
Mutual Satellites:
Round-trip Modeling for Complete Applications

Lars Thorup, Sune Gynthersen, Kristian Dupont
Mutual Satellites A/S
Nørre Søgade 27A stv

1370 Copenhagen K, Denmark
+45 7026 2118

{lars.thorup, sune.gynthersen, kristian.dupont}@mutual-satellites.com

Abstract
During the presentation we will demonstrate a new modeling tool,
implemented as an Add-In for Microsoft Visual Studio. Our tool
provides complete round-trip capabilities enabling application
manipulation using either the model or the source code. The tool
manipulates all three application layers of conventional enterprise
applications, currently with support for SQL, C# and XAML.

Categories and Subject Descriptors D.2.3 [Software
Engineering]: Coding Tools and Techniques – Object-oriented
programming

General Terms Design

Keywords Model Driven Development, UML, Entity
Relationship, C#, SQL, XAML, round-trip

1. Introduction
Mutual Satellites is a new kind of tool for Model-Driven
Development[1]. Mutual Satellites manipulates all three
application layers: the database layer, the business object layer
and the user interface layer. The software developer retains
complete control over the details of the source code because
Mutual Satellites implements complete round-trip engineering on
all application layers, see Figure 1.
By achieving this, we improve on existing modeling tools. Some
tools (typically generation-based) succeed in generating complete
applications but then lack round-trip capabilities. Other tools
(typically UML and database modeling) succeed in providing
round-trip capabilities but then lack support for more than a single
application layer.

Mutual Satellites supports a modeling language based on classic
data modeling diagrams, like UML[2] or Entity-Relationship[3],
extended with data validation and other presentation-level
features. The tool is currently being implemented for Microsoft
Visual Studio 2005 and targets enterprise applications built with

SQL, C# and XAML for the respective three application layers.
The tool fits with the existing designers in Visual Studio.

2. Architecture
Mutual Satellites works by annotating the source code with
references to the model. This means that the source code itself
contains the model, thus there is no separate representation of the
model. From the annotations the tool can infer a graphical
representation of the model, allowing the developers to work
directly on this model and having the tool convert all model
changes back into corresponding source code changes. Similarly
the developers can make any kind of changes to the source code
and then have the tool re-infer the resulting model. Therefore the
tool has full round-trip capabilities while still giving developers
complete control of all the details of the source code.
Annotations can be potentially added to source code in any
programming language and thereby make connections from
different layers to a common model. In the case that Mutual
Satellites contains language packs for all programming languages
used in an application, the tool will allow developers to maintain
a model for the complete application. Mutual Satellites works
with existing programming languages, thus allowing software
developers to leverage their existing competences.

Copyright is held by the author/owner(s).
OOPSLA’06 October 22–26, 2006, Portland, Oregon, USA.
ACM 1-59593-491-X/06/0010.

Figure 1: Round-trip modeling for three layers

704

3. Benefits
In The Pragmatics of Model-Driven Development[4], Bran Selic,
goes through a list of seven challenges that MDD tools must
address before they will be successful in the market. Mutual
Satellites addresses all seven challenges:

3.1 Model/code correspondance
With Mutual Satellites, model-level observability is addressed
with a feature we call "Go to model". After an error is detected by
the compiler or the run-time system, the developer can go directly
from the location of the error in the source code to the
corresponding location in the model.

3.2 Version control
With Mutual Satellites, the model is completely represented by
the annotations in the source code, so all merging and diff’ing of
model changes are handled at the source code level, allowing the
use of existing version control tools.

3.3 Model executability
With Mutual Satellites, the model is completely represented by
annotated code, and this code can in general be compiled and run
at any time, effectively executing the model.

3.4 Efficiency of generated code
With Mutual Satellites, the source code can be freely adapted and
optimized by the developer for “occasional critical cases” without
influencing the model for the remaining code.

3.5 Scalability
With Mutual Satellites, changes to the model are synchronized to
the corresponding changes in the source code by modifying only
the parts of the source code that have annotations referencing the
affected parts of the model, thereby ensuring scalability to very
large code bases.

3.6 Integration with legacy development
environments
In essence, the purpose of Mutual Satellites is to guide the
developer in editing the code, and Mutual Satellites is not
dependent on any of the other tools used by the developer. The
developer can utilize any tools best suited for the purpose. For
example, the visual designers of Visual Studio can be used to
change the visual appearance of the user interface without
disturbing the use of Mutual Satellites to change the logical
structure of the user interface.

3.7 Integration with legacy systems
With Mutual Satellites, developers can freely adapt the source
code and insert calls to any existing legacy code libraries and
other legacy software used by the project.

4. Demonstration Overview
Mutual Satellites is currently in the early stages of development.
Figure 2 shows how model and code is currently displayed inside
Visual Studio. The model is shown as a tree structure on the right
and a property page on the top, while the editor at the bottom
shows some of the annotated source code.
During the demonstration we will show two important scenarios
of model driven development:

• Using the model, we will add a new data item attribute
to the application and see that the new attribute is then
fully supported through all layers.

• Using the source code editor, we will fine-tune some
details of the code and see that these changes are not
affected by subsequent changes made via the model.

5. References
[1] Steimann, F., Kühne, T. Coding for the Code. ACM Queue

vol. 3, no. 10 - December 2005
[2] OMG, UML 2.0, http://www.uml.org
[3] Chen, P. P. The entity-relationship model – toward a unified

view of data. ACM Trans. Database Systems 1(1):9-36,
1976.

[4] Selic, B. The Pragmatics of Model-Driven Development.
IEEE Software, 2003/05 (September/October 2003), 19-25.

Figure 2: Mutual Satellites

705

