
1

Adaptive Object-Models1

Joseph W. Yoder Reza Razavi
University of Illinois University of Paris 6 (LIP6)

joeyoder@joeyoder.com razavi@acm.org

1 Permission to make digital or hard copies of all or part of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
OOPSLA 2000 Companion Minneapolis, Minnesota
(c) Copyright ACM 2000 1-58113-307-3/00/10...$5.00

1. Abstract
The unrelenting pace of change that confronts contemporary

software developers compels them to make their applications
more configurable, flexible, and adaptable. A possible way to
meet such requirements is to use an Adaptive Object-Model
(AOM). This poster describes common architectures for adaptive
object-models and summarizes the results from our ECOOP 2000
workshop [9].

2. Need for Adaptable Architectures
The era where business rules are buried in code is coming to

an end. Today, users themselves may seek to dynamically change
their business rules. Customers require systems that more easily
adapt to changing business needs, meet their unique requirements,
and scale to large and small installations.

On the other hand, the same technique is adequate for the
slightly different purpose of producing a whole line of software
products: of course, a line of products may be obtained by vari-
ously instantiating an abstract model, but also by adapting a given
initial system to various requirements that appear simultaneously
instead of evolving in time.

3. The Adaptive Object-Model Approach
Early solutions that have been developed in order to design

flexible implementation of business rules was provided by black-
box frameworks [2]. A more recent approach to meet such re-
quirements is to use an Adaptive Object-Model [1], where the
object representation of the domain under study has itself an ex-
plicit object model (albeit partial) that is interpreted at run-time.
Such an object model can be changed with immediate (but con-
trolled) effect on the system interpreting and running it.

Objects have states and respond to events by changing state.
The Adaptive Object-Model defines the objects, their states, the
events, and the conditions under which an object changes state. If
you change the object model, the system changes its behavior. For
example, such a feature makes it easy to integrate a workflow
mechanism, which proves useful in many systems.

Adaptive Object-Models lets to confront successfully the
need for change by casting information like business rules as data
rather than code. In this way, it is subject to change at runtime.
Using objects to model such data and coupling an interpretation
mechanism to that structure, we obtain a domain-specific lan-
guage, which allows users themselves to change the system fol-
lowing the evolution of their business.

Metadata is then often used in adaptive object-models to de-
scribe the object model itself. When runtime descriptions of these
objects are available, users can directly manipulate these objects.
Since the system can interpret the metadata to build and manipu-
late these runtime descriptions, it is easy to add new objects to the
adaptive object-model, and make them immediately available to
users.

This approach has been validated by several successful in-
dustrial projects [6,7,8].

4. Observation Framework
The Observation framework [8] is an adaptive object-

model architecture for dynamically describing different types of
phenomenon over a given period of time; this concept is widely
applied in a domain related to tests, samples, and measurements.
Observations play a large role in the medical domain because they
make it possible to associate specific conditions and measure-
ments with people at a given point in time. Some typical medical
observations are eye color, blood pressure, height and weight.
Medical observations along with their business rules can be de-
scribed and stored in a database so that any new types of observa-
tions or valid values can be made available to the system without
writing new code.

5. AOMs and End-User Programming
One way to cope with the rapid need to change rules as a re-

sult of changes in user requirements is to empower domain ex-
perts with adequate tools to create, customize, specialize and ex-
tend their software applications.

From the end users computing perspective, a domain expert
can be characterized as a non-programmer person who has com-
putational needs and wants to make serious use of the computers.
If s/he is provided with an adequate tool, s/he can change, extend
and tailor its applications to meet the demands of local conditions.

Adaptive Object-Model architectural style is particularly ade-
quate for building end-user programming systems. By providing
design patterns to create dynamically adaptable systems, they
offer an appropriate foundation to the problem of facilitating pro-
gramming for end users and domain experts.

Type Cube [7] is a model for building end user programming
systems. It provides guidelines for designing object-oriented ap-
plications, which can be extended and personalized by domain
experts. It deals with dynamic definition of new entity types and
behavior. Type Cube has been validated by two industrial projects.

81



2

6. Other AOM architectures

6.1 Domain Model Engine
The Domain Model Engine [4] is an Adaptive Object-Model

proposed by R. Johnson and D. Manolescu as a common
infrastructure for product and process models [MJ98a]. The
product model provides a framework for defining, by
composition, new domain object models at runtime. The process
model is designed to support a large number of rapidly changing
business rules. Its application for building a process model for
workflow applications has led to micro-workflow framework.

6.2 Micor-workflow
Micro-workflow [3] is an object-oriented framework for

adaptive workflow systems that tackles the workflow problem at
the object-level. It’s a specialized interpreter for application proc-
esses (business, administrative, scientific, etc.). It supports ad-hoc
processes and dynamic process models. “Micro” states for the fact
that micro-workflow involves small-scale processes that execute
within applications. As a framework, its features are accessible to
developers and can be specialized to cover specific requirements.
The key characteristic of micro-workflow are: small kernel that
provides basic features; advanced features are provided as plugins.
Therefore, software developers can pick and choose the features
they need.

7. Summary of ECOOP’2000 Workshop
This workshop was held in June 2000 at Cannes in France.

The participants focused on comparisons of Adaptive Object-
Model’s approach with those of Reflection and Metamodeling.
Position papers for all workshop participants can be found at
http://www-poleia.lip6.fr/~razavi/aom/papers/.

The participants observed that the three domains share the
same dimensions of abstractions. The top most level, called L3,
represents a language for describing languages. The next level,
L2, represents a domain specific language, derived by applying L3
to the application domain. The L1 level represents the specifica-
tion for a particular software (system). Finally, the L0 level repre-
sents is an instance of that specification.

Type Cube is an example of this conceptual layering from
Adaptive Object-Model domain. Applying Type Cube to an appli-
cation domain delivers a domain specific language for that do-
main. This language allows experts to specify their applications,
which are then instantly executable.

The Reflection community has also used similar ap-
proaches to provide adaptable programming languages. Many
reflection techniques can be found in Adaptive Object-Models.

The Common Warehouse Metamodel (CWM), a recently
adopted standard of the Object Management Group (OMG) for
metadata interchange in the data warehouse and business intelli-
gence environments, is naturally another an example from meta-
modeling, that has already adopted this four level architecture. In
fact, the MOF ontology, meta-layer stack, and semantics is im-
posed on compliant metamodels.

CWM extends the OMG's standard MOF/UML/XMI
metamodeling architecture with data warehousing and business
intelligence domain concepts. CWM supports a model-driven
approach to metadata interchange, in which object models repre-
senting shared metadata are constructed according to the specifi-
cations of the CWM metamodel. Tools agree on fundamental
domain concepts (as defined by the CWM metamodel) and, there-
fore, are capable of understanding a wide range of models repre-
senting particular metadata instances.

The OMG architecture generally allows for the creation of
metamodels whose instances readily align with (or reveal or ex-
pose) the fundamental patterns of Adaptive Object-Models. The

CWM metamodel, by directly extending MOF/UML, drives sup-
port for Adaptive Object-Model patterns into the data warehous-
ing and business intelligence domains, leading the way for a new
generation of data warehousing and business intelligence tools
that are dynamically configurable and highly adaptive to changing
environments. Such tools would be driven by Adaptive Object-
Models, with CWM serving as the foundational metamodel guid-
ing the creation of those Adaptive Object-Models.

8. Conclusions
Relatively large industrial applications using Adaptive Ob-

ject-Models have been built successfully. They provide domain
experts and analysts with tools to make evolve their applications
as their business evolves.

Also, discussions during our workshop at ECOOP’2000
has shown that Adaptive Object-Models share the same abstrac-
tion levels with Reflection and the Object Management Group
(OMG) metamoldeing architecture.

9. References
1. Brian Foote and Joseph Yoder. “Metadata and Active

Object-Models,” Collected papers from the PLoP '98
and EuroPLoP '98 Conference, Technical Report
#wucs-98-25, Dept. of Computer Science, Washington
University, Sept 1998.

2. Don Roberts and Ralph Johnson. “Evolving Frame-
works: A Pattern Language for Developing Object-
Oriented Frameworks,” Pattern Languages of Program
Design 3, Robert Martin, Dirk Riehle, and Frank
Buschmann, eds., Addison-Wesley, Reading, MA.,
1997.

3. Dragos A. Manolescu and Ralph E. Johnson. Dynamic
Object Model and Adaptive Workflow. Metadata and
Active Object-Model Pattern Mining Workshop.
OOPSLA'99, Denver, USA.
http://www.uiuc.edu/ph/www/manolesc/Workflow.

4. Dragos-Anton Manolescu and Ralph E. Johnson. A pro-
posal for a common infrastructure for process and prod-
uct models. In OOPSLA Mid-year Workshop on Ap-
plied Object Technology for Implementing Lifecycle
Process and Product Models, Denver, Colorado, July
1998.

5. John Poole - The Common Warehouse Metamodel as a
Foundation for Active Object Models in the Data Ware-
house Environment. Position paper to ECOOP‘2000
workshop on Metadata and Active Object-Model Pat-
tern Mining. June 2000, Cannes, France.

6. Ralph Johnson and Jeff Oaks. “The User-Defined Prod-
uct Framework,” URL: http://st-
www.cs.uiuc.edu/users/johnson/papers/udp/

7. Reza Razavi. Foundations of a Framework for Develop-
ing End User Programming Environments. Position pa-
per to ECOOP‘2000 workshop on Metadata and Active
Object-Model Pattern Mining. June 2000, Cannes,
France.

8. Joseph W. Yoder, Federico Balaguer , Ralph Johnson ---
From Analysis to Design of the Observation Pattern.
Metadata and Active Object-Model Pattern Mining
Workshop. OOPSLA'99, Denver, USA. URL:
www.joeyoder.com/Research/metadata/OOPSLA99

9. Joseph Yoder and Reza Razavi. “Metadata and Active
Object-Models Workshops” Collected papers from the
ECOOP2000.
www.joeyoder.com/Research/metadata/ECOOP2000

82


