattéve
are now investigating an innovative inheritance mecharbssed
on existing inheritance mechanisms like that of Eiffel andraits.
The resulting mechanism should allow a programmer to cocistr
a class from existing components with little effort.

Categories and Subject Descriptors

D.3.3 [Programming L anguages]: Language Constructs and Fea-
tures; D.3.1 Programming Languages]: Formal Definitions and
Theory—Semantics; D.2.5 [Software Engineering]: Testing and
Debugging—Error handling and recovery; D.1.5 [Programming
Techniques): Object-oriented Programming

General Terms
Languages, theory, reliability, verification, design

Keywords

Exception handling, anchoring, inheritance, component

1. DESCRIPTION OF PURPOSE

The purpose of this research project is to increase the bgiga
of object-oriented software.

With current programming languages, it still takes too meth
fort to transform a high-level design into a working progra®m-
ilar code is written over and over again because either thgram-
ming language does not provide the necessary reuse &ilibr

Eric Steegmans
University of Leuven
Leuven, Belgium

Eric.Steegmans@cs.kuleuven.be

different from the categorisatiotaught-uncaught, which denotes
whether an exception can exit a method body. But while cticke
exceptions increase the robustness of software, they alsease
the adaptability and flexibility. It is often necessary tedkessly
adapt other methods when the exceptional behavior of aesingl
method has changed. In addition, checked exceptions migst of
be handled even if they cannot be signalled [4]. As a reswdfym
programming languages completely omit checked exceptems
even if they are available, developers often do not use thEme.
root of the problems is the lack of expressiveness of thepgiare
clause in current programming languages — e.gt tireows clause

in Java.

I nheritance

Existing approaches to increase the reuse facilities afritdnce
either focus on multiple inheritance including subtypingpn im-
plementation inheritance. No language however offers both
convenient way, and we think that even the specialty of each a
proach has its problems.

Traits are composable units of behavior [3], which can beluse
like code inheritance, to reuse parts of related code witloer
ating a subtype relation or using delegation. We think theits,
which are used in Scala [2], are a big step in the right dioectdr
allowing better reuse of code, but that the approach islistiited.
First of all, traits do not provide multiple inheritance avwehen it
would be natural to use it. Implementation inheritance widits
technically works fine, but we think it is not convenient egbu
For example, to connect a trait to another, all required odxh
must be connected one at a time. In addition, the contradiseof
required methods must be duplicated every time they are éged
other problem is that traits are invisible to the clients dflass,
making it more difficult to understand the behavior of thaissl. If

reuse incurs too much overhead compared to the amount of worka client is already familiar with a certain trait, she couldiarstand

that would be saved. In particular, we found that checkeegxc
tions are difficult to use in most design patterns, and wektthat
current inheritance mechanisms do not suffice.

Checked Exceptions

An exception handling mechanism increases the reusabflggft-
ware by removing specific exception handling code from a asmp
nent. Exceptions can be divided into two categorigsecked ex-
ceptions andinchecked exceptions. Checked exceptions must be
propagated explicitly by listing them in the method headéhile
unchecked exceptions are propagated implicitly. Note tthiatis

Copyright is held by the author/owner.
OOPSLA 05, October 16-20, 2005, San Diego, California, USA.
ACM 1-59593-193-7/05/0010.

118

a part of a class by simply looking at the type of the trait. Bthat
type is hidden, she must reconstruct her understandingabptirt
of the class by reading the contracts of the methods, whield-ne
lessly complicates matters. Traits are also less suitablkseping
the interface of a class simple. While traits allow the pamgmer
to remove certain methods of a trait, meaning that the progrer

of the trait can provide as much methods as she wants without w
rying about bloat in the parent classes, they do not allovhout to
be hidden. By doing this, you may deprive certain clientsaltiv
able methods. We think it would be better if a programmer @oul
choose to export methods based on the estimated use of # cla
but still make the others available. After all, it is diffittd predict

in advance how clients will use the class. In addition, $ra@nnot
contain state, resulting in more work for the client of thagttreven
when a default representation makes perfect sense.

Multiple inheritance in Eiffel can also be used to improve th
reusability, but its inheritance mechanism is not suitediftple-
mentation inheritance. Specifically, if a number of methisdsu-
plicated, and they invoke each other, such an invocatidraivibys
be bound to the default method for the signature selectedhdy t
invocation, which is selected in the subclass. As a reswdtnech-
anism cannot be used to add a component — in the sense of-a trait
more than once to a class without modifying the inheritedectad
use hook methods because all internal invocations are hiouthe
default selections.

2. GOAL STATEMENTS
Checked Exceptions

We introduced anchored exception declarations for dexjattie
exceptional behavior of a method relative to that of othethoas.

Inheritance

The work on anchored exception declarations will be present
at the OOPSLA 2005 conference [4].

Inheritance

The new inheritance mechanism will make a distinction betwe
subtyping and subclassing relation, as done in e.g. thergmog
ming language Timor. In this research project, we currefutys
on the subclassing relation for implementation inherigarand on
the combination of subclassing and subtyping for inheciaas it
is used in Eiffel. Duplication of methods and state will likeot be
allowed for the subtyping and subclassing combination,redeit
will be allowed or maybe even be mandatory for subclassitay re
tions. To prevent violation of the integrity of related staariables,
we intend to use the conceptadta groups[1]. We will only allow
the duplication of entire data groups.

A novelty of our approach is to give a role name to an inheciéan
relation. This name will be used to connect componentstgai
to document the type of the component and its role in the paren
class, and to make methods that are hidden but not removéd ava

We want to create a new inheritance mechanism based on the in-2ble to clients of the parent class. Components can now reequi

heritance mechanism in Eiffel and on traits. The new inhadé
mechanism should allow a class to be constructed from velgti
small components — subclassing — but should still allow atdich
form of multiple inheritance — subclassing and subtypinghbuld

also offer the possibility to hide methods inherited thitougple-

mentation inheritance but still make them available tont8eof the
inheriting class. We will also study to what extent it is pbisto

allow the duplication of state without encountering thelitianal

diamond problems.

3. APPROACH
Checked Exceptions

We have solved the problems with checked exceptions by-intro
ducing anchored exception declarations. They allow the excep-
tional behavior of a method to be declared relative to thatloérs,
denoted ad i ke t. n(args) propagati ng (Exception

Li st) bl ocki ng (Exception List). This way, we pre-
vent gratuitous adaptation of methods when the exceptloetzv-
ior of a method further in the call-chain is modified. In adut
anchored exception declarations allow call-site typerimfation to
be used to limit the set of checked exceptions that can bealégh
by a method invocation, removing the need for inconveniemnt a
dangerous dummy catch clauses.

We have formalised the semantics of anchored exceptioma-decl
rations, and to ensure soundness, we have defined rulepdwat s
ify whether or not an exception claug&’, is stronger tharZC,.
These rules are used to ensure that a method cannot sigreemor
ceptions than the methods it overrides, and that the impieatien
of a method cannot signal an exception when it is not spedifjed
the exception clause of the method.

On the methodological side, we have shown that anchored ex-
ception declarations can be used without violating thegiple of
information hiding, and have provided a guideline for whemse
them. In addition, we have defined criteria to determine hic
modifications — triggered by a change in the exceptional 3eha
ior of a method — of code are bad and which are good. We have
shown that anchored exception declarations eliminate ofabte
bad modifications while still forcing all good modificatiotts be
made.

We have implemented the construct in Cappuccino, an extensi
to the ClassicJava programming language.

119

to be connected to a particular type of component by listirasi
a required parameter for the parent class — like a generanpar
eter. This prevents duplication of the behavioral spedificaof
the required component. The name of the inheritance relal&o
reduces the dependency of super calls on the hierarchy kidpro
ing an extra indirection. Instead of using a class name t&csal
method, the name of the inheritance path can be used.

We also plan to introduce a facility for exploiting patteinghe
names of methods. For example, the methods of a component for
associations will be nameglet X, set X, cont ai nsX,.... Ifa
parameter can be used in these names, it becomes more g@rectic
use it as a building block for a class.

We plan to implement the resulting inheritance mechanis@ in
modified version of Java, and provide a prototype compiles. T
demonstrate the mechanism, we are working on components to
model unary or binary associations, and plan to extend thik w
to components for building a graph structure on top of thas®a
ciations. Such components should enable a developer ta&lguic
translate the structural part of his design into workinge;oand
easily add complex methods that traverse the associatropnag
classes by using the graph components.

4. REFERENCES

[1] K. R. M. Leino. Data groups: specifying the modificatioh o
extended state. I®OOPSLA'98: Proceedings of the 13th ACM

S GPLAN conference on Object-oriented programming,

systems, languages, and applications, pages 144-153, New
York, NY, USA, 1998. ACM Press.

M. Odersky and al. An overview of the Scala programming
language. Technical Report IC/2004/64, EPFL Lausanne,
Switzerland, 2004.

N. Scharli, S. Ducasse, O. Nierstrasz, and A. Blackit$ra
Composable units of behavior. Rroceedings ECOOP 2003
(European Conference on Object-Oriented Programming),
volume 2743 oLNCS pages 248-274. Springer Verlag, July
2003.

M. van Dooren and E. Steegmans. Combining the robustness
of checked exceptions with the flexibility of unchecked
exceptions using anchored exception declarations. In
OOPSLA'05: Proceedings of the 20th annual ACM SGPLAN
Conference on Object-oriented programming, systems,
languages, and applications. ACM Press, 2005.

(2]

(3]

[4]

