
Automated Assessment of Students’ Testing Skills
for Improving Correctness of Their Code
 Zalia Shams

Virginia Tech
2202 Kraft Drive

Blacksburg
VA-24060,USA

zalia18@cs.vt.edu

ABSTRACT
Although software testing is included as a regular part of many
programming courses, current assessment techniques used in
automated grading tools for evaluating student-written software
tests are imperfect. Code coverage measures are typically used in
practice, but that approach does not assess how much of the
expected behavior is checked by the tests and sometimes,
overestimates the true quality of the tests. Two robust and
thorough measures for evaluating student-written tests are running
each students’ tests against others’ solutions(known as all-pairs
testing) and injecting artificial bugs to determine if tests can
detect them (also known as mutation analysis). Even though they
are better indicators of test quality, both of them posed a number
of practical obstacles to classroom use. This proposal describes
technical obstacles behind using these two approaches in
automated grading. We propose novel and practical solutions to
apply all-pairs testing and mutation analysis of student-written
tests, especially in the context of classroom grading tools.
Experimental results of applying our techniques in eight CS1 and
CS2 assignments submitted by 147 students show the feasibility
of our solution. Finally, we discuss our plan to combine the
approaches to evaluate tests of assignments having variable
amounts of design freedom and explain their evaluation method.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education; D.1.5 [Programming Techniques]: Object
oriented Programming; D.2.5 [Software Engineering]: Testing
and Debugging—testing tools.

Keywords
Test driven development, automated grading, mutation testing,
software testing,test coverage, reflection, bytecode
transformation.

1. INTRODUCTION
Testing is an inaugural part of software development. Even
though it accounts for 50% cost of software development,
practitioners perceive testing as a tedious, uncreative, boring work
and less than 15% of them ever receive any formal training in the
subject [12]. Students are not accustomed to test their code. They

usually focus on output correctness on instructor’s sample data [5]
and do less testing on their own [4]. Considering the necessity of
testing, more educators are including software tests [3] in
programming and software engineering courses [5, 8]. To support
software testing as a part of regular programming assignments,
current classroom assessment systems (e.g.,Web-CAT, ASSYST,
Marmoset) allow students to turn in their programs along with
tests. These automated grading tools evaluate student-written tests
using coverage metrics. Code coverage measures the percentage
of code—e.g., statements or branches—that is executed by
running tests. The rationale behind code coverage is: the more
code executed during testing the higher the chance of finding
flaws in them. However, code coverage may falsely indicate test
quality as it does not check if the executed code has been tested
against expected behavior [1, 9]. Moreover a students’ solution
may be incomplete or incorrect. Large percentage execution of
an incomplete solution will result in high code coverage missing
all the omissions.
Two robust and thorough mechanisms for evaluating student
written tests are: 1) all-pairs student testing, and 2) mutation
testing. Even though they are strong indicators of test quality and
adequacy, because of technical difficulties they are rarely used for
assessing student-written tests, especially when programs are
written in object-oriented languages such as Java. All-pairs testing
[7] involve running every student’s tests against the others’
programs. This mechanism gives students a greater realization of
the density of bugs in their code and their ability to write tests that
find defects in others’ solutions. However, implementation of this
all-pairs model of executing tests is rare because student-written
tests, such as JUnit tests written for Java programs, depend on
individual aspects of the author’s solution and may not compile
against another student’s program. Automated grading systems
face similar issues when running instructor-provided JUnit-style
reference tests against student submissions. Student solutions that
fail to conform to the all requirements of the assignment cannot
be compiled or assessed using reference tests. As a result, partial
or incomplete submissions would have no results against
reference tests, and most grading systems would assign no credit
for the corresponding portion of the assignment grade. Thus, to
run each student’s tests against every other student’s solution, a
way must be devised to ensure a uniform interface against which
tests can be executed regardless of differences between solutions
or divergence from the assignment requirements. The other
mechanism, mutation testing, seeds artificial errors into code
(generating buggy versions called mutants) and then checks
whether a test suite can detect them. Mutant score is computed
from the number of mutants detected vs. number of mutant
generated, and is used to indicate adequacy of test suites.
Mutation testing is difficult to use in an educational setting for
three main reasons [1]. First, mutation testing is computationally
expensive and time consuming as it involves a manual

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components of
this work must be honored. For all other uses, contact the owner/author(s).
Copyright is held by the author/owner(s).
SPLASH’13, October 26–31, 2013, Indianapolis, Indiana, USA.
 ACM 978-1-4503-1995-9/13/10.
http://dx.doi.org/10.1145/2508075.2508078

37

determination process of whether an injected error is a true bug or
an innocuous solution. Second, mutants must be generated from a
solution that is presumably correct and complete. A student
solution is not a reliable candidate for mutant generation as it may
be incorrect or partial. Third, students’ tests may have
dependencies on their own solutions and may fail to compile
against mutants. Thus, to use mutation testing for assessment of
student written tests and provide students immediate feedbacks,
mutants should be generated from a solution that covers all the
aspects of the assignment, they must be classified into true bugs
or equivalent of an original solution using an automated efficient
mechanism, and the mutants must run against students’ tests
irrespective of the tests’ internal structure.

Application of all-pairs testing and mutation analysis will give
students a deeper realization on the quality of their tests, which
will help them thoroughly test their own code. As a result, they
will learn to write software having fewer bugs.

2. PROBLEM
Automated grading tools allow students to turn in software tests
along with their solutions. Assessment of the quality of student-
written tests helps students learning software testing and
programming at the same time. These grading tools evaluate their
tests using code coverage which may overestimate test quality as
it does not assess how much of the expected behavior has been
checked correctly. Therefore, to assess true quality of students’
tests we must identify: Which test quality measures actually
assess how much of the expected behavior is checked by the
tests?

Even though some test quality measures may work well in an
industry setting, they may not be practical for evaluating students
tests for three main reasons: 1) students should have varying
amount of design freedom to learn mapping requirements to
software modules, 2) they must get immediate feedback on their
work, and 3) no formal tracking system for bugs or code changes
is available for small class assignments. Therefore, we need to
find out: What are the practical obstacles of using identified
test quality measures in an educational setting? Once we
identify the main problems, we will devise: How can we resolve
the obstacles to apply the measures in classroom tools?

Since students have varying amounts of design freedom in their
assignments, we will investigate: Which approach is more
appropriate for open-ended assignments, and what measure
works better for close-ended assignments? Finally, we will
determine: What combination of the approaches works well as
a hybrid measure to separately evaluate tests of the
assignments having variable amounts of design freedom?

3. APPROACH
All-pairs testing and mutation analysis are two robust measures to
evaluate the quality of student written tests. The main obstacle of
using all-pairs testing is the compile-time dependency of the tests
on its author’s solution. In object-oriented languages, such as
Java, tests are written as a part of the solution and may refer to
any visible or public feature of the solution. For example, a
student may decide to add a helper method in his solution to assist
some computation. If a student tests such components that arise
from his personal design decisions, and are not present in others’
code, then his tests will not compile against others’ solutions. A
novel way to resolve this issue in Java is to transform the student-

written tests so that they use reflection to defer binding to specific
features of a solution until run-time. Test sets that depend on the
internal details on one particular solution can be compiled against
the particular solution they were written for. For example, one
student’s tests will compile against his or her own code, if they
compile at all, and so we need not worry about syntactically
invalid test sets. Similarly, instructors typically provide their own
implementation to double-check reference test sets, so the
reference tests will compile against the implementation. We
transform the byte-code of the compiled test sets into reflective
forms so that they use late binding. Reflection is a feature of Java
that is used to reduce compile time dependency between code
components. Hence, the byte-codes of the test cases are
transformed using Javassist [2] into purely reflective forms. Java
reflection can be complicated and error-prone to use, but we use
ReflectionSupport [10], a library of methods that completely
encapsulates the details of using reflection underneath a powerful,
streamlined interface ideal for writing test actions. As a result, test
cases written using this library will have no compile-time
dependencies on the software under test.

The purely reflective test cases will compile and run against any
student submission. Individual test cases that depend on features
that are missing or indirectly declared in the student’s work fail at
run-time, while other test cases run normally. Therefore, the test-
sets will run against all solutions, even if some of them are
incomplete. Finally, we collect how many bugs a student-written
test has revealed to assess its robustness.

The second approach, mutation testing, injects artificial bugs in
the code and checks if test-cases can detect the bugs. Mutants
(buggy versions) must be generated from a correct and complete
solution. Usually instructors provide a reference solution, which
is presumably correct and includes all the required features of the
assignment, to an automated grader. We choose the reference
solution to generate mutants. Mutant generation also takes time. If
mutants are generated from a reference solution available when an
assignment is created, it is possible to pre-generate the full set of
mutants from the reference solution ahead of time, so that mutant
generation will not slow down analysis of student-written tests.
Later, student-written test-cases are transformed to remove
compile-time dependencies so they will run against any mutants.
Afterwards, we validate students’ tests against the reference
solution and run mutants against only the valid tests. Mutants that
produce different results from the original solution are considered
as bugs. Our conservative process reduces computational
overhead of manual differentiation, determining whether injected
faults in a mutant are true bugs or a behavioral equivalent of an
innocuous solution. Then, we evaluate the quality of a student’s
test from how many mutants it has detected.

All-pairs testing evaluates robustness and mutation analysis
measures adequacy of the tests. The approaches may need some
modification to evaluate open-ended assignments where large
percentage of test-cases examines student-specific features. For
example, to evaluate student-specific tests, we can use mutants
generated from the same author’s solution. Finally, using massive
test-suites collected from all students’ tests with the same
assignments in different semesters, we determine if students are
producing fewer bugs than they used to using code coverage, after
getting feedback from all-pairs testing and mutation analysis.

38

4. EVALUATION METHODOLOGY
We identified that all-pairs testing and mutation analysis are
better indicators of test quality than code coverage. Then, we
investigated obstacles for using them in automated grading
systems, and devised novel solutions to resolve the problems. We
applied our solution for all-pairs testing in one CS1 and one CS2
assignments to evaluate our primary hypothesis.
The CS1 assignment had 46 submissions with 46 test sets
consisting of 463 test cases. We removed compile-time
dependencies from the test-cases and screened them against the
reference solution. This resulted in a total of 18,225 individual
tests after removing invalid or student-specific test cases. Every
test case was passed by at least 65% of the programs and 63% of
the submissions passed every test case written by every student.
Keeping in mind that it was the first assignment for the beginners,
we consider that students were able to write 35% effective tests
that did uncover defects in many other submissions. The CS2
assignment had 101 student submissions with 101 test sets
consisting of 2155 test cases. We used byte code translator to
convert the test sets to their reflective versions like before. After
validating them against an instructor-provided reference solution
we got 2001 (92.9%) valid test cases and ran them against 101
solutions. The performance of the programs was representative of
a more challenging assignment. The average portion of the test
cases passed by a solution was 83.5%. Only five student
programs passed all valid test cases, and it shows that students on
the whole are quite capable of writing test cases that will reveal
bugs. Unlike the CS1 assignment, there were no test cases that
were passed by every program. Also, no transformed test suite
failed to compile or run because of their dependency on the
author’s solution. To our knowledge, we are the first to
successfully apply all-pairs testing [6] in automated grading.

To evaluate the practicality of our solution for mutation analysis,
we applied it to six CS1 and CS2 assignments, where students
were required to write their own software tests for each of their
solutions. We pre-generated mutants from the reference solution,
removed compile-time dependencies from students’ tests,
validated the tests against the reference solution, automatically
detected mutants from the valid tests, and computed mutant
detection ratio of the tests. Among the six assignments, three were
from CS1 where the number of mutants varied from 42-47. The
other three CS2 assignments had 147, 109 and 305 mutants. Total
number of valid test cases from the CS1 assignments was 672,
where 42 among 47students completed all the assignments. In the
CS2, 107 students completed assignments where valid student test
cases were 2224. In all the assignments, the mutant detection ratio
(M = 42.2% ~ 87.2%, sd = 13.5%~ 25.9%) was significantly
lower (Wilcoxon signed rank test, 855.5+, p < 0.0001) than the
test coverage achieved (M = 93.8%~96.9%, sd = 17.2%~7.7%).
From this result, it is clear that achieving a higher mutation score
(better bug-revealing capability) was harder than achieving higher
test coverage, supporting the belief that mutation analysis
provides a better evaluation of test quality. However, we found
that when students have larger design freedom in assignments,
significant number of their tests examine components related to
their personal design decisions. Such student-specific tests could
not be evaluated against mutants generated from the reference
solution. Outcome of our mutation analysis is published [11] in
ICER, 2013. We are researching effective ways of generating
feedback from the two approaches without revealing reference
solutions or other students’ solutions. Afterwards, we will develop

a hybrid approach of all-pair testing and mutation analysis to
evaluate student-written tests having variable amounts of design
freedom.

Finally, to evaluate our secondary hypothesis we will create
massive test-suites collecting all the students’ tests over different
semesters with the same assignments where students will receive
feedback from three different measures: code coverage, all-pairs
testing, and mutation analysis. We will analyze defect density, the
number of bugs per thousands non-commented line of code, of
students’ solutions when they receive feedback from the three
different approaches.

Our research outcome will provide educators and students insight
into the quality of students’ testing skills. Implementation of our
solution to remove compile-time dependencies from the test cases
will enable automated graders to evaluate partial solutions.
Application of all-pairs testing and mutation analysis will
encourage students to practice testing skills in many classes and
will give them concrete feedback on their testing performance. As
a result, students will learn to test their code well which will
improve accuracy of their solution.

5. REFERENCES
[1] Aaltonen, K. et al. 2010. Mutation analysis vs. code coverage
 in automated assessment of students' testing skills, Proc. of
 OOPSLA, pp. 153-160, Nevada, USA.
[2] Chiba, S., and Nishizawa, M. 2003. An easy-to-use toolkit for
 efficient Java bytecode translators, Proc. of the 2nd
 international conference on Generative programming and
 component engineering, Erfurt, Germany.
[3] Desai, C. et al. 2009. Implications of integrating test-driven
 development into CS1/CS2 curricula, SIGCSE Bull., vol. 41,
 pp. 148-152.
[4] Edwards, S. H. 2003. Using test-driven development in the
 classroom: Providing students with concrete feedback . Proc.
 of the International Conference on Education and
 Information Systems: Technologies and Applications.
[5] Edwards, S. H. 2004. Using software testing to move
 students from trial-and-error to reflection-in-action. SIGCSE
 Bull., vol. 36, pp. 26-30.
[6] Edwards, S. H. et al. 2012. Running students' software tests
 against each others' code: new life for an old "gimmick".
 Proc. of SIGCSE’12 , pp. 221-226, Raleigh, NC, USA.
[7] Goldwasser, M. H. 2002. A gimmick to integrate software
 testing throughout the curriculum. SIGCSE Bull., vol. 34, pp.
 271- 275.
[8] Janzen, D. S. and H. Saiedian. 2006. Test-driven learning:
 intrinsic integration of testing into the cs/se curriculum.
 SIGCSE Bull., vol. 38, pp. 254–258.
[9] Schuler, D. and Zeller, A. 2011. Assessing Oracle Quality
 with Checked Coverage. Proc. of ICST’11, pp. 90-99.
[10] Shams, Z. and Edwards, S. H. 2013. ReflectionSupport: Java
 Refection Made Easy. to appear at The Open Software
 Engineering Journal, TOSEJ.
[11] Shams, Z., and Edwards, S. H. 2013. Toward Practical
 Mutation Analysis for Evaluating the Quality of Student-
 Written Software Tests. Proc. of ICER, pp. 53-58.
[12] Wilson, R. C. 1995. UNIX test tools and benchmarks:
 methods and tools to design, develop, and execute
 functional, structural, reliability, and regression tests:
 Prentice-Hall, Inc.

39

