
Extended Abstract

Many resource sensitive applications such as multimedia
processing [1] and data-intensive computing [2] utilise data
streams to pass information between sub-systems,
components, processes and machines. The stream based
programming model constrains applications to operate with
smaller individual data blocks in a continuous manner. This
reduces data storage and transport requirements, which in
general leads to a more economical use of network and
system resources. The creation of an application framework
is highly desirable for the development of stream based
applications. Application frameworks [3] can significantly
ease development effort by providing proven architectures
and well-engineered reusable components.

In the design of application frameworks, the representation
of the target domain into appropriate abstractions has a
strong influence on the framework characteristics. In
particular, the level of abstraction is an important decision
that controls the amount of detail hidden behind the
abstractions. Generally a framework based on a lower level
of abstraction results in a more fine-grained set of application
components. This allows greater customisation in the
applications. An example of a stream based programming
framework is the CORBA A/V streaming specification [4].
This framework defines a set of components including
multimedia devices, stream controls, flow controls, etc, for
the management of data streams. However, the fine
granularity of the components increases the complexity in
application integration. Its use requires more detailed
knowledge of the behaviour and characteristics of the
components and their interactions (Figure 1).

This extended abstract presents a stream based programming
framework called iFlow that provides a uniform set of
components based on a higher-level abstraction of data

streams. iFlow uses the universal abstraction of pipes to
represent data streams. The real underlying form of the data
streams is encapsulated, whether it is the transport,
processing, generation, or termination of data. The pipes can
therefore abstract away the complexities of data streaming
such as machine boundaries, data processing methods, and
stream I/O controls. With the implementation details hidden,
the pipes offer a more straightforward application integration
process. We argue that a uniform set of components not only
eases application integration, but also eases the incorporation
of adaptability into the applications. One form of
adaptability is the on-demand capability to rapidly integrate
components with suitable characteristics into applications.
The uniform abstraction of the pipes supports the adaptability
of applications through the addition, removal or replacement
of pipes.

We have created a prototype implementation of the iFlow
framework that supports the development of applications
based on stream-based programming. The framework
defines the pipe base class and the mechanism of pipe
composition. The base class then allows the derivation of
specialised pipes that can implement various data streams. A
library of pre-fabricated, reusable and ready-to-use pipes is
created to support application development. However, the
more significant part of iFlow is the run-time support for the
execution of pipes. The run-time support mainly deals with

iFlow: A Data Streaming Application Framework Based on a Uniform
Abstraction

Andrew K. Lui, Mark W. Grigg, Michael J. Owen, T. Andrew Au
Defence Science and Technology Organisation

DSTO C3 Research Centre, Fern Hill Park, Canberra,
Department of Defence, ACT 2600, Australia
andrew.lui@computer.org; m.grigg@ieee.org

ab
st

ra
ct

io
n

ea
se

 o
f i

nt
eg

ra
tio

n

 g
ra

in
 c

on
tro

l
rt

to
 in

te
gr

at
e

Figure 1. The effect of the level of ab
support to adaptation and fine grain

Component design at a higher abstractio
uniform interface, facilitating integratio

Corba A/V

iFlow

Streaming
System Break into

components

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA 2000 Companion Minneapolis, Minnesota
(c) Copyright ACM 2000 1-58113-307-3/00/10...$5.00

65
Component
Interfaces
su
pp

or
t f

or
 f

in
e

gr
ea

te
r e

ff
o

straction on the
 customisation.
n can have a more
n and adaptation.

resource management that supports a performance guarantee
in the flow characteristics of the data streams. The pipe
abstraction exposes a common interface for resource
specification and performance monitoring. Each pipe can
offer particular flow characteristic guarantees. Resource
management is coupled with pipe creation in the pipe
factories, where external run-time support for quality of
service (QoS) can be incorporated. Our prototype
implementation has been developed using CORBA and Java
on TCP/IP, however other types of middleware could also be
employed.

We illustrate the basic capability of iFlow by applying it to
an imagery dissemination application. The on-demand
image dissemination is a very efficient method for viewing
remotely located images across the network. The core idea is
to request the optimal amount of data that is sufficient to
satisfy the visual quality requirement, which in turn is based
on the display resolution and the region of interest. Through
an interactive viewer, users can manipulate the desired
resolution and the region of interest. A number of wavelet
based imagery formats support such on-demand
dissemination. The stream based programming model is well
matched to this application. We observe six different data
streams in this application (Figure 2), and their respective
pipe implementations are as follows: RequestInputPipe
converts user interactions into a data stream of requests;
MessagePipe moves the data stream of requests from the
client machine to the server machine using sockets;
RequestProcessorPipe processes the request stream and
determines the required imagery data set to fulfil the
requests; WaveletFileReaderPipe retrieves and streams the
required imagery data from an image file; SocketPipe moves
the data stream of imagery data from the server machine
back to the client machine; and ReceiverPipe stores the
imagery data into an image cache, which is then decoded for
viewing. The imagery dissemination application is generated
by first creating the pipes, joining them together, and

activating the pipes. The uniform pipe abstraction makes it
easy to modify the functionality of the application. For
example, consider the case where the application proactively
streams imagery data according to some intelligent
prediction of future requests. We can implement an
ImagePushPipe that determines the required imagery data
according to the intelligent prediction. The new pipe is then
simply placed along side the RequestProcessorPipe so that
both the pipes will stream the desired imagery data requests
into the WaveletFileReaderPipe.

The uniform pipe abstraction is also well suited to the
incorporation of adaptive behaviour. As shown previously,
iFlow defines a highly flexible application integration
pattern. Pipes with the appropriate characteristics can be
easily incorporated into applications. Adaptation can occur
in two ways: the flow characteristics of a given pipe can be
modified or a pipe can be completely replaced by another
pipe. We use the above imagery dissemination application to
illustrate adaptability under changing network conditions.
For the first case, we can take advantage of an increase in
bandwidth through re-negotiation with the pipe factory of the
SocketPipe transfer-rate QoS. For the latter case, the
SocketPipe is replaced by a UDPPipe, which performs better
with high latency communication channels such as satellite
or radio links [5].

We conclude that using a higher level of abstraction in
designing a stream based programming framework can ease
application integration and facilitate the incorporation of
adaptability. We have presented a framework called iFlow
that uses the uniform abstraction based on the concept of
pipes. The use of iFlow in an adaptable imagery
dissemination application has also been illustrated.

References

[1] S. Rixner et. al., “A Bandwidth-Efficient
Architecture for Media Processing”, Proceedings.
31st Annual ACM/IEEE International Symposium
on Microarchitecture. IEEE Comput. Soc. 1998,
pp.3-13. Los Alamitos, CA, USA.

[2] M. Benyon, T. Kurc, A. Sussman, and J. Saltz,
“Design of a framework for data-intensive wide-
area applications,” Proceedings of 9th
Heterogeneous Computing Workshop, Los
Alamitos, CA, USA, 2000.

[3] R. Johnson and B. Foote, “Designing Reusable
Classes,” Journal of Object Oriented
Programming, vol. 1, pp. 22-35, 1988.

[4] OMG, CORBA Telecoms: Telecommunications
Domain Specifications, 1998.

[5] R. Prandolini, T. A. Au, A. K. Lui, M. J. Owen,
and M. W. Grigg, “Use of UDP for Efficient
Image Dissemination,” Proceedings of SPIE
Conference on Visual Communication and Image
Processing (VCIP 2000), Perth, 2000.

RequestInput Message

RequestProcessor

WaveletFileReader

SocketReceiver

Wavelet
Files

UDP AnotherFileReader

PROCESS/MACHINE BOUNDARY

Interactive
Image
Viewer

User Control

Decoder

Figure 2. Building an image dissemination application
with iFlow. Six pipes are used in the application to

support interactive progressive image viewing. The pipe
abstraction allows easy modification of the application by
replacement, e.g. the UDPPipe replacing the SocketPipe.

Pipe name

66

	Extended Abstract
	References

