
OBJECT-ORIENTED PROGRAMMING IN SMALLTALK AND ADA

Ed Seidewitz
Code 554 / Flight Dynamics Analysis Branch

Goddard Space Flight Center
Greenbelt MD 20771

(301) 286-7631

Presented at the
1987 Conference on Object-Oriented Programming Systems, Languages and Applications

October 1987

Abstract

Though Ada and Modula-2 are not object-
oriented languages, an object-oriented
viewpoint is crucial for effective use of their
module facilities. It is therefore instructive to
compare the capabilities of a modular language
such as Ada with an archetypal object-oriented
language such as Smalltalk. The comparison in
this paper is in terms of the basic properties of
encapsulation, inheritance and binding, with
examples given in both languages. This
comparison highlights the strengths and
weaknesses of both types of languages from an
object-oriented perspective. It also provides a
basis for the application of experience from
Smalltalk and other object-oriented languages
to increasingly widely used modular languages
such as Ada and Modula-2.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commerical advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

& 1987 ACM O-89791-247-0/87/0010-0202 $1.50

1. Introduction

Procedural programming techniques concentrate
on functions and actions. Object-oriented
techniques, by contrast, attempt to clearly
model the problem domain. The designers of
Simula recognized the attractiveness of this
concept for simulation and included specific
constructs for object-oriented programming
[Dahl 681. Since then, several programming
languages have been designed specifically for
general-purpose object-oriented programming.
The archetypal example is, perhaps, Smalltalk
because the language is structured so completely
around the object concept [Goldberg 831.

Ada* [DOD 831 and Modula-2 [Wirth 831 are
not designed to be object-oriented
programming languages. However, they do
have certain object-oriented features which are
descendants of Simula constructs. Further,
object-oriented concepts have become
extremely popular for design of Ada programs
(e.g., see [Booth 831). This paper compares and
contrasts the strict object-oriented capabilities
of Smalltalk with the object-oriented features
of Ada. The comparison is in terms of the
basic object-oriented properties of
encapsulation, inheritance and binding. I have
attempted to keep the main body of the paper
fairly objective, reserving my more
judgemental comments for the conclusion.

*Ada is a registered trademark of the US
Government (Ada Joint Program Office)

OOPSIA ‘87 Proceedings October 48,1987

2. Encapsulation

An object consists of some private data and a
set of operations on that data. The intent of an
object is to encapsuIate the representation of a
problem domain entity which changes state over
time. Abstraction deals with how an object
presents ihis representation to other objects,
suppressing nonessential details. The stronger
the abstraction of an object, the more details
are suppressed by the abstract concept. The
principle of information hiding states that such
details should be kept secret from other objects,
so as. to better preserve the abstraction modeled
by the object. Both Smalltalk and Ada directly
support these basic encapsulation concepts for
objects. In Smalltalk these features are the
central structure of the language while in Ada
they are added to a core language of
ALGOL/Pascal heritage.

In Smalltalk, objects are always instances of a
class which represents a set of problem domain
entities of the same kind. AI1 instances of a
class provide the same interface (set of
operations) to other objects. A class thus
represents a single abstraction. The class
definition provides implementations for each of
the instance operations (methods in Smalltalk)
and also defines the form of the internal
memory of all instances.

new Begin a financial account
with 0 as the amount of
money on hand.

A Smalltalk method is called by sending a
message to the object, such as:

MyFinances receive: 25.50 Finances instance protocol
The protocol of an object is the set of all
messages that may be received by the object. A
class itself has a protocol which usually includes
a few messages to request creation of instances,
e.g. “Finances new”. Note that protocols are
not really a part of the Smalltalk language
proper, but are documentation of the
abstraction represented by a Smalltalk class.

transactions

receive: amount Receive an amount of
money.

spend: amount Spend an amount of
money.

The basic object-oriented construct in Ada is
the package. Unlike Smalltalk, objects can be
defined directly in Ada without having any
class. Further, Ada requires the definition of
the interface of an object separately from the
implementation of the object. This is done.in a
package specification. Ada uses a more
traditional procedure call syntax for object
operations.

Ada is a strongly typed language, so the type of
every operation argument and return vaIue must
be declared. A package specification provides
enough declarative information for compile-
time syntax and type checking. Additional
operation descriptions, such as in the Smalltalk
protocol, can be provided by comments. Other
code refers to package operations using a
qualified name, e.g., “FinancesReceive”. The
package body gives the implementation of the
package.

Example 1 -- Finances

Class Finances is a simple class of objects which
represent financial accounts of income and debt
(all examples are simplified and adapted from
[Goldberg 831). The protocol for this class is:

Finances class protocol

instance creation

initialBalance: amount
Begin a financial account
with “amount” as the
amount of money on
hand.

inquiries

cashOnHand

totalReceived

Answer the total amount
of money currently on
hand.

Answer the total amount
of money received so far.

October 431987 OOPSLA ‘87 Proceedings 203

totalSpent Answer the total amount
of money spent so far.

The implementation of the Finances class must
include a method for each of the messages in
the protocol. It also defines the names of a set
of instaitce variables which represent the
internal data of each class instance. The
instance variables and the implementations of
the methods are hidden from users of instances
of the class. In the Smalltalk- system, the
various parts of a class definition are accessed
through an “interactive system browser.” The
textual description used here is based on the
one used in [Goldberg 831. The definition of
class Finances is:

class name
superclass
instance variabIe names

Finances
Object
income
debt

private

SetInitialBalance: amount
income <- amount.
debt <- 0

Note that “super new” refers to the system
method to create a new instance, w indicates
returning a value and “<-” indicates assignment.
Some examples of use of this class are:

MyFinances <- Finances initialBalance: 500.00.
MyFinances spend: 32.50.
MyFinances spend: foodCost + salesTax.
MyFinances receive: pay.
tax <- taxRate * (MyFinances totalReceived)

The specification for an Ada package Finances
corresponding to the above Smalltalk protocol
is:

package Finances is
class methods

type MONEY is FLOAT,
instance creation

initialBalance: amount
*super new setInitialBalance: amount

new procedure Receive (Amount : in MONEY);
“super new setInitialBalance: 0 procedure Spend (Amount : in MONEY);

instance methods

transactions

receive: amount
income <- income + amount

spend: amount
debt <- debt + amount

inquiries

cashOnHand
*income - debt

totalReceived
^income

totalspent
*debt

-- Initialization
procedure Set (Balance : in MONEY);

-- Transactions

-- Inquiries
function Cash-On-Hand return MONEY;
function Total-Received return MONEY,
function Total-Spent return MONEY;

end Finances;

The above specification for Finances really does
not define a complete object in the Smalltalk
sense. This is because a package is a static
program module, and cannot be passed around
as data. For an object to be passed as data in
Ada it must have a type. A type is analogous to
a Smalltalk class in that it represents a set of
objects with the same set of operations and
internal data. An object type is called a private
type in Ada because the representation of the
internal data is hidden. The specification for a
private type FINANCES is:

204 OOPSLA ‘87 Proceedings October 4-0, 1987

package Finance-Handler is

type FINANCES is private;
type MONEY is FLOAT;

-- Instance creation
functiqn Initial (Balance : MONEY)

return FINANCES;

- - Transactions
procedure Receive

(Account : in out FINANCES;
Amount : in MONEY);

procedure Spend
(Account : in out FINANCES;

Amount : in MONEY);

-- Inquiries
function Cash-On-Hand

(Account : FINANCES)
return MONEY;

function Total-Received
(Account : FINANCES)
return MONEY;

function Total-Spent
(Account : FINANCES)
return MONEY;

private

type FINANCES is
record

Income : MONEY := 0.00;
Debt : MONEY := 0.00;

end record;

end Finance Handler; -

Private types must be defined within packages.
Package Finance Handler specifies each of the
operations on objects of type FINANCES, while
the type itself defines the internal data for each
object. The private part of the package
contains the definition of type FINANCES in
terms of other Ada type constructs. In this
case, objects of type FINANCES are effectively
declared to have two instance variables, as in
the Smalltalk example. (The private part of a
package is logically part of the package
implementation, not the specification. .It is
included in the specification only so that the
compiler can tell from the specification alone
how much space to allocate for objects of
private types.) The package Finance-Handler is

in sofne ways similar to the nzetaclass of the
Smalltalk class Finances. In Smalltalk, a
metaclass is the class of a class. Both the
metaclass and the handler package provide a
framework for the definition of a class, and
they also allow for the definition of class
variables and class operations.

Since the declaration of instance variables is in
the private part of the specification of
Finance-Handler, the package body only needs
to define implementations for each of the
specified operations:

package body Finance-Handler is

-- Instance creation
function Initial (Balance : MONEY)

return FINANCES is
begin

return
(Income => Balance,

Debt => 0.00);
end Finance Handler; -

- - Transactions
procedure Receive

(Account : in out FINANCES;
Amount : in MONEY) is

begin
Account.Income := AccountJncome

+ Amount;
end Receive;

procedure Spend
(Account : in out FINANCES;

Amount : in MONEY) is
begin

Account.Debt := Account.Debt
+ Amount;

end Spend;

-- Inquiries
function Cash-On-Hand

(Account : FINANCES)
return MONEY is

begin
return

Account.Income - Account.Debt;
end Cash-On-Hand;

October 4-a, 1987 OOPSLA *a7 Proceedings

function Total-Received
(Account : FINANCES)
return MONEY is

begin
return AccounLIncome;

end Total-Received;

classes of objects which cannot be passed as
data. This is done using a generic package
which serves as a template for instances of the
class. For example, the earlier specification for
package Finances can be made generic by
simply adding the keyword generic at the
beginning:

function Tptal-Spent
(Account : FINANCES)
return MONEY is

begin

generic
package Finances is

return Account.Debt;
end Total-Spent;

. . .

end Finances;
end Finance-Handler;

Each FINANCES operation explicitly includes
an Account of type FINANCES as one of its
parameters. The instance variables of an
Account are then accessed using a qualified
notation such as “AccountJncome”. This access
to instance variables is only allowed within the
body of package Finance-Handler. Some
examples of the use of type FINANCES are:

Other packages can then be declared as
instantiations of the generic package. For
example:

declare

package My-Finances is
new Finances;

begin
declare

My Finances
* Finance HandIerXNANCES .

:= Finance-Handler.Initial
(Balance => 500.00);

My-Finances.Receive (Amount => Pay);
.Cash := My-Finances.Cash-On-Hand;

end;

begin
I will have more to say later on other important
roles of generics in Ada.

Finance-Handler-Spend
(Account => My-Finances,

Amount => 32.50);
Finance-Handler.Spend

(Account => My-Finances,
Amount => Food Cost + Sales-Tax);

Finance-Handler.Rec&e
(Account => My-Finances,

Amount => Pay);
Tax := Tax Rate

* gnance Handler.Total Received -
(MyIFinances);

3. Inheritance

end;

A class represents a common abstraction of a set
of entities, suppressing their differences. At a
lower level of abstraction, some entities may
differ from others. A subclass represents a
subset of the entities of a class. A subclass
inherits general abstract properties from its
superclazs, defining only the specific
differences which appear at its lower level of
abstraction. This technique of subclass
inheritance allows the incremental building of
application-specific abstractions from general
abstractions.

Packages in Ada allow the definition of objects Smalltalk directly supports the concept of
as program modules or the definition of classes subclassing and inheritance. In Smalltalk every
as private types. Packages cannot themselves be class has a superclass, except for the system
passed as data, but the instances of private class Object which describes the similarities of
types can. It is also possible in Ada to define all objects. Instances of a subclass are the same

2% OOPSIA ‘87 Proceedings O&her 4-8,1987

as instances of the superclass except for
differences explicitly stated in the subclass
definition. The allowed differences are the
addition of instance variables, the addition of
new methods and the overriding of superclass
methods.. An instance of a subclass will
respond to at least all of the same messages as
instances of its superclass, though not
necessarily in exactly the same way.

Ada does not provide direct support for
subclassing or inheritance. However, the
concept of inheritance can be used profitably
within Ada, in some ways more generally than
in Smalltalk. When defining a subclass in Ada,
it is still necessary to declare all operations of
that subclass, even those inherited from a
superclass. Thus the specification of a subclass
package will include all the operations of the
superclass and possibly some additional ones.
(This also results in a hiding of the use of
inheritance reminiscent of the discussion in
[Snyder 861.) In the body of the subclass
package, inherited operations must be
implemented as call-throughs to the operations
of the superclass.

Example 2 -- Deductible Finances

The class DeductibleFinances is a subclass of
the Finances class of Section 2. Instances of
DeductibleFinances have the same functions as
instances of Finances for receiving and
spending money. However, they also keep
track of tax deductible expenditures. The
definition of DeductibleFinances specifies one
new instance variable, four new instance
methods and overrides two class methods:

class name DeductibleFinances
superclass Finances
instance variable names deductibleDebt

class methods

instance creation

initialBalance: amount
“(super initialBalance: amount) zeroDeduction

new
“super new zeroDeduction

instance methods

transactions

spendDeductible: amount
self spend: amount deducting: amount.

spend: amount deducting: deductibleAmount
super spend: amount.
deductibleDebt <- deductibleDebt

+ deductibleAmount

inquiries

totaIDeduction
*deductibleDebt

private

zeroDeduction
deductibleDebt <- 0

Note that sending a message to “self” results in a
call on one of an object’s own methods, while
sending a message to “super” results in a call on
one of the methods of the superclass Finances.

Now consider an Ada type which defines a
subclass of the FINANCES type of Section 2:

with Finance Handler;
package Deductible-Finance-Handler is

type DEDUCTIBLE-FINANCES is private;
subtype MONEY is

Finance-Handler.MONEY;

-- Instance creation
function Initial (Balance : MONEY)

return DEDUCTIBLE-FINANCES;

-- Transactions
procedure Receive

(Account : in out DEDUCTIBLE-FINANCES;
Amount : in MONEY);
procedure Spend

(Account : in out DEDUCTIBLE-FINANCES;
Amount : in MONEY,
Deductible-Amount : in MONEY := 0.00);
procedure Spend-Deductible

(Account : in out DEDUCTIBLE-FINANCES;
Amount : in MONEY);

October 4-8, 1987 OOPSLA ‘87 Proceedings 207

- - Inquiries
function Cash On Hand

(Account : DEDUCTIBLE-FINANCES)
return MONEY;

function Total Received
(Account : DEDUCTIBLE-FINANCES)
return MONEY,

function Total-Spent
(Account : DEDUCTIBLE-FINANCES)
return MONEY,

function Total-Deduction
(Account : DEDUCTIBLE-FINANCES)
return MONEY;

private

type DEDUCTIBLE-FINANCES is
record

Finances : Finance-Handler.FINANCES;
Deductible-Debt : MONEY := 0.00;

end record;

end Finance-Handler;

Package Deductible-Finance-Handler has the
new operations Spend-Deductible and
Total Deductions, and it has a modified Spend
operation. The Spend procedure has a
Deductible-Amount parameter with a default
value of 0.00.

DEDUCTIBLE-FINANCES implements
inheritance from FINANCES by using the
instance variable Finances of type FINANCES.
Inherited operations are then implemented as
call- throughs to operations on Finances:

package body Deductible-Finance-Handler is

-- Instance creation
function Initial (Balance : MONEY)

return DEDUCTIBLE-FINANCES is
begin

return
(Finances => Finance-Handler.Initial(Balance),

Deductible-Debt => 0.00 k
end Initial;

- - Transactions
procedure Receive

(Account : in out DEDUCTIBLE-FINANCES;
Amount : in MONEY) is
begin

-- INHERITED --
Finance-Handler.Receive

(Account => AccountFinances,
Amount => Amount);

end Receive;

procedure Spend
(Account : in out DEDUCTIBLE-FINANCES;

Amount : in MONEY;
Deductible-Amount : in MONEY := 0.00) is
begin

Finance-Handler.Spend
(Account => AccountFinances,

Amount => Amount);
Account.Deductible-Debt

:= Account.Deductible Debt
+ Deductible Amount; -

end Spend;

procedure Spend-Deductible
(Account : in out DEDUCTIBLE-FINANCES;

Amount : in MONEY) is
begin

Spend
(Account => Account,

Amount => Amount,
Deductible-Amount => Amount);

end Spend-Deductible;

- - Inquiries
function Cash-On-Hand

(Account : DEDUCTIBLE-FINANCES)
return MONEY is
begin

-- INHERITED.--
return Finance-Handler.Cash-On Hand

(Account.%ances);
end Cash-On-Hand;

function Total-Deductions
(Account : DEDUCTIBLE-FINANCES)

return MONEY is
begin

return Account.Deductible-Debt;
end Total-Deductions;

end Deductible-Finance-Handler;

208 OOPSLA ‘87 Proceedings October 4-8, f 987

1 Tnlike Smalltalk, implementing inheritance in
Ada requires an extra level of operation call.
Also, in Ada the subclass does not have direct
access to the instance variables of the
superclass. The superclass package presents the
same abstract interface to subclass packages as
to any other code. This tightens the
encapsulation of the superclass abstraction. It
also allows easy extension to multiple
inheritance where a subclass may inherit
operations from more than one superclass.
Multiple inheritance simply requires multiple
superclass instance variables with inherited
operations calling-through to the appropriate
superclass operations. In this case the new class
is really a composite abstraction formed from
more general component classes.

The main drawback of this approach is that the
Ada typing system does not recognize
subclassing. In Ada all private types are
distinct. Even though the type
DEDUCTIBLE-FINANCES is logically a
subclass of type FINANCES, the type
DEDUCTIBLE-FINANCES is not a sub- of
type FINANCES. It is not possible, for
instance, to pass an instance of type
DEDUCTIBLE-FINANCES to a procedure
expecting an argument of type FINANCES-
The Ada compiler would see this as a type
inconsistency. A partial solution to this
involves the use of the Ada generic facility, and
will be discussed later in Section 4. However,
the problem cannot be fully overcome in Ada,
and [Meyer 861 clearly shows that true
inheritance is more powrful than genericity.

4. Binding

The Smalltalk message passing mechanism
operates dynamically. When a message is sent
to a Smalltalk object, the method to respond to
that message is looked-up at run-time in the
object’s class (and possibly superclasses).
Further, Smalltalk variables are not typed, so
they may contain objects of any class. Thus it
is generally not possible to determine statically
exactly what method in what class will respond
to a message. Messages are dynamically bound
to methods at run-time. If an object cannot
respond to a message, there is a run-time error.

The use of dynamic binding gives the
programmer great freedom to create general

Unlike Smalltalk, Ada is a strongly typed
language. This means that all variables and
-parameters must be declared to be of a single
specific type. This allows an Ada compiler to
check statically that only values of the correct
type are being assigned to variables and used as
arguments. The Ada compiler can also always
determine exactly what operation from what
package (if any) is being invoked by a given
call. Operation calls are thus staticazly bound to
the proper operation. Undefined operation calls
are always discovered at compile- time.

A way around this involves the use of generics.
In addition to their role in creating classes of
packages, generics also allow a package to be
parameterized with type and subprogram
parameters. This feature can be used to declare
a package which can use any class with certain
needed operations. Generic facilities can also
be used to allow a class to defer the
implementation of some operations to
subclasses.

Example 3 -- Sample Space

The class SampleSpace represents random
selection without replacement from a collection
of items. It has the following protocol:

SamoleSpace class nrotocol

instance creation

data: aCollection Create an instance such
that aCollection is the
sample space.

October 4-8,1987 OOPSIA ‘87 Proceedings

code. Any object can be used in an instance
variable or as an argument in a message as long
as it can respond to the messages sent to it.
Another use of dynamic binding in Smalltalk is
with the “pseudo-variable” “self” which is used
by an object to send messages to itself. When a
message is sent to an object, “self” is set to the
object to which the message is sent. The
dynamic binding of messages sent to “self”
allows a class to call on methods that are really
defined in a subclass.

SamnleSpace instance orotocol

accessing

next Answer the next element
chosen at random from
the sample space,
removing it from the
space.

next: anInteger Answer an ordered
collection of anInteger
number of selections
from the sample space.

testing

isEmpty Answer whether any
items remain to be
sampled.

size Answer the number of
items remaining to be
sampled.

This protocol does not specify exactly what
kind of collection must be used for the sample
space. The class definition is:

class name
superclass
instance variable names

SampleSpace
Object
data
rand

class methods

instance creation

data: aCollection
^super new setData: aCollection.

instance methods

accessing

next
1 item 1
self isEmpty ifTrue:

[self error ‘no values exist in the sample space’].
item <- data at:

(rand next * data size) truncated + 1.
data remove: item.
*item

next: anIn teger
f aCollection 1
acollection

<- OrderedCollection new: anInteger.
anInteger timesRepeat:

[aCollection addlast: self next].
“aCollection

testing

isEmpty
*self size = 0

size
“data size

private

setData: aCollection
data <- aCollection.
rand <- Random new

Note that local variables in methods are listed
between vertical bars at the beginning of the
method. Also, the definition of SampleSapce
uses an instance of the Smalltalk system class
Random to generate random numbers. In the
methods for “next” and “size”, SampleSpace
sends the messages “at:“, “size” and “remove:” to
the instance variable “data” which holds the
collection of sample space items. This means
that any object which can respond to “at:“, “size”
and “remove:” can serve as the collection. This
object could be an instance of a Smalltalk
system class such as Array, or it could be an
instance of a user-defined class. An example of
the use of SampleSpace is shuffling a deck of
cards:

class name
superclass
instance variable names

.

.

.

CardDeck
Object
cards

shuffle
1 sample 1
sample <- SampleSpace data: cards.
cards <- sample next: cards size

An Ada generic Sample-Space package needs a
COLLECTION type and At, Size and Remove

210 OOPSLA ‘87 Proceedings Ociober 431987

operations. A specification for this package is:

generic

type COLLECTION-TYPE is private;
type ELEMENT-TYPE is private;

with function At
(Collection : COLLECTION-TYPE;

Index : POSITIVE)
return ELEMENT-TYPE;

with function Size
(Collection : COLLECTION-TYPE)
return ELEMENT-TYPE;

with procedure Remove
(Collection : in out COLLECTION-TYPE;

Element : in ELEMENT--TYPE);

package Sample-Space is

Empty : exception;

type ELEMENT-LIST is
array (NATURAL range <>)

of ELEMENT-TYPE;

-- Initialization
procedure Set

(Data : in COLLECTION-TYPE);

- - Accessing
function Next return ELEMENT-TYPE;
function Next (Number : NATURAL)

return ELEMENT-LIST;

-- Testing
function Is-Empty return BOOLEAN;
function Size return NATURAL;

end Sample-Space;

Package Sample Space uses the generic facility
both to paramet&ize itself and to allow a class
of objects (as discussed in Section 2). It would
also have been possible to define a generic
Sample-Space-Handler package with a
SAMPLE-SPACE type. This would have
allowed sample spaces to be passed as data, an
ability which is not really needed for the
present example. l

The body of Sample-Space is:

with Random;
package body Sample-Space is

-- Instance variable
Sample-Data : COLLECTION-TYPE;

- - Initialization
procedure Set

(Data : COLLECTION-TYPE) is
begin

Sample-Data := Data;
end Set;

-- Accessing
function Next return ELEMENT-TYPE is

Item : ELEMENT-TYPE;
begin

if Is-Empty then
raise Empty;

end if;
Item := At (Sample-Data, Index =>

NATURAL((Random.Value*Size)+l));
Remove

(Collection => Sample-Data,
Element => Item);

return Item;
end Next;

function Next (Number : NATURAL)
return ELEMENT-LIST is
List : ELEMENT-LIST(1 . . Number);

begin
for I in 1 ,. Number loop

List(I) := Next;
end loop;
return List;

end Next;

-- Testing
function Is-Empty return BOOLEAN is
begin

return (Size = 0);
end Is-Empty;

function Size return NATURAL is
begin

return Size(Sample-Data);
end Size;

end Sample-Space;

The Sample-Space package body assumes the
availability of a package Random to generate
random numbers. Sample-Space could then be

October 4-8,1987 OOPSLA ‘87 Proceedings 211

used to shuffle an instance of private type
CARD-DECK:

with Sample-Space;
package body Card-Deck-Handler is

package Sample is new Sample-Space
(COLLECTION-TYPE => CARD-DECK,

ELEMENT-TYPE => CARD-TYPE,
At => Card,
Size => Deck-Size,
Remove => Remove-Card);

procedure Shuffle
(Cards : in out CARD-DECK) is

begin
Sample.Set (Data => Cards);
Cards := CARD-DECK

(Sample.Next(DeckSize(Cards)));
end Shuffle;

end Card Deck - Handler; -

Generic package Sample-Space is a template
for a general class of sample spaces. Since a
COLLECTION TYPE must be specified when
Sample-Space % instantiated, each instance of
this class can only handle a single type of
collection for sampling. Thus an Ada compiler
can still perform static type checking for each
instantiation of generic packages.

The dynamic binding and lack of typing in
Smalltalk allow an instance of a subclass to be
used anyplace an instance of its superclass may
be used. As mentioned at the end of Section 3
the Ada type system does not allow this because
it views all private types as distinct and
incompatible. The above generic technique can
help with this problem, also. A generic package
(or other program unit) which is parameterized
by the types and operations it needs will be atjle
to use any type with the necessary operations.
Thus if the private type representing some class
can be plugged into a generic, then a subclass
type can also be plugged into that same generic.
However, the generic must be instantiated
separately for each type. There is no easy way

in Ada have a true polymorphic procedure, that
is, a single procedure with an argument which
accepts values of different types.

5. Conclusion

Smalltalk and Ada are based on quite different
philosoprrles. Smalltalk is designed to make it
easier to program and to incrementally build
and modify systems. Ada, on the other hand,
purposefully places certain additional
obligations on the programmer so that the final
system will be more reliable and more
maintainable. The Ada philosophy takes a
much more life-cycle-oriented approach,
recognizing that most costly phase of software
development is maintenance, not coding.

If the languages have such different bases, then
why consider using object-oriented ideas for
Ada? The answer is that object-oriented
concepts really apply to more than just
programming. In Ada circles, these concepts
are usually applied to design [Booth 83,
Seidewitz 86a, Seidewitz 86b]. The object-
oriented viewpoint is crucial to designing for
effect use of Ada’s package facility. Further,
the object-oriented approach can be a general
way of thinking about software systems which
can be applied from system specification
through testing. This fits in quite well with the
Ada life-cycle philosophy [Booth 86, Stark 871.

Still, Ada has some unfortunate drawbacks for
object-oriented programming, especially in its
lack of support for inheritance, As an object-
oriented programming language Smalltalk is in
many ways clearly superior to Ada. However,
as a life-cycle software engineering language
Ada has great advantages. Static strong typing
is crucial to increasing the reliability of
software. Even with a good testing
methodology, large amounts of code will not be
thoroughly tested because it is only executed in
rare combinations of situations. But when a
system is running continuously for years, any
errors that remain in these sections of code will
almost certainly occur. This is especially true
for the embedded real-time systems which were
Ada’s original mandate. In Ada, all sections of
code are checked by the compiler, and many
errors can be caught before the testing phase
due to static type checking and static operation
binding.

212 OOPSLA ‘87 Proceedings October 4-61987

It is possible to support inheritance and even
polymorphism within a statically typed language
(as in, for example, Eiffel [Meyer 86, Meyer
873). Inheritance might be added to Ada
without too much change to the design of the
language. Incorporation of polymorphism
would be much more difficult, and probably
require a philosophical change in the Ada
language design. However, even with these
deficiencies for object-oriented programming,
Ada still provides a useful vehicle for applying
object-oriented concepts throughout the
software development life-cycle.

Much of the above discussion also applies to
other modular languages such as Modula-2
(though Modula-2 does not directly support
genericity). As these languages become more
and more widely used it will be increasingly
important to apply to them the experience in
object-oriented software development gained
from Smalltalk and other object-oriented
languages.

References

[Booth 831
Grady Booth. Software Engineering with Ada,
Benjamin/Cummings, 1983.

[Booth 861
Grady Booth. “Object-Oriented Development,”
IEEE Transactions on Software Engineering,
February 1986.

[Dahl 681
O-J Dahl. Simula 67 Common Base Language,
Norwegian Computing Center, Oslo, Norway,
1968.

[DOD 831
US Department of Defense, Reference ManuaI
for the Ada Programming Language,
ANSI/MIL-STD-1815A-1983.

[Goldberg 831
Adele Goldberg and David Robson. Smalltalk-
80: The Language and its Implementation,
Addison-Wesley, 1983.

[Meyer 861
Bertrand Meyer. “Genericity versus
Inheritance,” OOPSLA ‘86 Conference
Proceedinns, SIGPLAN Notices, November
1986.

[Meyer 871
Bertrand Meyer. “Eiffel: Programming for
Reusability and ExtendabiIity,” SIGPLAN
Notices, February 1987.

[Seidewitz 86a]
Ed Seidewitz and Mike Stark. “Towards an
Object-Oriented Software Development
Methodology,” Proc. of the 1st Intl. Conf. on
Ada Apolications for the Spat Station, June
1986.

[Seidewitz 86b]
Ed Seidewitz and Mike Stark. General Obiect-
Oriented Software Development, Goddard
Space Flight Center, SEL-86-002, August 1986.

[Snyder 861
Alan Snyder. “Encapsulation and Inheritance in
Object-Oriented Programming Languages,”
OOPSLA ‘86 Conference Proceedings,
SIGPLAN Notices, November 1986.

[Stark 871
Mike Stark and Ed Seidewitz. “Towards a
General Object-Oriented Ada Life-Cycle,”
Proc. of the Joint 4th Washinaton Ada
Svmoosium / Fifth Nat. Conf. on Ada
Technalosv, March 1987.

[Wirth 831
Niklaus Wirth. Programminn in Modula-2,
Springer-Verlag, 1983.

odober 4-8,1987 OOPSIA ‘87 Proceedings 213

