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ABSTRACT 
Although software testing is included as a regular part of many 
programming courses, current assessment techniques used in 
automated grading tools for evaluating student-written software 
tests are imperfect. Code coverage measures are typically used in 
practice, but that approach does not assess how much of the 
expected behavior is checked by the tests and sometimes, 
overestimates the true quality of the tests. Two robust and 
thorough measures for evaluating student-written tests are running 
each students’ tests against others’ solutions(known as all-pairs 
testing) and injecting artificial bugs to determine if tests can 
detect them (also known as mutation analysis). Even though they 
are better indicators of test quality, both of them posed a number 
of practical obstacles to classroom use. This proposal describes 
technical obstacles behind using these two approaches in 
automated grading. We propose novel and practical solutions to 
apply all-pairs testing and mutation analysis of student-written 
tests, especially in the context of classroom grading tools. 
Experimental results of applying our techniques in eight CS1 and 
CS2 assignments submitted by 147 students show the feasibility 
of our solution. Finally, we discuss our plan to combine the 
approaches to evaluate tests of assignments having variable 
amounts of design freedom and explain their evaluation method.   

Categories and Subject Descriptors 
K.3.2 [Computers and Education]: Computer and Information 
Science Education; D.1.5 [Programming Techniques]: Object 
oriented Programming; D.2.5 [Software Engineering]: Testing 
and Debugging—testing tools. 

Keywords 
Test driven development, automated grading, mutation testing, 
software testing,test coverage, reflection, bytecode 
transformation. 

1. INTRODUCTION 
Testing is an inaugural part of software development. Even 
though it accounts for 50% cost of software development, 
practitioners perceive testing as a tedious, uncreative, boring work 
and less than 15% of them ever receive any formal training in the 
subject [12].  Students are not accustomed to test their code. They 

usually focus on output correctness on instructor’s sample data [5] 
and do less testing on their own [4].  Considering the necessity of 
testing, more educators are including software tests [3] in 
programming and software engineering courses [5, 8]. To support 
software testing as a part of regular programming assignments, 
current classroom assessment systems (e.g.,Web-CAT, ASSYST, 
Marmoset) allow students to turn in their programs along with 
tests. These automated grading tools evaluate student-written tests 
using coverage metrics. Code coverage measures the percentage 
of code—e.g., statements or branches—that is executed by 
running tests. The rationale behind code coverage is: the more 
code executed during testing the higher the chance of finding 
flaws in them. However, code coverage may falsely indicate test 
quality as it does not check if the executed code has been tested 
against expected behavior [1, 9]. Moreover a students’ solution 
may be incomplete or incorrect.  Large percentage execution of 
an incomplete solution will result in high code coverage missing 
all the omissions. 
Two robust and thorough mechanisms for evaluating student 
written tests are: 1) all-pairs student testing, and 2) mutation 
testing. Even though they are strong indicators of test quality and 
adequacy, because of technical difficulties they are rarely used for 
assessing student-written tests, especially when programs are 
written in object-oriented languages such as Java. All-pairs testing 
[7] involve running every student’s tests against the others’ 
programs. This mechanism gives students a greater realization of 
the density of bugs in their code and their ability to write tests that 
find defects in others’ solutions. However, implementation of this 
all-pairs model of executing tests is rare because student-written 
tests, such as JUnit tests written for Java programs, depend on 
individual aspects of the author’s solution and may not compile 
against another student’s program. Automated grading systems 
face similar issues when running instructor-provided JUnit-style 
reference tests against student submissions. Student solutions that 
fail to conform to the all requirements of the assignment cannot 
be compiled or assessed using reference tests. As a result, partial 
or incomplete submissions would have no results against 
reference tests, and most grading systems would assign no credit 
for the corresponding portion of the assignment grade. Thus, to 
run each student’s tests against every other student’s solution, a 
way must be devised to ensure a uniform interface against which 
tests can be executed regardless of differences between solutions 
or divergence from the assignment requirements. The other 
mechanism, mutation testing, seeds artificial errors into code 
(generating buggy versions called mutants) and then checks 
whether a test suite can detect them. Mutant score is computed 
from the number of mutants detected vs. number of mutant 
generated, and is used to indicate adequacy of test suites. 
Mutation testing is difficult to use in an educational setting for 
three main reasons [1]. First, mutation testing is computationally 
expensive and time consuming as it involves a manual 
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determination process of whether an injected error is a true bug or 
an innocuous solution. Second, mutants must be generated from a 
solution that is presumably correct and complete. A student 
solution is not a reliable candidate for mutant generation as it may 
be incorrect or partial. Third, students’ tests may have 
dependencies on their own solutions and may fail to compile 
against mutants. Thus, to use mutation testing for assessment of 
student written tests and provide students immediate feedbacks, 
mutants should be generated from a solution that covers all the 
aspects of the assignment, they must be classified into true bugs 
or equivalent of an original solution using an automated efficient 
mechanism, and the mutants must run against students’ tests 
irrespective of the tests’ internal structure. 

Application of all-pairs testing and mutation analysis will give 
students a deeper realization on the quality of their tests, which 
will help them thoroughly test their own code. As a result, they 
will learn to write software having fewer bugs. 

2. PROBLEM 
Automated grading tools allow students to turn in software tests 
along with their solutions. Assessment of the quality of student-
written tests helps students learning software testing and 
programming at the same time. These grading tools evaluate their 
tests using code coverage which may overestimate test quality as 
it does not assess how much of the expected behavior has been 
checked correctly. Therefore, to assess true quality of students’ 
tests we must identify: Which test quality measures actually 
assess how much of the expected behavior is checked by the 
tests? 

Even though some test quality measures may work well in an 
industry setting, they may not be practical for evaluating students 
tests for three main reasons: 1) students should have varying 
amount of design freedom to learn mapping requirements to 
software modules, 2) they must get immediate feedback on their 
work, and 3) no formal tracking system for bugs or code changes 
is available for small class assignments. Therefore, we need to 
find out: What are the practical obstacles of using identified 
test quality measures in an educational setting? Once we 
identify the main problems, we will devise: How can we resolve 
the obstacles to apply the measures in classroom tools? 

Since students have varying amounts of design freedom in their 
assignments, we will investigate: Which approach is more 
appropriate for open-ended assignments, and what measure 
works better for close-ended assignments?  Finally, we will 
determine: What combination of the approaches works well as 
a hybrid measure to separately evaluate tests of the 
assignments having variable amounts of design freedom? 

3. APPROACH 
All-pairs testing and mutation analysis are two robust measures to 
evaluate the quality of student written tests. The main obstacle of 
using all-pairs testing is the compile-time dependency of the tests 
on its author’s solution. In object-oriented languages, such as 
Java, tests are written as a part of the solution and may refer to 
any visible or public feature of the solution. For example, a 
student may decide to add a helper method in his solution to assist 
some computation. If a student tests such components that arise 
from his personal design decisions, and are not present in others’ 
code, then his tests will not compile against others’ solutions. A 
novel way to resolve this issue in Java is to transform the student-

written tests so that they use reflection to defer binding to specific 
features of a solution until run-time. Test sets that depend on the 
internal details on one particular solution can be compiled against 
the particular solution they were written for.  For example, one 
student’s tests will compile against his or her own code, if they 
compile at all, and so we need not worry about syntactically 
invalid test sets.  Similarly, instructors typically provide their own 
implementation to double-check reference test sets, so the 
reference tests will compile against the implementation. We 
transform the byte-code of the compiled test sets into reflective 
forms so that they use late binding. Reflection is a feature of Java 
that is used to reduce compile time dependency between code 
components. Hence, the byte-codes of the test cases are 
transformed using Javassist  [2] into purely reflective forms.  Java 
reflection can be complicated and error-prone to use, but we use 
ReflectionSupport [10], a library of methods that completely 
encapsulates the details of using reflection underneath a powerful, 
streamlined interface ideal for writing test actions. As a result, test 
cases written using this library will have no compile-time 
dependencies on the software under test. 

The purely reflective test cases will compile and run against any 
student submission. Individual test cases that depend on features 
that are missing or indirectly declared in the student’s work fail at 
run-time, while other test cases run normally. Therefore, the test-
sets will run against all solutions, even if some of them are 
incomplete. Finally, we collect how many bugs a student-written 
test has revealed to assess its robustness. 

The second approach, mutation testing, injects artificial bugs in 
the code and checks if test-cases can detect the bugs. Mutants 
(buggy versions) must be generated from a correct and complete 
solution. Usually instructors provide a reference solution, which 
is presumably correct and includes all the required features of the 
assignment, to an automated grader. We choose the reference 
solution to generate mutants. Mutant generation also takes time. If 
mutants are generated from a reference solution available when an 
assignment is created, it is possible to pre-generate the full set of 
mutants from the reference solution ahead of time, so that mutant 
generation will not slow down analysis of student-written tests.  
Later, student-written test-cases are transformed to remove 
compile-time dependencies so they will run against any mutants. 
Afterwards, we validate students’ tests against the reference 
solution and run mutants against only the valid tests. Mutants that 
produce different results from the original solution are considered 
as bugs.  Our conservative process reduces computational 
overhead of manual differentiation, determining whether injected 
faults in a mutant are true bugs or a behavioral equivalent of an 
innocuous solution. Then, we evaluate the quality of a student’s 
test from how many mutants it has detected.  

All-pairs testing evaluates robustness and mutation analysis 
measures adequacy of the tests. The approaches may need some 
modification to evaluate open-ended assignments where large 
percentage of test-cases examines student-specific features. For 
example, to evaluate student-specific tests, we can use mutants 
generated from the same author’s solution. Finally, using massive 
test-suites collected from all students’ tests with the same 
assignments in different semesters, we determine if students are 
producing fewer bugs than they used to using code coverage, after 
getting feedback from all-pairs testing and mutation analysis. 
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4. EVALUATION METHODOLOGY 
We identified that all-pairs testing and mutation analysis are 
better indicators of test quality than code coverage. Then, we 
investigated obstacles for using them in automated grading 
systems, and devised novel solutions to resolve the problems. We 
applied our solution for all-pairs testing in one CS1 and one CS2 
assignments to evaluate our primary hypothesis.  
The CS1 assignment had 46 submissions with 46 test sets 
consisting of 463 test cases. We removed compile-time 
dependencies from the test-cases and screened them against the 
reference solution. This resulted in a total of 18,225 individual 
tests after removing invalid or student-specific test cases. Every 
test case was passed by at least 65% of the programs and 63% of 
the submissions passed every test case written by every student. 
Keeping in mind that it was the first assignment for the beginners, 
we consider that students were able to write 35% effective tests 
that did uncover defects in many other submissions. The CS2 
assignment had 101 student submissions with 101 test sets 
consisting of 2155 test cases. We used byte code translator to 
convert the test sets to their reflective versions like before. After 
validating them against an instructor-provided reference solution 
we got 2001 (92.9%) valid test cases and ran them against 101 
solutions. The performance of the programs was representative of 
a more challenging assignment. The average portion of the test 
cases passed by a solution was 83.5%.  Only five student 
programs passed all valid test cases, and it shows that students on 
the whole are quite capable of writing test cases that will reveal 
bugs. Unlike the CS1 assignment, there were no test cases that 
were passed by every program. Also, no transformed test suite 
failed to compile or run because of their dependency on the 
author’s solution. To our knowledge, we are the first to 
successfully apply all-pairs testing [6] in automated grading. 

To evaluate the practicality of our solution for mutation analysis, 
we applied it to six CS1 and CS2 assignments, where students 
were required to write their own software tests for each of their 
solutions. We pre-generated mutants from the reference solution, 
removed compile-time dependencies from students’ tests, 
validated the tests against the reference solution, automatically 
detected mutants from the valid tests, and computed mutant 
detection ratio of the tests. Among the six assignments, three were 
from CS1 where the number of mutants varied from 42-47. The 
other three CS2 assignments had 147, 109 and 305 mutants. Total 
number of valid test cases from the CS1 assignments was 672, 
where 42 among 47students completed all the assignments. In the 
CS2, 107 students completed assignments where valid student test 
cases were 2224. In all the assignments, the mutant detection ratio 
(M = 42.2% ~ 87.2%, sd = 13.5%~ 25.9%) was significantly 
lower (Wilcoxon signed rank test, 855.5+, p < 0.0001) than the 
test coverage achieved (M = 93.8%~96.9%, sd = 17.2%~7.7%). 
From this result, it is clear that achieving a higher mutation score 
(better bug-revealing capability) was harder than achieving higher 
test coverage, supporting the belief that mutation analysis 
provides a better evaluation of test quality. However, we found 
that when students have larger design freedom in assignments, 
significant number of their tests examine components related to 
their personal design decisions. Such student-specific tests could 
not be evaluated against mutants generated from the reference 
solution. Outcome of our mutation analysis is published [11] in 
ICER, 2013. We are researching effective ways of generating 
feedback from the two approaches without revealing reference 
solutions or other students’ solutions. Afterwards, we will develop 

a hybrid approach of all-pair testing and mutation analysis to 
evaluate student-written tests having variable amounts of design 
freedom.  

Finally, to evaluate our secondary hypothesis we will create 
massive test-suites collecting all the students’ tests over different 
semesters with the same assignments where students will receive 
feedback from three different measures: code coverage, all-pairs 
testing, and mutation analysis. We will analyze defect density, the 
number of bugs per thousands non-commented line of code, of 
students’ solutions when they receive feedback from the three 
different approaches.  

Our research outcome will provide educators and students insight 
into the quality of students’ testing skills. Implementation of our 
solution to remove compile-time dependencies from the test cases 
will enable automated graders to evaluate partial solutions. 
Application of all-pairs testing and mutation analysis will 
encourage students to practice testing skills in many classes and 
will give them concrete feedback on their testing performance. As 
a result, students will learn to test their code well which will 
improve accuracy of their solution. 
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