

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.

SIGPLAN’05 June 12–15, 2005, Location, State, Country.

Copyright © 2004 ACM 1-59593-XXX-X/0X/000X…$5.00.

Ultra Lightweight JavaScript Engine for Internet of Things

Evgeny Gavrin

Samsung Electronics, Russia

e.gavrin@samsung.com

Sung-Jae Lee

Samsung Electronics, South Korea

sj925.lee@samsung.com

Ruben Ayrapetyan

Samsung Electronics, Russia

r.ayrapetyan@samsung.com

Andrey Shitov

Samsung Electronics, Russia

a.shitov@samsung.com

Abstract

The demonstration aims to present JerryScript, a JavaScript en-
gine for the Internet of Things (IoT). This is a lightweight
JavaScript engine intended to run on very constrained devices
such as microcontrollers, which have only a few kilobytes of
RAM available to the engine (<64 KB RAM) and constrained
ROM space for the code of the engine (<200 KB ROM). The
engine is ECMA-262 5.1 compliant, supports on-device compila-
tion, execution, and provides access to peripherals from
JavaScript. It powers the IoT.js project, which provides an inter-
operable service platform in the world of web-based IoT. This
demonstration proves that usage of JavaScript on every con-
strained device is reasonable and profitable.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors; D.4.7 [Operating Systems]: Organiza-
tion and Design

Keywords JavaScript engine; Internet of Things; interpreter;
microcontrollers; IoT platform; virtual machine

1. Presenters

The demonstration will be conducted by the authors of the Jerry-
Script engine [1] and the IoT.js platform [2].

1.1 Evgeny Gavrin

Leading engineer at Samsung Research center Russia (SRR), PhD
student at Moscow State University (MSU), leader of the Jerry-
Script project. Graduated from Saint-Petersburg State University
(SpbSU). Areas of interest: virtual machines, dynamic compila-
tion and compiler optimizations.

1.2 Sung-Jae Lee

Principal engineer at Samsung Electronics, leader of the IoT.js
project. Graduated from Sungkyunkwan University. Areas of
interest: Web technologies, Internet of Things.

1.3 Ruben Ayrapetyan

Engineer at SRR, core developer of the project. Graduated from
MEPhI (Moscow Engineering Physics Institute). Areas of interest:
Virtual machines, binary translation, interpreters, multithreading.

1.4 Andrey Shitov

Leading engineer at SRR, PhD student at MSU, core developer of
the project. Graduated from MSU. Areas of interest: virtual ma-
chines, compilation of dynamic languages, type inference,
AOT/JIT compilation, compiler optimizations.

2. Showcase

The demonstration is based on a client-server approach. The idea
is to control and program very constrained devices remotely using
JavaScript. The main concept is to let visitors of the conference
interact with IoT devices and show the power of JavaScript for
programming these devices.

2.1 Server Part

The server part consists of a Raspberry Pi 2 [RPi2] board, which
has a web-server running on it, and a quantity of OpenMote [3]
development boards – IoT devices. Every OpenMote board has a
number of sensors and actuators connected to it, e.g. LEDs, ser-
vos, etc.

The Raspberry Pi 2 board interacts with OpenMote boards
wirelessly via ZigBee protocol and serves as a hub, transmitting
commands sent by user from the website.

Every OpenMote board has the JerryScript engine on it which
is capable of executing JavaScript and accessing the boards’
facilities.

2.2 Client Part

To control the IoT devices (OpenMote boards), a visitor can open
a web-site where several control options are listed. He can do it
either from his own gadget, or from preconfigured tablets that
would be available in the demo room.

Simple control commands like “blink LED”, “get sensor data”
are represented as buttons in the web interface. In addition, the
web interface provides the ability to run custom scripts on the
devices. A sample script is shown in the edit box, so it can be
customized by the visitor, sent to the OpenMote board and exe-
cuted.

The script triggers LED blinking or servos rotation in a speci-
fied manner, so that the visitor can notice the result of his pro-
gramming.

3. Concept

The demonstration shows an example of very simple and de-
veloper friendly application development for IoT.

The development of IoT solutions is very active. There will be
a lot of IoT devices soon and these devices will be very small and
constrained. The majority of commercial solutions utilize low-
level languages, such as C or assembly, for programming such

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

SPLASH Companion’15, October 25–30, 2015, Pittsburgh, PA, USA
ACM. 978-1-4503-3722-9/15/10...$15.00
http://dx.doi.org/10.1145/2814189.2816270

19

devices. This choice complicates software development, debug-
ging, deployment and updating. Moreover, programming requires
knowledge of low-level hardware details of the specific device;
hence the developer should be highly qualified. Due to the lack of
a common execution environment IoT developers have to handle
such issues manually for each hardware target.

We believe that the key component of success in IoT is a
lightweight execution environment that should become the core of
the future IoT platform [2], providing a way to develop applica-
tions using runtime-safe technology while enabling easy pro-
grammability, deployment, updating, remote control, etc.

Although the idea is quite simple, the implementation of such
an engine is very challenging. Consider the hardware characteris-
tics of the OpenMote board utilized in the demonstration:

Table 1. OpenMote board hardware

MCU CC2538SF53

Family ARM Cortex-M3

RAM 32Kb

Flash 512Kb

Frequency 32MHz

Launching a JavaScript engine on such a device is a non-trivial

task. The JerryScript engine solves it, showing very low memory
consumption. The demo video [4] shows how the JerryScript
engine, running on NUCLEO-F401RE microcontroller, can per-
form on-the-fly execution of JavaScript applications deployed to
the board wirelessly through the web interface in a browser.

There are several tricks behind the implementation that allow
executing within such constraints: compressed memory pointers,
AST-less parser, compact JavaScript object representation, ag-
gressive garbage collection, etc.

4. IoT.js

As mentioned earlier, the JerryScript engine powers IoT.js – a
framework for the “Internet of Things”. Conceptually, IoT.js and
JerryScript are similar to node.js [5] and V8 [6] engine. The key
differentiation point of this tandem is the capability of running on
very constrained devices with less than 256KB of RAM, where
node.js could not even be launched. Additionally, IoT.js and

JerryScript have very small binary size ~500KB, in comparison to
the 15MB of node.js.

IoT.js has a package management system for feature expansion
and on-demand installation to save space on the device. IoT.js
packages are backward compatible with node.js, so the developers
have the ability to use well-known libraries and development
experience to write applications for a variety of devices.

IoT.js hides low-level details, allowing running the same code
on different platforms. The demo video [7] shows how the same
JS code is launched on RPi2 with node.js, RPi2 with IoT.js and
STM32F4 with IoT.js. Figure 1 describes the module layout for
this demo. The following components are shown:

1. Demo application code (for both iot.js and node.js)

2. “iotjs-gpio” module to switch between iot.js and node.js de-
pending on the target

3. Built-in gpio.js that calls native gpioctl

4. Native gpioctl code; Binding JS functions to C functions

5. Target platform dependent code; for NuttX/STM32F4

6. “pi-gpio” module for using gpio from node.js

Iotjs-gpio module, which provides the API for GPIO control,
hides target-specific details from the developer, so that code for
setting up GPIO pin high is very concise at JS level (component 1
in the figure):

gpio.write(portpin, on); (1)

The same platform dependent code (component 5 in the figure) is
more complex:

struct gpioioctl_write_s wdata;

wdata.port = portpin;

wdata.data = data;

return ioctl(_fd, GPIOIOCTL_WRITE,

 (long unsigned int) &wdata);

(2)

As a result, developers write cross platform code without meditat-
ing on low-level “C” interfaces and choosing which board to
support.

5. Summary

The demonstration presents a newly developed, ultra lightweight
JavaScript engine, capable of executing applications on very
constrained devices, and IoT.js framework, enabling cross-
platform development for IoT.

Visitors can see the typical scenario of interacting with IoT
devices and try the modern way of programming for the IoT
platform.

References

[1] http://samsung.github.io/jerryscript/

[2] http://samsung.github.io/iotjs/

[3] http://www.openmote.com/

[4] http://www.youtube.com/watch?v=zhQW6ywO6sM

[5] https://nodejs.org/

[6] http://code.google.com/p/v8/

[7] http://www.youtube.com/watch?v=FLnT129j64c

Figure 1. IoT.js module layout

20

http://samsung.github.io/jerryscript/
http://samsung.github.io/iotjs/
http://www.openmote.com/
http://www.youtube.com/watch?v=zhQW6ywO6sM
https://nodejs.org/
http://code.google.com/p/v8/
http://www.youtube.com/watch?v=FLnT129j64c

