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Abstract
Modern object-oriented languages such as X10 require
a rich framework for types capable of expressing both
value-dependency and genericity, and supporting pluggable,
domain-specific extensions.

In earlier work, we presented a framework for con-
strained types in object-oriented languages, parametrized
by an underlying constraint system. Types are viewed as for-
mulas C{c} where C is the name of a class or an interface
and c is a constraint on the immutable instance state (the
properties) of C. Constraint systems are a very expressive
framework for partial information. Many (value-)dependent
type systems for object-oriented languages can be viewed as
constrained types.

This paper extends the constrained types approach to
handle type-dependency (“genericity”). The key idea is to
introduce constrained kinds: in the same way that constraints
on values can be used to define constrained types, constraints
on types can define constrained kinds.

We develop a core programming language with con-
strained kinds. Generic types are supported by introducing
type variables—literally, variables with “type” Type—and
permitting programs to impose subtyping and equality con-
straints on such variables. We formalize the type-checking
rules and establish soundness.

While the language now intertwines constraints on types
and values, its type system remains parametric in the choice
of the value constraint system (language and solver). We
demonstrate that constrained kinds are expressive and prac-
tical and sketch possible extensions with a discussion of the
design and implementation of X10.

Categories and Subject Descriptors D.3.1 [Programming
Languages]: Formal Definitions and Theory; D.3.2 [Pro-
gramming Languages]: Language Classifications—object-
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oriented languages; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features—classes and objects, con-
straints; F.3.3 [Logics and Meaning of Programs]: Stud-
ies of Program Constructs—object-oriented constructs, type
structure

General Terms Design, Languages, Theory

Keywords types; generics; constraints; X10

1. Introduction
Dependent types [9, 31, 49] offer opportunities for detecting
programming errors statically and for eliminating costly ar-
ray bounds, null dereference, or other run-time checks. The
X10 programming language takes advantages of constrained
types [37]—a form of dependent types—to provide an open-
ended, user-extensible framework in which to specify and
enforce desirable properties of data structures statically.

Generic types, types such as List<T> in Java that are
parametrized by other types, are widely established [5, 12,
18, 25, 35, 36, 44], and are vital for implementing type-safe,
reusable libraries, especially collections classes.

X10, like Java, initially had no support for genericity. The
subtle issues encountered when designing and implementing
a generic type system for X10 exposed the need for a for-
mal framework in which to explore the design space and to
reason about fundamental issues of soundness and expres-
sivity. As a result, this paper develops the framework of con-
strained kinds, unifying constrained types and generic types.

1.1 Constrained Types
In X10, a normal class type C is enriched to permit a
constrained type C{c} where c is a constraint on the im-
mutable fields, or properties, of the class C as well as
any final variables and constants in scope. Constraints
are drawn from a constraint language that, syntactically,
is a subset of the boolean expressions of X10. For in-
stance, Point{self.rank==n} is a type satisfied by any
n-dimensional point, that is, any instance of Point whose
rank property is n. Here, n is a final variable whose value
may be unknown statically. In a constraint, self refers to a
value of the base type being constrained, in this case Point.

Constraints may be used to specify class invariants and
conditions on the accessibility of methods. For instance, the
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euclidian distance method of the Point class requires that
the ranks of the points be the same:

class Point(rank:Int) {

def distance(p:Point){this.rank==p.rank} ...

}

Therefore the X10 compiler is able to flag and reject pro-
grams trying to compute the distance between a 2-d point
and a 3-d point. Reciprocally, if two points are known stat-
ically to have the same rank, even if the actual rank itself is
not known statically, the compiler is able to type check the
distance method invocation.

The key idea behind X10’s approach is that the type-
checking rules can be decoupled from the machinery of
constraints. By varying the constraint language and solver,
one can tune the X10 type system to the specific needs of a
particular application domain, with confidence that the result
is sound.

1.2 Generic Types
Generic types are essential for implementing type-safe, ex-
tensible collections libraries. In Java, for example, generic
types let programmers distinguish different types of lists
such as lists of integers List<Integer> or lists of lists of
strings List<List<String>>. In general, Java types can be
parametrized with other types. The compiler keeps track of
the type parameters and guards against mismatches.

In other languages, including X10, genericity benefits
extend beyond static safety. For instance, X10 permits the
declaration of struct types reminiscent of C structs. The run-
time representation of an X10 array is customized to the
content of the array: structs are inlined into arrays whereas
arrays of objects are implemented as arrays of pointers.

1.3 Constrained Kinds
This paper lays out a framework to extend constrained types
to handle type genericity. The general outline of the ap-
proach is to introduce type variables and a vocabulary of
constraints over types. These constraints on types are used
to specify constrained kinds in the same way that constraints
over values are used to specify constrained types.

In different programming languages, type variables are
introduced as type parameters (cf. Java [18]) or as type
members (cf. BETA [27]). In the framework described in this
paper, a type variable can be declared as a property of a class
or as a method parameter with type Type. For example, one
can declare an Array class with a type property X as well as
an integer property rank:

class Array(X:Type,rank:Int) { ... }

Within the scope of its declaration, a type variable can be
used wherever a type can (e.g., to specify the type of a value
property or method parameter, or as the target of a cast).

Like value properties, type properties can be used in con-
strained types through the variable self. With the above

1 public class Array[T](rank:Int) {

2 private val raw:Block[T]; // raw memory

3 private val size:Int;

4 ...

5

6 /* rank 1 constructors */

7 public def this(size:Int,init:T) {

8 ...

9 raw = Block.allocateUninitialized[T](size);

10 for (i in 0..(size-1)) raw(i) = init;

11 }

12

13 public def this(size:Int){T haszero} {

14 ...

15 raw = Block.allocateZeroed[T](size);

16 }

17

18 /* getter */

19 public def get(p:Point){rank==p.rank}:T {

20 return raw(offset(p));

21 }

22

23 /* rank 1 getter */

24 public def get(i:Int){rank==1}:T {

25 return raw(i);

26 }

27

28 public def sum(){T<:Arithmetic[T]}:T {

29 var acc:T = raw(0);

30 for (i in 1..(size-1)) acc += raw(i);

31 return acc;

32 }

33 }

Figure 1. X10 array class.

Array declaration, the type of an array of integers, say, can
be written as Array{self.X==Int}.

To make constrained kinds expressive, a suitable vocab-
ulary of constraints over types must be chosen. In the con-
text of nominal object-oriented languages such as Java and
X10, types are equipped with a partial order (the subtyp-
ing relation) generated from the user program through the
“extends” and “implements” relationships. This structure
motivates a constraint system in which, for a type variable X
one can assert the constraint X<:T. A valuation (a mapping
from variables to types) realizes this constraint if it maps X to
a type that is a subtype of T. Constrained kinds can therefore
express bounds on type variables similar to those in Java:
X:Type{self<:Number} declares a type variable X which
can only be bound to those types S that satisfy S<:Number.

1.4 Example
Figure 1 shows a fragment of an Array class in the X10
syntax. This class introduces a type parameter T in square
brackets (see Section 5).
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The fragment shows two constructors. The first construc-
tor (lines 7–11) takes an array size and an initial value for
the array elements; the second (lines 13–16) takes only a
size. The second constructor constrains T with a haszero

constraint, which holds when a type contains a zero value,
that is, a value whose representation is a pattern of zero
bits. This constraint allows fast allocation of arrays con-
taining the zero value, but safely ensures a zero-backed ar-
ray cannot be created when T is bound to a type such as
Object{self!=null}with no zero value . Thus, to allocate
an Array[Object{self!=null}], the programmer must
use the first constructor, passing in an explicit initial value.

The example also shows two getter methods: the first
(lines 19–21) requires a point of matching rank, while the
second (lines 24–26) allows a single integer to index into the
array, but only if the array is of rank 1.

Finally, a sum method (lines 28–32) is defined, which
uses a subtyping constraint to require that the method only
be invoked on arrays of arithmetic types; that is, types pro-
viding the usual arithmetic operators.

The subtyping, haszero, and rank constraints all provide
partial information about the types (both requirements and
guarantees). The framework in this paper presents a unified
formalism for constraints on both types and values such as
the above. It permits programmers to provide more static
information to the compiler to enable safer, more efficient
libraries and to allow the compiler to generate faster code
with fewer run-time checks.

1.5 Contributions
This paper develops the framework of constrained kinds,
unifying constrained types and generic types. We present
a formalization of these ideas through an extension of the
development in our prior work on constrained types [37].
We summarize our contributions:

• We present a core “featherweight” calculus for con-
strained kinds, FXG, parametrized on an underlying value
constraint system. The calculus can express X<:T con-
straints on type variables and offers the programmer a
unified view of value and type dependency.

• We formalize its type system and prove type soundness.
The type-checking rules cleanly disentangle type con-
straints from value constraints, directly solving type con-
straints while funneling value constraints to the constraint
system.

• We show how the framework can be extended in a sim-
ple, methodical fashion to handle additional constraints
such as arithmetic constraints or structural subtyping
constraints.

• While our focus here is on a formal framework for con-
strained kinds, we address issues of practicality in the
context of X10. A version of the framework forms the
core of the X10 type system. To realize the framework,

several design choices were made that restrict the expres-
siveness in favor of efficiency, ease of use, and imple-
mentation. We discuss how design alternatives such as
the choice of type parameters versus type members, use-
site versus definition-site variance, and nominal versus
structural subtyping constraints can be expressed in the
framework.

The high-level design goal of FXG is to keep its type-
checking rules as simple as possible while delegating the
bulk of the hard work to the constraint system. From an op-
erational perspective, the FXG type checker asks a constraint
solver whether a given context entails a given constraint and
accepts or rejects programs based on the answers.

As shown in [37], this modular approach helps at many
levels including soundness, expressivity, and performance.
First, soundness is easier to ensure as it results in large part
from the soundness of the constraint system itself. Second,
the requirements on the constraint system are minimal, mak-
ing it easy to explore the design space and vary the static
guarantees, annotation overhead, compile-time and run-time
costs, etc. Finally, the type checker performance will benefit
from highly optimized constraint solvers.

Outline. The rest of the paper is organized as follows.
Section 2 introduces FXG with its formal semantics and
type-checking rules. We prove type soundness in Section 3
and discuss formal extensions of FXG in Section 4. Section 5
follows with a discussion of design choices and of how
the framework is realized concretely in X10. While this
section builds on the formalism introduced in the previous
sections, much of this discussion should be understandable
after a quick read of Section 2. Related work is discussed in
Section 6. Section 7 concludes the paper.

2. The FXG Language
In this section, we introduce a core formal programming lan-
guage, FXG, unifying constrained types and generic types.
We describe its syntax, operational semantics, and type sys-
tem.

Our language models many but not all of the relevant fea-
tures of X10. Following FJ [20], it does not account for mu-
table state. Objects once constructed are immutable. All vari-
ables are final. We model classes but not interfaces, method
overriding but not method overloading, default constructors
but not user-defined constructors. None of these restrictions
impacts the formalism, its soundness, or expressivity in an
essential way. We will revisit these decisions when we dis-
cuss X10 in Section 5.

2.1 Syntax
The grammar for FXG is shown in Figure 2. The syntax is
essentially that of X10. We use x to denote a possibly empty
list x1, . . . ,xn and • to denote the empty list. A program P is
a finite set of class declarations L.
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(Class declaration) L ::= class C(f :T){c} extends C { M }
(Method declaration) M ::= def m(x :T){c} :T= e;

(Path) p ::= x | p.f
(Kind) K ::= Type{c}
(Type) R, S, T ::= K | T0 where T0 ::= C{c} | p

(Expression) e ::= x | new C(e) | e.f | e.m(e) | e as T0 | C{c}
(Constraint term) t ::= x | new C(t) | t.f | C{c}
(Value constraint) c0 ::= true | false | t== t | c0,c0

(Constraint) c ::= T0 <: T0 | c0 | c,c
(Value) v, w ::= new C(v) | C{c} where c contains no variable other than possibly self

C, D range over class names, f, g over field names, m over method names, x, y, z over variable names.

Figure 2. FXG productions.

fields(C) = f : T
new C(v).fi→ vi

(R-FIELD)

e→ e′

e.f→ e′.f
(RC-FIELD)

e→ e′

e.m(e)→ e′.m(e)
(RC-INVK-RECV)

e→ e′

e as T→ e′ as T
(RC-CAST)

ei→ e′i
new C(v1, . . . ,vi−1,ei, . . . ,en)→ new C(v1, . . . ,vi−1,e

′
i, . . . ,en)

(RC-NEW-ARG)

method(C,m) = m(x :T){c} :R= e

new C(v).m(w)→ e[new C(v),w/this,x]
(R-INVK)

ei→ e′i
v.m(w1, . . . ,wi−1,ei, . . . ,en)→ v.m(w1, . . . ,wi−1,e

′
i, . . . ,en)

(RC-INVK-ARG)

` new C(v) :S,S<:T
new C(v) as T→ new C(v)

(R-CAST)

Figure 3. Operational semantics.

fields(Object) = • (L-FIELD-B)

class C(f :T){c} extends C′ { M } fields(C′) = f′ :T′

fields(C) = f′,f :T′,T
(L-FIELD-I)

class C(f :T){c} extends C′ { M } def m(x :T′){c′} :R= e ∈ M
method(C,m) = m(x :T′){c′} :R= e

(L-METHOD-B)

class C(f :T){c} extends C′ { M } method(C′,m) = m(x :T′){c′} :R= e m 6∈ M
method(C,m) = m(x :T′){c′} :R= e

(L-METHOD-I)

Figure 4. Fields and methods.
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1. Classes. A class has a name C, final fields f with
types T, a superclass C, methods M, and a class invariant c—
a constraint on the fields valid for all instances of the class.
Like any other constraint, the class invariant may be omitted.
An omitted constraint simply stands for the true constraint.

Class names C range over the declared classes in P and
Object. As usual, we assume the classes of a program have
distinct names, which are also distinct from Object and
Type. The class Object is implicitly declared, has no fields
or methods, and does not extend any other class.

We define the inheritance relation—C inherits from C′—
as the transitive closure of the extends relation. We assume
that the inheritance graph has no cycles or self loops; hence,
it is a tree with class Object as its root.

2. Fields and constructors. The fields of a class C are the
union of the fields of the superclasses and the fields declared
in C.

class C(x:Object) extends Object {}

class D(y:Type) extends C {}

class E(z:y) extends D {}

In this example, C has one field named x, D has two named x

and y in this order, and E has three.
The fields are ordered by their declaration with the fields

of the superclass coming before the fields of the declared
class. We assume the names of the fields of a class to be
distinct from one another.

A field may be a type variable (e.g., the y field of D).
The type of a field may involve fields already declared. Here,
field z is declared with type y.

Each class has an implicit default constructor that takes
one argument for each field of the class, in order, and initial-
izes the fields with these arguments. The Object class has a
0-ary constructor.

3. Methods. Methods are introduced with the def key-
word. A method has formals x with types T and return type T.
The method guard c is to be thought of as an additional con-
dition that must be satisfied by the receiver and the argu-
ments of the method call. The body of a method is an ex-
pression e.

We assume that the formals of a method have distinct
names, none of which are this. We do not consider method
overloading: we assume each class declares at most one
method with a given name.

The type of a formal may involve a formal declared to its
left as well as the fields of the enclosing class. For instance,
the distance method of the Point class of Section 1 could
also be declared:

def distance(p:Point{this.rank==self.rank}) ...

Here, this.rank denotes the rank of method receiver and
self.rank denotes the rank of p. Ultimately this constraint
on the type of p or the method guard as defined in Section 1
impose the same restrictions on the method’s applicability.

4. Variables and paths. The variables in scope in the
body of a method are the method formals x and the implicit
receiver this. Paths, e.g, x.f.g, are chains of field selections
starting with a variable.

5. Types, kinds, and type variables. Types in FXG are
firstly nominal types: each class name C defines a type C.
Informally, a value is of type C if it is an instance of the
class C.1

Types include constrained class types C{c} and con-
strained kinds Type{c}. If value v is of type T{c} then it
satisfies the constraint c[v/self]. Formals and fields de-
clared with type Type{c} are said to be type variables.

Finally, there are path types p. We assume that paths used
in type positions are type variables, hence the name path
types.

We write T0 for a type that is not a kind, that is, a con-
strained class type or a path type.

A path type is never a kind. If a formal or field is declared
with path type p then it cannot be a type variable. In other
words, its value cannot be a type. As a result, while type
variables are not segregated from standard variables in FXG
using the bracket notation of Java or X10, it is always possi-
ble to partition fields and formals as either type variables or
standard variables by just looking at their declared types.

While a method’s return type may be a kind, an invoca-
tion of such a method cannot appear in type position (i.e., as
the type of a formal or a field, or as the target of a cast).

6. Values, expressions, and constraint terms. There are
two sorts of values: object instances and constrained class
types C{c} where the only variable permitted in c is self.
Formally, C{c} binds variable self in c; a value C{c}
may not have free variables. Following FJ, we denote ob-
ject instances by means of nested constructor calls, e.g.,
“new Box(C,new C()).”

Expressions are built from variables in scope, field ac-
cesses, constructor calls, method invocations, casts (writ-
ten e as T0), and constrained class types. Casts for values
of type Type such as “C as Type{self==C}” are unsup-
ported due to a lack of compelling use cases. In FXG as in
X10 or Java, C in constructor invocation new C(e) must be a
class name, not a type or type variable.

The set of constraint terms is a subset of the set of expres-
sions and a superset of the set of values. It includes variables
and constrained class types and is closed under field selec-
tion and object construction.

7. Constraints. Constraints are built from the conjunc-
tion of the constraints true and false, equality constraints
t== t, and subtyping constraints T0 <: T0.

We write c0 for value constraints, that is, in this core lan-
guage, equality constraints. Value constraints include equal-
ity constraints on types such as x== C{c} (see Section 2.3).

1 Formally, the type of an instance of class C is ∃x :T. C{c} for some types
T and constraint c, therefore a subtype of C.
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A class invariant may only refer to the variable this.
Moreover, it may only refer to this in field selection ex-
pressions. A method guard may refer to the receiver this
and the formals x of the method. In general, a constraint c
in a constrained type T{c} may refer to the variable self in
addition to the variables in scope where self refers to any
value of the type T being constrained. In particular, a return
type may refer to the receiver and the formals of the method
as well as to the return value itself (i.e., self).

Constraints may be nested, for example:

Type{self<:Nat{self==new Zero()}}

Here the outer self corresponds to the type being con-
strained, the inner self to a value of that type.

2.2 Operational Semantics
The operational semantics, shown in Figure 3, is described
as a reduction relation on expressions e→ e′. It enforces a
strict left-to-right call-by-value evaluation order.

It uses two helper predicates defined in Figure 4. The
fields predicate computes the list of fields of a given class.
The method predicate returns the declaration of method m

available in class C, if it exists. It is recursively defined as
either the method m declared in class C, if any, or else as the
method m available in the superclass of C, if any.

In rule R-INVK, we use [x/y] to denote the substitution
of the y’s by the x’s. This implicitly requires the two lists
to have the same length, hence R-INVK ensures that the
method call has the correct number of arguments.

Unsurprisingly, the dynamic semantics only depends on
the type system via the rule R-CAST. In short, the rule
specifies that new C(v) can be cast to type T iff new C(v) can
be shown to have type S where S is a subtype of T. It is worth
noting that, in theory, casts require run-time invocations of
the static type system, which may involve constraint solving
(see Section 5.4).

Except for casts, constraints are irrelevant to the dynamic
semantics. We will establish that there is no need for run-
time checking of method guards or class invariants for a
well-typed program. In essence, every variable with a con-
strained type T{c} is guaranteed to be bound to a value that
satisfies c at run time.

2.3 Constraint System
The FXG definition is parametrized by a value constraint
system X . This constraint system is required to have the
predicates and terms of our constraint language with an
adequate interpretation. It may have other predicates and
terms whose interpretation is left unconstrained.

Formally, X is required to have terms t of the form
“C(f = t)”, “t.f”, “C{c}”, and an equality predicate “==”
on such terms. We map FXG constraint terms “new C(t)” to
X terms “C(f = t)” so as to capture field names in the term
itself (see the definition of constraint projections below).

The entailment relation for X must respect the interpreta-
tion of (a) C(f = t) as a finite tree with root labeled with C,
ith branch labeled with fi and leading to ti, and (b) t.f as
selection of the child labeled f for the tree t.2

Equality is reflexive, symmetric, transitive, and a congru-
ence w.r.t. field selection: if x== y then x.f== y.f. More-
over C(f = t) == C′(f

′
= t′) iff the class names and field

names are identical and t == t′. Using object-oriented ter-
minology, equality is structural.

Terms of the form C{c} are just that, terms, with no
semantics or structure as far as X is concerned. Intuitively,
we want X to solve term equivalence constraints irrespective
of the sort of the terms, but subtyping constraints will be
handled outside of X .

1. Inconsistent constraints. A type T of may be incon-
sistent due to inconsistent constraints, that is, there exists
no value of type T. This may be due to value constraints as
in the type “C{self==new C(),self==new D()}” or type
constraints as in the kind “Type{self<:C,self<:D}.”

While it makes sense to report inconsistent types, class
invariants, or guards to the programmer (see Section 5.6),
inconsistent constraints are not a first-order concern of FXG.
Indeed, as long as methods with inconsistent guards cannot
be invoked, objects with inconsistent invariants cannot be
constructed, or casts to inconsistent types cannot succeed,
type soundness can be established.

Inconsistent subtyping constraints however complicate
things because they essentially bring back multiple in-
heritance to FXG despite the initial single-inheritance as-
sumption. For instance, if x has type T and T has type
“Type{self<:C,self<:D}” then both the methods of C

and D are available on x, which lead to ambiguities. There-
fore, we adopt a mixed approach in FXG where we disallow
inconsistent subtyping constraints, but consider inconsistent
value constraints harmless. We formalize this shortly.

2.4 Type System
Type checking FXG programs involves judgments about
constraint entailment, subtyping, member lookup, and typ-
ing per se. Below, i stands for the name of a field of method
and I,I′ for field or method signatures:

I,I′ ::= C.f :T | C.m(x :T){c} :R

Formally, we consider:

1. Constraint entailment:
Γ ` c0 environment Γ entails value constraint c0

2. Subtyping:
Γ ` S<:T the type S is a subtype of type T in Γ

Γ ` x :: T the type of x is a subtype of type T in Γ

3. Member lookup:
Γ ` T.i−→ I T.i resolves to field or method I in Γ

2 A complete axiomatization of the algebra of finite trees is provided in [29].
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Γ ` T.i=⇒ I T.i ambiguously resolves to I in Γ

I� I′ I overrides I′

4. Typing:
Γ ` e :T expression e has type T in Γ

` def m(x :T){c} :R= e OK in C

method m in class C is well typed
` class C(f :T){c} extends C′ { M } OK

class C is well typed

A program P is well typed iff all its classes are well typed.
In the definition of these judgments, the program source

is an axiom of the deduction system. Therefore, judgments
implicitly depend on the program P under consideration.

The environment Γ is a finite, possibly empty sequence
of variable declarations x : T and constraints c. In the type
system specification, we often need to partially specify the
environment. In particular, we write “Γ,x : T,∆” for an envi-
ronment that declares x with type T and is otherwise uncon-
strained.

Before we specify each of these judgments in turn, we
discuss well-formedness, existential types, and class invari-
ants.

1. Well-formedness. A constraint, type, or expression is
well formed in environment Γ iff its free variables are de-
clared in Γ. Given the scoping rules we sketched earlier in
this section, the rules of well-formedness are straightfor-
ward. We omit them.

An environment Γ is well formed iff each constraint and
type in Γ is well formed w.r.t. to the sequence of variable
declarations to its left. This includes the current variable
declaration. For example, “x : Object{self == x}” is a
well-formed environment.

It is worth keeping in mind that for Γ,x : y,∆ to be well-
formed it must be that y is declared as a type variable in Γ

with type Type{c} for some c. Moreover, x is not a type
variable.

We assume well-formedness through the rest of the paper.

2. Existential types. The family of types E we consider
in the type system is richer than source types T as defined in
Figure 2.

E ::= T | E{c} | ∃x :E. E

First, we permit constraints on path types, for example:

x : Type,y : x ` y : x{self == y}

Second, types are closed under existential quantification.
Informally, a value v is of type ∃x :S. T if there exists some
value w of type S such that v is of type T[w/x].

We use existential types to conveniently accumulate con-
straints in chains of existentials. For instance, if class C has
a field f with type Object, we can establish

x : C ` x.f : ∃y :C{self == x}. Object{self == y.f}

While, as part of the type-checking rules, we could attempt
to simplify this to “x : C ` x.f : Object{self == x.f},”

The constraint projections σ and π are de-
fined similarly. To save space, we introduce
ω to abstract over them.

ω ∈ {σ,π}

ω(x) = x

ω(new C(t)) = C(f = ω(t)) if fields(C) = f : T
ω(t.f) = ω(t).f

ω(C{c}) = C{c}

ω(true) = true

ω(false) = false

ω(c,c′) = ω(c),ω(c′)

ω(c,Γ) = ω(c),ω(Γ)

ω(x :Type,Γ) = ω(Γ)

ω(x :C,Γ) = ω(Γ)

ω(x :y,Γ) = ω(Γ)

ω(x :T{c},Γ) = ω(x :T,c[x/self],Γ)
ω(x :∃y :T. S,Γ) = ω(z :T,x :S[z/y],Γ)

σ(t== t′) = σ(t) == σ(t′) π(t== t′) = true

σ(S0 <: T0) = true π(S0 <: T0) = S0 <: T0

Figure 5. Constraint projections.

σ(Γ) ` c0 in X
Γ ` c0

(X-PROJ)

Figure 6. Constraint entailment.

we choose not to do so in the type system and rely on the
constraint solver to coalesce the equality constraints. In our
implementation however, we adopt an eager approach—no
existentials—for performance reasons.

For simplicity, we keep using symbols R, S, and T to refer
to types of the extended family.

3. Class invariants. A class invariant is intended to hold
for any instance of that class. Therefore, in all judgments, if
Γ declares a variable x of type C then the invariant for class
C with x substituted for this is implicitly added to Γ.3

4. Constraint entailment. In general, a typing environ-
ment is expressed in terms that are outside of the domain
of the constraint system, such as existential types, subtyping

3 In contrast, we do not recursively add invariants for the fields of x. It is
the responsibility of the FXG programmer to include selected fragments of
these invariants into the class invariant itself. See [37] for a discussion of
the alternative.
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x fresh Γ,x :S ` x :: T
Γ ` S<:T

(S-SUB)

S<:T ∈ π(Γ,x : S,∆)
Γ,x : S,∆ ` x :: T

(S-HYP)

class C(f :T){c} extends C′ { M }
Γ,x :C,∆ ` x :: C′

(S-CLASS)

Γ,x :S,∆ ` S== T

Γ,x :S,∆ ` x :: T
(S-REFL)

Γ ` x :: S y fresh Γ,y :S ` y :: T
Γ ` x :: T

(S-TRANS)

Γ,x :S,c[x/self],∆ ` x :: T
Γ,x :S{c},∆ ` x :: T

(S-CONST-L)

Γ ` c[x/self],x :: T
Γ ` x :: T{c}

(S-CONST-R)

Γ,y :R,x :S,∆ ` x :: T
Γ,x :∃y :R. S,∆ ` x :: T

(S-EXISTS-L)

Γ ` t :R,y :: T[t/x]
Γ ` y :: ∃x :R. T

(S-EXISTS-R)

Figure 7. Subtyping rules.

constraints, etc. It is therefore necessary to extract from the
typing environment a context for the value constraint solver
to reason about.

In Figure 5, we define the constraint projection σ(Γ) that,
in essence, strips out all type information from Γ, material-
izes field names and existentials, and drops subtyping con-
straints. In the last rule, we assume that alpha-equivalence is
used to choose a variable z that does not occur in the con-
text under construction. The dual projection π also defined
in Figure 5 is discussed later.

If c0 is a value constraint, we specify that Γ ` c0 if σ(Γ)
entails σ(c0) in X with rule X-PROJ in Figure 6.

5. Subtyping. We say that S is a subtype of T in Γ and
write “Γ` S<:T” if, informally, an expression of type S may
be used when an expression of type T is required. The type-
checking rules for method and constructor invocations for
example make use of the subtyping relation.

Because of dependent types, both S and T may constrain
self. Intuitively, self in S and self in T are to be thought
as the same variable when evaluating the validity of the
judgment “Γ ` S<:T”. It is therefore necessary to instan-
tiate self—equate self in both types with a fresh variable
name—to reason about the subtyping relation. When formal-
izing subtyping and making proofs about it, we came to real-
ize that this is cumbersome and error prone. This motivates
the introduction of an alternate notation for subtyping judg-
ments, which we now describe.

We adopt “Γ ` x :: T” as our primary form of subtyping
judgment. If variable x is declared with type S in Γ, then this
stands for “Γ ` S{self == x}<:T{self == x}”. In other
words, if x is fresh, the following equivalence holds:

Γ,x : S ` x :: T⇔ Γ ` S<:T

We use this equivalence to prove subtyping constraints in
guards and class invariants (see rule S-SUB in Figure 7) but,
as much as possible, we stick to the “::” form. In essence,
it lets us introduce a variable name x to reason about once,
which can be then used across an entire deduction tree.

The intent of FXG subtyping is to combine nominal sub-
typing and constraint entailment: type C{c} is a subtype
of C′{c′} if C inherits from C′ and c entails c′. For exam-
ple, the type “RectArray{self.t==Int}” is a subtype of
“Array{self.t<:Number}” if Int is a subtype of Number
and RectArray a subtype of Array.

The subtyping relation is specified in Figure 7. It relies of
the constraint projection π of Figure 5 to extract subtyping
constraints from the environment.

There are three sources of subtypes: (i) the extends re-
lation of the source program (rule S-CLASS), (ii) subtyp-
ing constraints in the source program (rule S-HYP), and (iii)
term equivalence (rule S-REFL). This last rule lets us for
instance derive that “x : Type{self == Int} ` x :: Int.”
Subtyping is reflexive thanks to rule S-REFL and transitive
by rule S-TRANS.

Rules S-CONST-L, S-CONST-R, S-EXISTS-L, and S-
EXISTS-R handle constrained and existential types. In rule
S-EXISTS-L, well-formedness ensures that variable y is not
free in ∆ or T.

Rules S-CONST-L and S-CONST-R let us rearrange con-
straints in types, e.g., x :T{c,c′} ` x :: T{c}{c′}.

6. Inconsistent subtyping constraints. We say that an
environment Γ is inconsistent iff Γ ` T<:C,T<:D for some
type T and distinct class types C and D such that C does not
inherit from D or vice versa.

In the remainder of the type system, that is, in member
lookup and type-checking rules, we assume all environments
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class C(f :T){c} extends C′ { M }
Γ ` C.fi =⇒ C.fi :Ti

(H-FIELD)

class C(f :T){c} extends C′ { M } def m(x :T′){c′} :R= e ∈ M
Γ ` C.m=⇒ C.m(x :T′){c′} :R

(H-METHOD)

Γ ` S<:T Γ ` T.i=⇒ I

Γ ` S.i=⇒ I
(H-SUB)

Γ ` T.i=⇒ I ∀I′. Γ ` T.i=⇒ I′⇒ I� I′

Γ ` T.i−→ I
(H-AMB)

C.i :I� C.i :I (O-REFL)

` C<:C′ this :C,x :T,c′ ` c this :C,x :T,c ` R<:R′

C.m(x :T){c} :R� C′.m(x :T){c′} :R′
(O-METHOD)

Figure 8. Member lookup. i ranges over member names, I over member signatures.

Γ,x :T,∆ ` x :T{self== x} (T-VAR)

Γ ` e :S,S.f −→ C.f :T fields(C) = f : T x fresh

Γ ` e.f :∃x :S. T[x.f/f]{self== x.f}
(T-FIELD)

Γ ` e :S fields(C) = f :T x fresh Γ,x :S ` x :: T[x/f], inv(C)[x/this.f]

Γ ` new C(e) :∃x :S. C{self== new C(x)}
(T-NEW)

Γ ` e :S,e :T,S.m−→ C.m(x :T′){c} :R y,z fresh θ = [y,z/this,x] Γ,y :S,z :T ` cθ,z :: T′θ
Γ ` e.m(e) :∃y :S,z :T. Rθ

(T-INVK)

Γ ` e :S
Γ ` e as T0 :T0

(T-CAST)

Γ ` C{c} :Type{self== C{c}} (T-CLASS)

this :C,x :T,c ` e :S y fresh this :C,x :T,c,y :S ` y :: R
method(super(C),m) = m(x′ :T′){c′} :R′ = e′ implies C.m(x :T){c} :R� super(C).m(x′ :T′){c′} :R′

` def m(x :T){c} :R= e OK in C
(OK-METHOD)

this :C ` inv(C′) fields(C′) = f′ :T′ f∩f′ = /0 M OK in C

` class C(f :T){c} extends C′ { M } OK
(OK-CLASS)

Figure 9. Typing rules.
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x : Type ` x : Type{self == x} T-VAR
x : Type ` new C(x) : S where S is ∃z :Type{self == x}. C{self == new C(z)} T-NEW
x : Type ` new C(x).f : T where T is ∃z :S. Type{self == z.f} T-FIELD

x : Type,y : T ` y :: Type S-CONST-L and S-EXISTS-L
x : Type,y : T ` y== x X-PROJ

Figure 10. Example judgments for program “class C(f:Type) extends Object {}.”

are not inconsistent. In other words, inference rules cannot
be instantiated with inconsistent environments.

This consistency check is key to the soundness proof.
It ensures that if a method invocation is typed using the
signature of method m in class C then, at run time, this
invocation will be dispatched to m in either C or a subclass
of C (as opposed to a class possibly unrelated to C).

While this criterion is adequate for FXG with its single-
inheritance hierarchy, in the X10 type checker, we imple-
ment a refined consistency test which accounts for interfaces
in addition to class inheritance.

7. Member lookup. Figure 8 specifies the field and
method signatures available on each type.

A field signature is of the form “C.f : T” with the name C
of the class declaring the field, the field name f and the
declared type for the field T (possibly a path type). Simi-
larly, a method signature is written “m(x :T){c} :R” with the
class name C, method name m, formal names x and types T,
guard c, and return type R.

Lookup is a function of the receiver’s type T and the
desired member name i. In particular for methods it does
not involve the formal types, argument types, or method
guards—we do not consider overloading. The types and
method guard will be checked later (see rule T-INVK in
Figure 9).

We first define ambiguous lookup: member i of type T

ambiguously resolves to signature I in context Γ, written
“Γ ` T.i =⇒ I”. Ambiguous lookup collects candidate sig-
natures by looking at all the class types that are super types
of T, which involves not only the inheritance tree but also the
subtyping constraints in the input program.

Then, rule H-AMB, T.i (unambiguously) resolves to I,
written “Γ ` T.i −→ I”, iff T.i resolves to I ambiguously
and I overrides any other signature T.i resolves to.

The overriding relation “�” is reflexive. Fields cannot
be overridden in subclasses. A method of class C overrides a
method of class C′ it inherits from iff it has the same formal
names and types, the guard of the method in C′ entails the
guard of the method in C and the return type in C is a subtype
of the return type in C′.

Of course, for the non-generic fragment of FXG, it would
make sense to look for fields and methods by walking the
class hierarchy bottom up, stopping at the first match, thus
avoiding the need for ambiguous lookup altogether. But once
there are type variables and bounds, it gets complicated.
Moreover, there is not much point specifying an efficient

traversal for a formal language like FXG without interfaces,
so we stick to the inefficient but sound procedure of ambigu-
ous lookup followed by ambiguity resolution.

8. Typing. The typing rules are specified in Figure 9. We
write inv(C) for the invariant of class C and super(C) for the
superclass of C.

T-VAR asserts the constraint “self== x,” which records
that any value of this type is known statically to be equal to x.
Thanks to this constraint, we can for instance type check the
invocation “x.distance(x)” on a variable x of type Point
even if the rank of x in statically unknown.

T-FIELD resolves the field name on the expression type.
Like T-VAR it records more than just the resolved field
type T. It asserts that there exists an x of the receiver’s type
such that any value of this type is known statically to be
equal to x.f. Because T may be a dependent type, we need to
substitute possible occurrences of field names in T with the
corresponding fields of x.

T-NEW has a similar structure to T-FIELD. It checks that
the static types of the constructor arguments are subtypes of
the declared field types and also imply the class invariant. Fi-
nally, it records that the types of the fields of the constructed
object are the types of the constructor call arguments, which
are typically more precise than (as in strict subtypes of) the
declared field types of the class.

Combining these three rules with constraint entailment,
we can for example in Figure 10 establish statically for
program “class C(f:Type) extends Object {}” that
if x is a type variable then “new C(x).f” has not only a
type T that is a subtype of Type but in addition that any
variable of type T is equal to x.

T-INVK similarly enforces that the argument types are
subtypes of the types of the formals and checks that the
method guard is entailed by the argument types.

T-CAST only requires e to be of some type S. At run time,
the reduced value for e is checked to see if it is actually of
type T (see R-CAST in Figure 3).

T-CLASS like T-VAR records that any value of this type
is statically known to be C{c}.

OK-METHOD and OK-CLASS enforce overriding rules
for fields and methods. The class invariant of a class must
entail the class invariant of its superclass. OK-METHOD
makes sure the body of a method has a type that is a subtype
of the declared type (assuming the class invariant and the
method guard).
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3. Soundness
The following results hold for FXG irrespective of the choice
of the value constraint system X .

Lemma 3.1 (Principal types). Γ ` e :S and Γ ` e :T then S

are T are identical.

Lemma 3.2 (Progress). If ` e :T then one of the following
conditions holds:

1. e is a value,
2. e contains a stuck cast sub-expression, that is, an expres-

sion of the form “v as T0,”
3. there exists e′ such that e→ e′.

Lemma 3.3 (Subject Reduction). If P is well typed and
e→ e′, and Γ ` e : T then there exists a type S such that
Γ ` e′ :S. Moreover, Γ ` S<:T.

Theorem 3.4 (Type soundness). If P is well typed and ` e :T
and e reduces to a normal form e′ then either e′ contains a
stuck cast sub-expression of the form “v as T0” or e′ is a
value v and there exists S such that ` v :S. Moreover, in that
case, ` S<:T.

Constructors calls in a well-typed program do not violate
class invariants at run time.

Theorem 3.5 (Class invariants). If P is well typed and Γ `
new C(e) :T and e→∗ v then Γ ` inv(c)[v/this.f].

Method invocations in a well-typed program do not vio-
late method guards at run time.

Theorem 3.6 (Method guards). If P is well typed and Γ `
e.m(e):S and e→∗ new C(v) and e→∗ w and method(C,m)=
m(x :T){c} :R= e′ then Γ ` c[new C(v),w/this,x].

The proofs of these results are sketched in Appendix A.

4. Extensions
We now discuss possible extensions of FXG, first for the case
of value constraints, then for type constraints.

Primitive types. Since the FXG design is parametric in the
value constraint language we can easily extend it to support,
say, arithmetic constraints or constraints on primitive types.

First, we assume we are given a constraint system X with
a vocabulary of primitive types R, functions h, predicates q,
and literals l of these primitive types. Second, we extend
the productions, operational semantics, and type system of
FXG with the productions and inference rules of Figure 11.
Formally, we should also extend the constraint projections,
but the extensions are straightforward and omitted.

We denote Rng(l) the primitive type of the literal l. We
assume each function h is a total mapping from Dom(h) to
Rng(h), that is, if ` v : Dom(h) then there exists a unique
literal l equal to h(v) and moreover Rng(l) is Rng(h).

For instance, if X defines the type Int, integer literals,
the addition operator, and the greater-or-equal predicate, we
could declare:

class Count(n:Int) extends Object {

def inc():Count{self.n>=this.n} =

new Count(this.n+1);

}

In rule T-FUN, we assume we are given an abstraction h

of every function h. Formally, h(x) is a formula of the
constraint language relating the variables x and possibly
self. For instance, the absolute value function “abs” could
be typed as:

Γ ` e :T,T<:Int
Γ ` abs(e) :∃x :T. Int{self>= 0}

Informally, FXG+primitives is sound iff function abstrac-
tions are sound. Formally, we not only extended the con-
straint language but also the expression language, opera-
tional semantics, and type checking rules. Therefore, the
soundness results of the previous section are not imme-
diately applicable to FXG+primitives. But they are easily
generalized because the proof structures are unchanged and
need only be extended to the new rules. Principal types and
progress hold unconditionally. Subject reduction depends on
the function abstractions, which must be such that:

h(e)→ h(e′)∧Γ ` e :S,e′ :T ⇒ Γ,x :S,y :T,h(y) ` h(x)
h(v) evaluates to l ⇒ self== l ` h(v)

Intuitively, abstractions must be such that they retain or
increase precision with each execution step.

Structural subtyping constraints. We add the constraint
“T0 has m(x : T){c} : R” which states that type T0 has a
method available with the given signature. We extend the
type checking rules in Figure 12. Ambiguous lookup di-
rectly accounts for structural subtyping constraints by rule
H-STRUCT. A class type C with method signature C.m(x :
T){c} :R satisfies the constraint C has m(x :T){c} :R by rule
X-STRUCT. By attaching the method signatures to Object,
we ensure actual method declarations have precedence over
ones known to exist by means of structural constraints. A
side-effect of our formalization is that by combining rules
H-STRUCT and X-STRUCT every method signature of the
program also ends up being attached to Object. But this
is fine since this “virtual” method is only visible for types
below the class of declaration of the method so that the vir-
tual method is always going to be overridden by the actual
method declaration.

We can prove that soundness is preserved with this ex-
tension by simply updating the proof that run-time dispatch
always returns a method compatible with the method signa-
ture selected during type checking. The rest of the soundness
proof is unchanged.

Methodology. With these two extensions, one can get a
feel for how to extend FXG with more constraints. On the
one hand, richer value-dependency is obtained with the ad-
dition of matching type-checking rules and run-time steps.
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(Type) T0 ::= R

(Expression) e ::= h(e) | l
(Constraint term) t ::= l

(Value constraint) c0 ::= q(t)
(Value) v ::= l

h(v) evaluates to l

h(v)→ l
(R-FUN)

` l :Rng(l){self== l} (T-LIT)

Γ ` e :T,T<:Dom(h)

Γ ` h(e) :∃x :T. Rng(h){h(x)}
(T-FUN)

ei→ e′i
h(v1, . . . ,vi−1,ei, . . . ,en)→ h(v1, . . . ,vi−1,e

′
i, . . . ,en)

(RC-FUN)

Figure 11. FXG+primitive types.

Γ ` T0 has m(x :T){c} :R
Γ ` T0.m=⇒ Object.m(x :T){c} :R

(H-STRUCT)

class C(f :T){c} extends C′ { M } def m(x :T′){c′} :R= e ∈ M Γ ` T0 <:C
Γ ` T0 has m(x :T′){c′} :R

(X-STRUCT)

Figure 12. FXG+structural subtyping constraints.

Because these are tightly coupled, subject reduction and
progress proofs just need to be extended with new cases,
with the bulk of the proof unchanged. On the other hand,
richer type-dependency is obtained with the addition of sub-
typing rules and lookup rules. There, we must ensure that
run-time dispatch is faithful to compile-time lookup of field
and method signatures.

5. Towards a Practical Language
In this section, we discuss how the FXG formal system can
be realized in a practical programming language. The choice
of type variables and constraint system and other design fac-
tors affect the ease of use and ease of implementation of the
resulting language. We outline the design and implementa-
tion choices made by X10, focusing on how FXG forms the
core semantics of the language.

5.1 Type Variables
The first version of X10 did not support generic types. In
extending the language, the first question to consider is the
choice of type variables. Most object-oriented languages
provide genericity by introducing type parameters on classes
and methods. The development of a nominal OO type sys-
tem with type parameters is now standard (cf. FGJ [20]).
An alternative approach is to use type members, type-valued
attributes of classes or objects. Virtual types in BETA [27]
are an example of this approach, as are FXG’s type-valued
fields. Type members may be either statically bound to con-
crete types or dynamically bound at object creation time.
Scala [38] supports both type parameters and type members.

Type parameters. Type parameters can be encoded as im-
mutable type-valued fields in FXG. Unlike positional param-
eters, type fields can be referred to outside their class body—

in constraints and in subclasses, for instance. Consequently,
the encoding should rename type parameters to avoid name
shadowing and ambiguity problems. In the following, we
simply assume type fields are named to avoid conflicts. An
an example, the Java class

class List<T> {

void add(T x) { ... }

void addAll(List<T> xs) { ... }

T get(int i) { ... }

}

can be encoded as the following FXG class:

class List(T: Type) extends Object {

def add(x: T) ...

def addAll(xs: List{self.T==this.T}) ...

def get(i: Int): T = ...

}

Instantiation of parameters is encoded as an equality con-
straint. A use of the type List<C> is encoded as the FXG
type List{T==C}.

Parameter bounds can be encoded as subtyping con-
straints in either constrained kinds or in the class invariant.
For example, the Java class

class Folder<T extends Foldable> { ... }

can be encoded as either of the following FXG classes:

class Folder(T: Type{self <: Foldable}) { ... }

class Folder(T: Type) {T <: Foldable} { ... }

A key issue with parametrized types affecting the expres-
siveness and usability of the language is variance: that is,
what is the subtyping relationship between C<S> and C<T>?
At present, type parameters in X10 are invariant—that is,
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C<S> and C<T> are subtypes only if S and T are equal. Out-
lined below are several options for supporting variance in
X10, building on the FXG formalism.

It is often expected that, for example, List<Int> is
a subtype of List<Number> when Int is a subtype of
Number. This covariance, however, is unsound if List<T>
has methods that take T as an argument. As an example, if
the T parameter of the List class above were covariant, then
the following code would compile.

List<Number> nums = new List<Number>();

nums.add(new Float(2.718f)); // safe

List<Number> ints = new List<Int>();

ints.add(new Float(1.414f)); // unsafe

ints.addAll(nums); // unsafe

Calling nums.add with a Float is safe since Float is a
subtype of Number; however, calling ints.addwith a Float
is unsafe and can lead to a dynamic type error. Adding all
elements of nums to ints will similarly fail. A sound type
system should reject the above code.

Specification of variance can be done either at the use
site or at the definition site. Java pioneered use-site variance
through the use of wildcard types [46]. Scala and C] support
definition-site variance annotations.

In use-site variance, the user of the generic type de-
cides the variance of the type’s parameters. In Java, vari-
ance is specified using bounded wildcard types. The type
List<? extends Number> represents a list of some fixed,
but statically unknown, element type that must be a sub-
type of Number. Both List<Int> and List<Number> are
subtypes of this type. In contrast, there is no subtyping
relationship between the invariant types List<Int> and
List<Number>.

FXG can support use-site variance through subtyping
constraints. The encoding of type parameters described
above can be extended to handle wildcard types. For the
above List class, the following correspondences hold:

Java FXG
List<?> List{true}

List<? extends C> List{T<:C}

List<? super C> List{T:>C}

Covariance relies on the result that if B is a subtype of A,
then List{T<:B} is a subtype of List{T<:A}. However,
like wildcard types [26], this encoding of covariance can
hurt usability. Because programmers must make variance
decisions for each use of a generic type, they must anticipate
how that object will be used. In particular, if a type has a
covariant constraint on a type variable, then methods that
take that type variable as an argument cannot normally be
called. For instance in the code below, the call to add is
illegal:

val nums: List{T<:Number} = ...

nums.add(new Int(1)); // illegal

The problem is that nums.T is statically unknown. The com-
piler cannot determine if Int is a subtype of nums.T. Pre-
venting the call ensures a dynamic type error does not occur.
Since calls to methods like add that accept covariantly con-
strained parameters are illegal, objects with covariant type
constraints can be rendered effectively read-only.

The other common approach to variance, definition-site
variance, is used in Scala and C]. In a class declaration, a pa-
rameter may be declared in-, co-, or contravariant. Following
Kennedy and Pierce [23], variant parameters can be encoded
in FXG using subtyping constraints at their use. All uses of
Cons[A] are translated to Cons{T<:A}. If B is a subtype of
A, then this encoding ensures the translation of Cons[B] is a
subtype of the translation of Cons[A]—that is, Cons{T<:B}
is a subtype of Cons{T<:A}. If T were an invariant param-
eter, the encoding of Cons[A] would be Cons{T==A}. For
example, consider the following Scala declaration of a Cons
cell with covariant parameter T.

class Cons[+T] {

def head: T = ...

def tail: Cons[T] = ...

}

This can be encoded in FXG as the class:

class Cons(T: Type) extends Object {

def head: this.T = ...

def tail: Cons{self.T<:this.T} = ...

}

To ensure type soundness in languages with definition-
site variance, the use of variant parameter types in methods
and fields must be restricted in the body of their class. The
compiler checks that covariant type parameters do not occur
in negative positions—that is, as method arguments—and
that contravariant type parameters do not occur in positive
positions—as method return types. These structural checks
are needed to guarantee soundness, avoiding the dynamic
type errors described above. In supporting definition-site
variance, Scala does not permit, for example, an equivalent
of the Java List<T> class above to be covariant in T. If T
were covariant, then methods like add, which take a T as
an argument would be prohibited. In the FXG encoding of
definition-site variance as use-site constraints, these checks
need not be performed, as long as the output of the encoding
type-checks. The resulting FXG would not be able to invoke
methods like add that lead to dynamic type errors.

Type members Rather than supporting genericity through
type parameters, genericity could instead be provided with
type members. Thorup [44] proposed using virtual types [14,
27, 28] to add genericity to Java. For example, a generic
List class can be written as follows:

abstract class List {

abstract typedef T;

T get(int i) { ... }

}
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The virtual type T is unbound in List, but can be refined by
binding T in a subclass:

class IntList extends List {

final typedef T as Int;

}

Classes like List where the virtual type is not final bound
to a concrete type must be abstract.

Virtual types, too, can be encoded as type-valued fields in
FXG, similarly to how wildcards are encoded. In FXG, the
analogous definition of the List class above is:

class List(T: Type) extends Object {

def get(i: int): T { ... }

}

Bounds on virtual types can be encoded in the class invari-
ant. For example, the subclass IntLit can constrain T to be
equal to Int as follows:

class IntLit(){T==Int} extends List { }

However, unlike with virtual types. the FXG version of
List need not be abstract; rather, T must be bound to a con-
crete type when an instance of List is created. Since im-
mutable fields can be constrained where their class type is
used (e.g., List{T<:Number} and List{T==Int}) a sub-
class of List need not be declared at all.

Since fields are inherited, the language design needs to
account for ambiguities introduced when the same name is
used for different fields declared in or inherited into a class.
In FXG, a subclass cannot declare a field with the same name
as one in a superclass; in a practical programming language,
shadowing of field names could be allowed. Name conflicts
can be disambiguated by “casting” the target to the desired
supertype, e.g., (e as C).X specifies the field X inherited
from C.

Because of these name ambiguity issues and because
type parameters are more familiar to OO programmers, X10
chose to support type parameters rather than type members.
Currently, type parameters in X10 are invariant. It is planned
to extend the language with support for definition-site vari-
ance, basing the design on the FXG formalism, as outlined
above.

5.2 Constraint System
The second design question is the choice of constraint sys-
tem. Natural candidates are constraint systems that incor-
porate subtyping constraints or structural constraints on ob-
jects.

Subtyping constraints. The subtyping constraints in FXG
can be incorporated into a full-fledged programming lan-
guage like X10. For a type variable X one asserts the con-
straint X<:T. This constraint is realized by any valuation that
maps X to a subtype of T. Constraints on types can specify
either subtype (<:), supertype (:>), or equality bounds (==).

As described in the previous section, subtyping con-
straints in the class invariant provide a means to bound
the type variables introduced by the class declaration. Con-
straints in constrained types C{c} can bound immutable type
fields of the base type C. Subtyping constraints in method
guards can bound type parameters of the method or bound
type fields of the method’s class. This feature is similar to
optional methods in CLU [25] and to generalized type con-
straints in C] [13]. For instance, given a list of T, one could
define a method print with a guard that requires that T be a
subtype of Printable:

def print(){T <: Printable} {

head.print();

tail.print();

}

This constraint ensures that the head field of type T has a
print() method.

Structural constraints. Rather than imposing nominal
bounds on type variables, one can instead require that a type
have a particular member—a field with a given name and
type, or a method with a given name and signature. We in-
troduce the constraints T has f:T and T has m(x :S):T to
express this. These constraints allow one to define an alter-
native version of the guarded print method above:

def print(){T has print(): Void} {

head.print();

tail.print();

}

With structural constraints, any list whose element type has
a print method may be used, not just lists whose elements
implement Printable.

Structural constraints on types are found in many lan-
guages. For instance, Haskell supports type classes [19, 22].
In Modula-3, type equivalence is structural rather than nom-
inal as in object-oriented languages of the C family (e.g.,
C++, Java, and X10). Unity [30] is a Java-like language with
both nominal and structural subtyping. Scala provides struc-
tural types as well.

In the class invariant, a structural constraint can bound
the class’s type variables, similar to the language PolyJ [35],
which allows type parameters to be bounded using structural
where clauses [10].

Because structural types are not supported directly on the
Java virtual machine, implementing them on languages that
target the JVM is non-trivial and can result in a performance
penalty [11]. Structural constraints are not currently sup-
ported in X10, but are under consideration.

Default values. In languages like Java with primitive
types, every type has a default value—null for reference
types, false or 0 for primitive types. With constrained
types, some types do not have an obvious default value.
For example, the type C{self!=null} does not contain the
value null.
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Thus, a useful extension to the type system is to add
constraints of the form T haszero. This constraint holds if
the type T has a default value. Variables where the constraint
does not hold must be explicitly initialized.

X10 supports default-value constraints in method guards.
They are used primarily to enable construction of arrays of
primitives or structs without providing an initial value for
each array element. The default values are all represented
by a 0 bit pattern, and array construction is implemented by
requesting a zeroed out memory buffer.

5.3 Overloading and Dispatch
The next question to address is the overloading semantics
for methods with constraints on formal parameters and with
method guards. One option is to ignore constraints when
checking for overloading. Thus, these three methods:

def m(List{T==Int,length==0}) = ...

def m(List{T==Int,length==n}) = ...

def m(List{T==Float,length==n}) = ...

are considered to have the same signature. It is a static error
if more than one of these methods appears in the same class.

Alternatively, the overloading could be allowed, with
methods resolved at compile-time using the constraint solver.
It is an error if a call could resolve to more than one method.
One question is whether to rule out overlapping methods
(e.g., m(Int{self>=0}) and m(Int{self==1})), or to
permit them and have the caller resolve any ambiguities.

Going further, one could support a form of predicate
dispatch [33], selecting the method to invoke by dynamically
evaluating the constraints in the method signature and the
method guard. With type constraints, multimethod dispatch
could then be implemented as an extension of predicate
dispatch.

X10 takes a conservative approach and does not allow
overloading based on constraints or method guards.

5.4 Run-time Casts
While constraints are normally solved at compile time, con-
straints can be evaluated at run time by using casts. The ex-
pression xs as List{length==n} checks not only that xs
is an instance of the List class, but also that xs.length
equals n. An exception is thrown if the check fails.

The information needed to perform checked casts must be
available at run time. Java’s approach to generics implemen-
tation is to erase type parameters and to allow these casts
with a static warning, but no dynamic check. Erasure admits
more dynamic errors because it permits, for instance, a C<A>
to be cast to C<B>. Retrieving a field of static type B could
cause a run-time type error when an A is returned instead.

Unlike Java, X10 does not erase type parameters at run
time. Instead, each instance of a generic type contains a
description of the types that its parameters are instantiated
upon. This extra run-time type information enables checked
casts to generic types.

In the above example, the test of the constraint does
not require run-time constraint solving; the constraint can
be checked by simply evaluating the length field of xs

and comparing against n. However, the situation is more
complicated when casting to a generic type.

Similarly, the cast xs as List{T<:C{c}} checks that the
element type of xs is a subtype of C{c}. This test requires
a run-time constraint entailment test. Suppose xs were de-
clared to be a List{T==C{d}}. Checking the above cast re-
quires testing that C{d} is a subtype of C{c}. This check, in
turn, requires checking that d entails c.

One approach is to restrict the language to rule out casts
to type parameters and to generic types with subtyping con-
straints, ensuring that entailment checks are not needed at
run time. Alternatively, the constraint solver could be em-
bedded into the runtime system. However, this solution can
result in inefficient run-time casts if entailment checking for
the given constraint system is expensive.

The X10 implementation makes a compromise. Run-time
type information is preserved, but constraints are not.

5.5 Static vs. Dynamic Checking
Checking constraints statically rather than at run time en-
ables early error detection and allows the compiler to gener-
ate better code. However, during development, ensuring con-
straints hold at each compile can slow progress. These trade-
offs are similar to the tradeoffs between static and dynamic
typing. The X10 compiler supports two modes. In one mode,
the compiler will reject programs when a constraint entail-
ment cannot be proved; in another mode, similar to Flana-
gan’s hybrid typing [15], the compiler emits dynamic checks
for these entailments. Dynamic checks need to be performed
to check class invariants when new objects are created, to
check method guards, and to check assignments from sub-
types to supertypes if the solver cannot determine that the
assignment is allowed. Emitting dynamic checks can also
permit a more expressive constraint language, allowing pro-
grammers to write constraints that cannot (yet) be handled
by the embedded solver.

5.6 Inconsistent Constraints
The soundness of the type system ensures that constraints
cannot be violated at run time. If a class invariant or a con-
straint on a type is inconsistent, then no values of that type
can exist at run time. Similarly, if a method guard is incon-
sistent, that method cannot be called. Any code dependent
on an inconsistent guard is unreachable.

For subject reduction to hold, the formal system assumes
that subtyping constraints are not inconsistent; however,
other constraints may be. The compiler can therefore al-
low inconsistent constraints. For developers, it is useful for
the compiler to report whether a constraint is inconsistent.
However, this requires the constraint system to be complete.
Hence, the X10 compiler is more strict about type constraints
than about value constraints. The compiler enforces consis-
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tency of constraints on types, but not constraints on values.
In practice, this means the X10 compiler accepts the follow-
ing method, even though it can never be invoked:

def m(x: Int){x==0, x==1} ...

But it rejects the analogous method with type parameters
rather than value parameters:

def p(X: Type){X==C, X==D} ...

where C and D are classes.

5.7 Mutable State
Objects in FXG contain only immutable value and type
fields. X10, additionally, supports mutable and immutable
instance fields. Constraints continue to be invariants on only
the immutable state of objects (including types). Allowing
constraints on mutable data would not be sound since a con-
straint that holds at one point in the program might not hold
at another.

One subtlety is ensuring that class invariants are estab-
lished correctly. When a constructor executes, fields of the
receiver are initialized one-by-one, which can potentially al-
low the object being constructed to be accessed before the
class invariant is established for the object. To address this,
X10 distinguishes between fields and properties. Properties
are immutable (final) fields of the object. Unlike normal
fields, X10 requires that all properties of the object be initial-
ized instantaneously. This provides a single program point—
a property statement—at which the compiler can check if
the class invariant holds. Before this point, the properties of
the object cannot be accessed; after this point, the class in-
variant is established.

Unlike properties, final fields need not be initialized all at
once. As in Java, final fields can be initialized at any point
during constructor execution. However, fields cannot be used
in constraints.

6. Related Work
Constraint-based type systems, dependent types, and generic
types have been well studied in the literature. Further discus-
sion of related work for constrained types can be found in
our earlier work [37].

Constraint-based type systems. The use of type con-
straints for type inference and subtyping was first pro-
posed by Mitchell [34] and Reynolds [39]. HM(X) [41]
is a constraint-based framework for Hindley–Milner-style
type systems. The framework is parametrized on the specific
constraint system X ; instantiating X yields extensions of the
HM type system. Constraints in HM(X) are over types, not
values. The HM(X) approach is an important precursor to
our constrained types approach. The principal difference is
that HM(X) applies to functional languages and does not
integrate dependent types. We consider object-oriented lan-
guages with constraint-based type systems when we discuss
generic types, below.

Dependent types. Dependent type systems [3, 32, 49]
parametrize types on values. Our work is closely related
to Dependent ML (DML [49]), which is also built paramet-
rically on a constraint solver. The main distinction between
DML and constrained types lies in the target domain: DML
is a functional programming language; constrained types
are designed for imperative, concurrent object-oriented lan-
guages. Types in DML are refinement types [16]: they do not
affect the operational semantics, and erasing the constraints
yields a legal DML program. This differs from generic con-
strained types, where erasure of subtyping constraints can
prevent the program from type-checking. DML does not
permit any run-time checking of constraints (dynamic casts).
Another distinction between DML and constrained types is
that constraints in DML are defined over a set of “index”
variables; in X10, constraints are defined over program vari-
ables and types.

Liquid types [40], permit types in a base Hindley–Milner-
style type system to be refined with conjunctions of logical
qualifiers. The subtyping relation is similar to X10’s; that is,
two liquid types are in the subtyping relation if their base
types are in the relation and if one type’s qualifier implies
the other’s. Liquid types support type inference and the type
system is path sensitive; neither is the case in X10. Liquid
types do not provide subtyping constraints.

Bierman et al. [4] propose a functional language with
refinement types. Rather than use the constraint solver as a
subroutine for subtyping checks, type-checking is performed
by an SMT solver by translating types into logical formulas.
The language supports a richer set of predicates on values
than X10, but this is in large part orthogonal to the rest of the
language design. Their language does not include constraints
on types.

Köksal et al. [24] takes another approach to integrating
constraints with the type system. Logical variables are added
to Scala, and an SMT solver is used to solve constraints.
Like Bierman et al. [4], any pure function can be used in a
constraint.

Genericity. Genericity in object-oriented languages is usu-
ally supported through type parametrization.

A number of proposals for adding genericity to Java
quickly followed the initial release of the language [1, 5,
35, 44]. GJ [5] implements invariant type parameters via
type erasure. Java 5 [18] adopted the same implementation
approach, incorporating wildcards and raw types [46]. Other
proposals [8, 35, 47, 48] support run-time representation of
type parameters. PolyJ [35] permits instantiation of param-
eters on primitive types and structural parameter bounds.
MixGen [1] supported mixins through type parametrization.

Variance in Java is handled at the use-site using wild-
cards [7, 46]. Scala [38] and C] [12], by contrast, support
definition-site variance annotations, which address many of
the usability concerns of wildcards [26], but can often re-
sult in complicated or duplicated code to create invariant,
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covariant, and contravariant versions of a library class. Alti-
dor et al. [2] propose a framework for combining definition-
and use-site variance in a Java-like language. Encoding this
framework in FXG is an interesting area for future work.

Summers and Cameron et al. [6, 43] characterized wild-
cards in terms of existential types. Our encoding of wild-
cards in FXG similarly uses existentials, over constraint
terms rather than types, however. Summers et al. [42, 43] ob-
serve that care must be taken to model assignment to avoid
an unsoundness. We leave this extension for future work.

Virtual classes and virtual types [14, 27, 28] are another
mechanism for supporting genericity, using nested types
rather than parametrization. As discussed in Section 5.1,
Thorup [44] proposed using virtual types to provide gener-
icity in Java. Much of the development of Java’s gener-
ics followed from virtual classes: use-site variance based
on structural virtual types was proposed by Thorup and
Torgersen [45] and extended for parametrized type systems
by Igarashi and Viroli [21]; the latter type system lead to
the development of wildcards in Java [7, 46]. Dependent
classes [17] generalize virtual classes to express similar
semantics via parametrization rather than nesting. With
type properties, classes are not parametrized on their val-
ues; rather properties are members and types are constructed
by constraining these properties. Parametrization can be en-
coded with type properties using equality constraints.

7. Conclusions
We have presented a constraint-based framework FXG for
type- and value-dependent types in an object-oriented lan-
guage. The use of constraints on type properties provides a
framework for capturing many features of generics in object-
oriented languages and then extending these features with
more expressive power. We have proved the type system
sound.

The type system of FXG formalizes the semantics of the
X10 programming language. The design admits an efficient
implementation for generics and dependent types in X10,
available at x10-lang.org. To improve the expressiveness
of X10, we plan to implement a type inference algorithm
that infers constraints over types and values, and to support
user-defined constraints.
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A. Proof Sketch
We assume well-formedness and non-inconsistent environ-
ments.

Lemma A.1. If Γ ` T.i −→ I and Γ ` T.i −→ I′ then
I= I′.

Proof. By H-AMB I� I′ and I′� I. If I is a field signature
then by O-REFL I = I′. If I is a method signature then I′

must be a method signature. Let C be the class of I and C′

be the class of I′. Suppose C is not C′ then by O-METHOD
C<: C′ and C′ <: C. Contradiction. C has at most one method
named m, therefore I= I′ in all cases.

Theorem A.2 (Principal Types). If Γ ` e : S and Γ ` e : T
then S= T.

828



Proof. By induction on the structure of e. There is exactly
one typing rule for each kind of expression. Moreover, by
Lemma A.1, each field name or method name may resolve
to at most one signature on a given type. Therefore, there is
only one way the T-FIELD and T-INVK rules can be used to
type a field selection or a method invocation.

Theorem A.3 (Progress). If ` e : T then one of the following
conditions holds:

1. e is a value,
2. e has a stuck cast sub-expression of the form v as T0,
3. there exists e′ such that e→ e′.

Proof. By induction on the structure of the expression. As-
sume e contains no stuck cast sub-expression of the form
v as T0 and is not a value.

• If e is a.f.
If a is a value then e can make a step by rule R-FIELD.
Otherwise, by the induction hypothesis, a→ a′ then e

can make a step by rule RC-FIELD.
• If e is a.m(b).

If a,b are values then e can make a step by rule R-
INVK. Otherwise, if a is not a value then by the induction
hypothesis a→ a′ and e can make a step by rule RC-
INVK-RECV. Otherwise, if bi is not a value then by the
induction hypothesis bi → b′i and e can make a step by
rule RC-INVK-ARG.

• If e is new C(a)
Since ai is not a value for some i then e can make a step
by rule RC-NEW-ARG.

• If e is a as T0.
If a is not a value then a is well typed by T-CAST, hence
can make a step by the induction hypothesis, thus e can
make a step by rule RC-CAST. Otherwise, if a is a value
then e can make a step by rule R-CAST since e contains
no stuck cast sub-expression.

Lemma A.4. If P is well typed and Γ ` S <: T and Γ `
T.i −→ I then there exists I′ such that Γ ` S.i −→ I′ and
I′� I.

Proof. Let C be the class of I. By H-SUB, Γ ` S.i =⇒
I. By definition of ambiguous lookup, Γ ` T <: C. By S-
TRANS, Γ ` S <: C. Let I′ be such that Γ ` S.i =⇒ I′ and
C′ the class of I′. By definition of ambiguous lookup, Γ `
S <: C′. Because Γ is consistent, all such C′ are related via
inheritance. Let C′′ be the maximum of this set of classes and
I′′ the corresponding signature. By OK-METHOD, I′′ � I′

for all I′ including I′′� I. By H-AMB, Γ ` S.i−→ I′′.

Lemma A.5. If method(C,m) = m(f : F){c} : M = e then
Γ ` C.m−→ C′.m(f : F){c} : M for C′ a superclass of C or C.

Proof. Since Γ is consistent the only class types that C is a
subtype of are C and the superclasses of C. Let C′ be C if C

declares m or its lowest superclass that declared m. By rule
OK-METHOD C′.m overrides all the methods m defined in
these classes. Therefore, Γ ` C.m−→ C′.m(f : F){c} : M.

The following lemmas permit replacing one type by a
subtype in various contexts.

Lemma A.6. If Γ,x : X ` e : T and Γ ` e′ : Y and Γ,x :
Y ` x :: X then there exists S such that Γ ` e[e′/x] : S and
Γ,y : S ` y :: ∃x : Y.T.

Lemma A.7. If Γ,x : T ` c and Γ,x : S ` x :: T then Γ,x :
S ` c.

Lemma A.8. If Γ,y : S ` y :: T then Γ,x : ∃y : S.U ` x :: ∃y :
T.U.

Lemma A.9. If Γ,y : U,x : S ` x :: T then Γ,x : ∃y : U.S ` x ::
∃y : U.T.

Proof. Straightforward inductions.

Theorem A.10 (Subject Reduction). If P is well typed and
Γ ` e : T and e→ e′ then there exists S such that Γ ` e′ : S.
Moreover Γ,x : S ` x :: T.

Proof. By induction on the proof of e→ e′. Assume Γ ` e :
T. For simplicity, we omit substitutions from the proof. In
other words, we do as if field lookup, method lookup, and
the fields, method, and inv predicates return artefacts that
are already matching our choice of fresh variables.

• e.f→ e′.f by rule RC-FIELD
T-FIELD Γ ` e : R

Γ ` R.f −→ C.f : F
Γ ` e.f : T

where T is ∃r : R.F{self == r.f}
Ind. hyp. Γ ` e′ : R′ and Γ,x : R′ ` x :: R
Lemma A.4 Γ ` R′.f −→ C.f : F
T-FIELD Γ ` e′.f : S
where S is ∃r : R′.F{self == r.f}
Lemma A.8 Γ,x : S ` x :: T

• e.m(a)→ e′.m(a) by rule RC-INVK-RECV
T-INVK Γ ` e : R,a : A

Γ ` R.m−→ C.m(x : X){c} : M
Γ,r : R,x : A ` c,x :: X
Γ ` e.m(a) : T

where T is ∃r : R.∃x : A.M
Ind. hyp. Γ ` e′ : R′ and Γ,x : R′ ` x :: R
Lemma A.4 Γ ` R′.m−→ C′.m(x : X){c′} : M′

Γ,r : R′,x : X,c′,y : M′ ` y :: M
Γ,r : R′,x : X,c ` c′

Lemma A.7 Γ,r : R′,x : A ` c′
Γ,r : R′,x : A,y : M′ ` y :: M

T-INVK Γ ` e′.m(a) : S
where S is ∃r : R′.∃x : A.M′

Lemma A.9 Γ,y : S ` y :: ∃r : R′.∃x : A.M
Lemma A.8 Γ,y : ∃r : R′.∃x : A.M ` y :: T
S-TRANS Γ,y : S ` y :: T
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• v.m(a)→ v.m(a′) by rule RC-INVK-ARG
T-INVK Γ ` v : R,a : A

Γ ` R.m−→ C.m(x : X){c} : M
Γ,r : R,x : A ` c,x :: X
Γ ` e.m(a) : T

where T is ∃r : R.∃x : A.M
Ind. hyp. Γ ` a′ : A′ and Γ,x : A′ ` x :: A
S-TRANS Γ,x : A′ ` x :: X
Lemma A.7 Γ,r : R,x : A′ ` c
T-INVK Γ ` v.m(a′) : S
where S is ∃r : R.∃x : A′.M
Lemma A.8 Γ,y : S ` y :: T

• new C(a)→ new C(a′) by rule RC-NEW-ARG
T-NEW Γ ` e : R

fields(C) = f : F
Γ,x : R ` x :: F, inv(C)
Γ ` new C(e) : T

where T is ∃x : R.C{self == new C(x)}
Ind. hyp. Γ ` e′ : R′ and Γ,x : R′ ` x :: R
S-TRANS Γ,x : R′ ` x :: F
Lemma A.7 Γ,x : R′ ` inv(C)
T-NEW new C(e′) : S
where S is ∃x : R′.C{self == new C(x)}
Lemma A.8 Γ,y : S ` y :: T

• e as T→ e′ as T by rule RC-CAST
T-CAST Γ ` e as T : T

Γ ` e : S
Ind. hyp. Γ ` e′ : S′
T-CAST Γ ` e′ as T : T
S-REFL Γ,x : T ` x :: T

• new C(v) as T→ new C(v) by rule R-CAST
T-CAST ` new C(v) : S
T-NEW ` v : R
where S is ∃x : R.C{self == new C(x)}
R-CAST x : S ` x :: T

• new C(v).fi→ e′ by rule R-FIELD
T-NEW Γ ` v : V

fields(C) = f : F
Γ,x : V ` x :: F
Γ ` new C(v) : R

where R is ∃x : V.C{self == new C(x)}
R-FIELD e′ is vi
T-FIELD Γ ` new C(v).fi : T
where T is ∃r : R.Fi{self == r.fi}
T-VAR Γ,y : Vi ` y : Vi{self == y}
let t be new C(v[y/vi])
T-NEW Γ,y : Vi ` t : R′

where R′ is ∃x : V[Vi{self == y}/Vi].
C{self == new C(x)}

σ(Γ) ` y== t.fi in X
X-PROJ Γ,y : Vi ` y== t.fi
S-CONST-R Γ,y : Vi ` y :: Fi{self == t.fi}
S-EXISTS-R Γ,y : Vi ` y :: ∃r : R′.Fi{self == r.fi}
Lemma A.8 Γ,y : Vi ` y :: T

• new C(v).m(w)→ e′ by rule R-INVK
R-INVK method(C,m) = m(f : F){c} : M= e

e′ is e[new C(v)/this,w/f]
OK-METHOD r : C,f : F,c ` e : E

r : C,f : F,c,x : E ` x :: M
T-NEW Γ ` v : V

Γ ` new C(v) : R
where R is ∃x : V.C{self == new C(x)}
Lemma A.5 Γ ` C.m−→ C′.m(f : F){c} : M
T-INVK Γ ` new C(v).m(w) : T

Γ ` w : W
Γ,r : C,f : W ` c,f :: F

where T is ∃r : R.∃f : W.M
Lemma A.6 Γ ` e′ : S

Γ,x : S ` x :: ∃r : R.∃f : W.E
Γ,r : R,f : W,x : E ` x :: M

Lemma A.9 Γ,x : ∃r : R.∃f : W.E ` x :: T
S-TRANS Γ,x : S ` x :: T

Theorem A.11 (Type Soundness). If P is well typed ` e : T
and e reduces to a normal form e′ then either e′ contains a
stuck cast sub-expression of the form v as T0 or e′ is a value
v and there exists S such that ` v : S. Moreover, in that case,
x : S ` x :: T.

Proof. Straightforward by Theorems A.3 and A.10.

Theorem A.12 (Method guards). If P is well typed and Γ `
e.m(a) : T and e→∗ new C(v) and a→∗ w and method(C,m)=
m(f : F){c} : M= e then Γ ` c[new C(v),w/this,f].

Proof. Using subject reduction and overriding rules.
T-INVK Γ ` e : E,a : A

Γ ` E.m−→ C.m(f : G){d} : N
Γ,x : E,f : A ` d,f :: G

Th. A.10 Γ ` new C(v) : R,w : W
Γ,x : R ` x :: E
Γ,f : W ` f :: A

T-NEW R is ∃y : W.C{k}
Lemma A.5 Γ ` R.m−→ C.m(f : F){c} : M
Lemma A.4 Γ ` m(f : F){c} : M� m(f : G){d} : N
OK-METHOD Γ,x : R,f : G,d ` c
Lemma A.7 Γ,x : R,f : W ` c

Γ ` c[new C(v),w/this,f]

Theorem A.13 (Class invariants). If P is well typed and
Γ ` new C(e) :T and e→∗ v then Γ ` inv(c)[v/this.f].

Proof. Similar to the proof of Theorem A.12.
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