
Meta: Extending and Unifying Languages

Wade Holst
Department of Computer Science

University of Western Ontario
London ON Canada
wade@csd.uwo.ca

ABSTRACT
Meta is an ambitious research project whose overall purpose
is to increase the utility and expressive power of a wide range
of existing languages. Meta provides augmented versions of
existing languages and guarantees support for aspects, com-
ponents, language interoperability, visualization, reflection,
various inheritance models, and many other extensions.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and

Features—classes and objects, constraints, inheritance, modules,

patterns, polymorphism; D.2.3 [Software Engineering]: Coding

Tools and Techniques—object-oriented programming

General Terms
Languages, Design, Documentation

Keywords
object-oriented, aspect-oriented, component-oriented, XML,
multi-methods, reflection, language interoperability

1. INTRODUCTION
Meta is a large research project whose primary goal is

to augment and unify the syntax and semantics of exist-
ing languages. Although Meta provides features useful for
arbitrary languages, this material focuses primarily on the
support provided byMeta to object-oriented programming
languages. This support consists of a collection of mandates:
ensuring support for a standard set of object-oriented fea-
tures, support for aspect-oriented and component-oriented
programming, support for multi-method dispatch and other
inheritance-related extensions, providing (optional) runtime
typing-checking in non-statically-typed languages, numerous
statement-level syntactic extensions, support for language
interoperability, support for automated 2D and 3D visual-
ization of programs (UML, etc.), and a much higher degree
of reflection than is available in most languages, to name
only a few. Meta is designed to support and extend a very
wide range of object-oriented languages, and the set of sup-
ported languages are referred to as the base languages of
Meta. Extended versions of these base languages are de-
fined by Meta, with names like Meta〈Java〉, Meta〈C++〉
andMeta〈C#〉.
Language neutrality is a central concept in Meta; the

mandates of M eta are implemented in as language-neutral

Copyright is held by the author/owner.
OOPSLA’04, Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
ACM 1-58113-833-4/04/0010.

CLASS Person SCOPE<C++> {
FIELD height : float;
FIELD weight : float;
INITIALIZER (h:float,

w:float) {
this->setHeight(h);
this->setWeight(w);

};
METHOD bmi() : float {
float w = getWeight();
float h = getHeight();
return w/(h*h);

};
} RUN {

Person * p =
new Person(1.8,85);

cout << p->bmi()
<< endl;

};
ASPECT PerAsp SCOPE<C++> {

before ADVICE () :
"call(*.b*():float" {
cout << "Starting"

<< endl;
};

};

host% metac -b cc -c
host% metacpp Person

CLASS Person SCOPE<Java> {
FIELD height : float;
FIELD weight : float;
INITIALIZER (h:float,

w:float) {
this.setHeight(h);
this.setWeight(w);

};
METHOD bmi() : float {
float w = getWeight();
float h = getHeight();
return w/(h*h);

};
} RUN {

Person p =
new Person(1.8,85);

System.out.println(
p.bmi());

};
ASPECT PerAsp SCOPE<Java> {

before ADVICE () :
"call(*.b*():float" {
System.out.println(

"Starting");
};

};

host% metac -b java -c
host% metajava Person

Figure 1: Sample Meta〈C++〉 and Meta〈Java〉 Code

a manner as possible. Such implementations do not rely
on the details of a particular base language, and have the
obvious advantage of providing a particular capability in all
base languages at the same time. This means that adding a
new base language to Meta requires significantly less work
than would otherwise be the case.
The language-neutral philosophy ofMeta extends even to

its syntax, as shown in the small Meta〈C++〉 and Meta〈Java〉
programs in Figure 1. Meta introduces a concise, uni-
form, powerful syntax (and associated semantics) that re-
places the high-level syntax of existing languages. In its
most common form,Meta acts as a language template, pro-
viding only a partial definition of the syntax of a language.
It is when Meta syntax is applied to an existing object-
oriented language like C++, Java, C#, etc. that a fully-
defined language (Meta〈C++〉,Meta〈Java〉, Meta〈C#〉) is
formed. Meta〈C++〉 uses Meta syntax above the level
of statements, and C++ syntax at and below statement
level. Meta〈Java〉 uses Meta syntax above the level of
statements, and Java syntax at and below statement level.
The high-level syntax ofMeta〈C++〉 is identical to that of
Meta〈Java〉 and any otherMeta〈L〉 language.

190



2. BENEFITS OF META
There are two levels at which the contributions and bene-

fits ofMeta can be discussed. First, at the programmer level,
the augmentation and unification of existing base languages
has a significant software engineering impact, substantially
increasing the ease with which a development team can de-
sign and implement applications.
Second, at the research level, Meta is a vehicle for ex-

ploring new object-related technologies (like aspects, com-
ponents, multi-methods, automated visualization, etc.) and
identifying synergisms between these concepts.
The following subsections briefly describe a few of the ben-

efits provided byMeta. For a more exhaustive list of bene-
fits, the reader is referred to [1].

2.1 Programmer-level Benefits
Augmented Languages: The most immediately benefit

provided byMeta is the augmentation of the base languages
its supports. Meta〈C++〉 provides numerous extensions on
top of C++,Meta〈Java〉 significantly extends Java, etc.

Concise Syntax: AMeta〈L〉 source file is almost always
smaller than its corresponding base language L source file.
AMeta〈L〉 program says more with less.

Reduced Learning Curves: The structured nature of
Meta syntax allows the important concepts (constructs) to
be quickly understood, and allows the details (attributes)
to be incrementally learned as needed. Furthermore, if a
programmer already knows Meta〈L〉, learning Meta〈L’〉 is
easier than learning L’ (only statement-level syntax needs
to be learned).

Implicit code: EachMeta field results in numerous ac-
cessors being defined. Every object can be serialized and
printed. Every class has an associated entry point and test
harness.

Popularizing New Features: Many new object-oriented
concepts are not seen by programmers because such features
are usually added into new languages (and programmers
rarely see experimental new languages). By providing an
environment that augments and extends popular existing
languages, Meta can act as a mechanism for introducing
concepts like aspects, components, multi-methods, reflec-
tion, etc. to a much wider audience. For example, Meta
provides a language-neutral meta-object protocol that pro-
vides for convenient, fine-granularity, intuitive introspection
on each atomic constituent of every high-level syntactic en-
tity in the base language, as well as efficient, convenient,
intuitive execution-style intercession on meta-objects. The
interface provided byMeta〈L〉 is almost always more concise
and efficient than that provided by L, and the same inter-
face exists for every base language supported byMeta. As
another example, Meta provides wide-ranging support for
intra-process (as opposed to inter-process) language inter-
operability issues. This includes support for addressing the
legacy code problem, using multiple languages in the same
application, hiding the esoteric details of base-language na-
tive code implementations, and allowing rapid prototyping
in a development language followed by rapid migration of
source-code to a production language.

Many other extensions: Multi-methods, mixins, inter-
faces, Beta-style inheritance, Smalltalk-like class variables,
and many other features are available toMeta〈L〉 program-
mers, regardless of whether base language L provides direct
support for them.

2.2 Research-level Benefits
Extending Mandates: Meta has numerous mandates,

like support for aspects, components, multimethods, etc.
Initial implementations of these mandates are often built
from existing base-language implementations, appropriately
generalized where possible to provide language-neutrality.
However, many of these mandates are still developing, and
Meta can play an active role in establishing how they should
evolve. For example, although the aspect-oriented paradigm
is maturing, numerous extensions are possible. Even more
significant, the component-oriented paradigm, although an-
ticipated for decades, has only very recently made signif-
icant progress towards truly independent software compo-
nents that can be swapped out and replaced as easily as
hardware components. There are a small number of ex-
isting component-oriented languages and component frame-
works available, but the paradigm is very far from being ma-
ture. Meta can play an active role in component-oriented
research.

Meta and XML: The structure of Meta, including its
self-defining properties, are similar in nature to those of
XML, and both Meta and XML benefit greatly from the
implement-once-use-often nature of their design. However,
Meta can also be used as a vehicle for XML and XSLT re-
lated research. To see why, note that the implementation of
aspects inMeta currently relies on convertingMeta syntax
to XML and using XSLT to implement the aspect weaving,
followed by additional XSLT to create base-language source
code. Numerous strengths and weaknesses of XSLT as a
production-level compiler have been identified during this
implementation. Future research will be looking at whether
a Meta-level language (Meta〈XML〉) can augment XML
(and XSLT) by addressing these limitations. One imme-
diate benefit would be a significant reduction in syntactic
burden (a problem with XML and XSLT).

Synergism between mandates: Although all of the
above research contributions are significant in and of them-
selves, the most interesting research-level contribution of
Meta is in the identification and use of synergisms between
the various Meta mandates. For example, although there
are many research projects addressing aspects, or compo-
nents, or multi-methods, etc., there are no research projects
looking at all of them at the same time. Meta is designed
to provide an environment in which such interactions can be
explored. Numerous synergisms have already been identified
(augmented reflection helps implement almost all other man-
dates, design pattern support may be implementable using
aspects, language interoperability is significantly influenced
byMeta syntax).

3. CONCLUSION
Meta is an ambitious project spanning a large number

of research areas related to software engineering and pro-
gramming language design and implementation. The exist-
ing Meta compiler has varying levels of support for C++,
Java and Perl, and numerous other languages and features
will be aded as the research develops.
Details on Meta, including papers discussing individual

languages (Meta〈C++〉, Meta〈Java〉, etc.) and individual
mandates (reflection, aspects, components, language inter-
operability, etc.) can be found at:

http://meta.csd.uwo.ca/Meta

191


