

Copyright is held by the author/owner(s).
SPLASH’12, October 19–26, 2012, Tucson, Arizona, USA.
ACM 978-1-4503-1563-0/12/10.

Panel

Trade-offs in Software Design and Delivery

Steven Fraser

Cisco Research Center
Cisco Systems, San Jose

sdfraser@acm.org

Richard Gabriel

IBM Research
Redwood City

rpg@dreamsongs.com

Gail E. Harris

Web Development Manager
and Architect

TV Ontario, Toronto
gail.e.harris@gmail.com

Ricardo Lopez

Software Architect and Consultant
San Jose

rjlopez@acm.org

Dennis Mancl

Distinguished Member of Technical Staff
Alcatel-Lucent, New Jersey

dennis.mancl@alcatel-lucent.com

William Opdyke

Architecture Lead
Corporate Internet Group

JP Morgan Chase, Chicago
opdyke@acm.org

Abstract

There are many design and delivery trade-offs that engi-
neers face in creating or evolving software systems. Chal-
lenges in accelerating delivery, offering more features,
providing better more reliable systems, or managing costs –
whose optimization are just some of the hurdles that con-
tribute to system success (or failure). This panel will dis-
cuss the heuristics of trade-offs, the inherent risks – and
plans to build on the success of the 2012 SPLASH work-
shop “What Drives Design”.

Categories and Subject Descriptors
K.0 Computing Milieux

General Terms Design, Experimentation, Standardization

Keywords Innovation, Creativity, Design Trade-Offs

1. Steven Fraser
STEVEN FRASER joined the Cisco Research Center as Director

in July 2007 with responsibilities for fostering university research
collaborations, managing PhD recruiting, and nurturing technol-
ogy transfer. Prior to joining Cisco Research, Steven was a Senior
Staff member of Qualcomm’s Learning Center in San Diego,
leading software learning programs and creating the corporation’s
internal technical conference (the QTech Forum). Steven held a
variety of technology strategy roles at BNR and Nortel including:
Process Architect, Senior Manager (Disruptive Technology and
Global External Research), and Advisor (Design Process Engi-
neering). In 1994 he spent a year as a Visiting Scientist at the
Software Engineering Institute (SEI) collaborating with the “Ap-
plication of Software Models” project on the development of
team-based domain analysis (software reuse) techniques. Fraser is
the Panels Chair for XP2013 and the Publicity Chair for ESEC

2013. He was the Corporate Support Chair for OOPSLA’08 and
OOPSLA’09. He was the Tutorial Chair for XP2008 and the
Tutorial Co-Chair for ICSE’09. Fraser holds a doctorate in EE
from McGill University in Montréal – and is a senior member of
the ACM and the IEEE.

2. Richard Gabriel

RICHARD P. GABRIEL received a PhD in Computer Sci-
ence from Stanford University in 1981, and an MFA in
Poetry from Warren Wilson College in 1998. He has been a
researcher at Stanford University, company president and
Chief Technical Officer at Lucid, Inc., vice president of
Development at ParcPlace-Digitalk, a management con-
sultant for several start-ups, a Distinguished Engineer at
Sun Microsystems, and Consulting Professor of Computer
Science at Stanford University. He is a researcher at IBM
Research, looking into the architecture, design, and imple-
mentation of extraordinarily large, self-sustaining systems
as well as development techniques for building them. Until
recently he was President of the Hillside Group, a non-
profit that nurtures the software patterns community by
holding conferences, publishing books, and awarding
scholarships. He is on Hillside's Board of Directors. He
helped design and implement a variety of dialects of Lisp.
He is author of four books ("Performance and Evaluation of
Lisp Systems," MIT Press; "Patterns of Software: Tales
from the Software Community," Oxford University Press;
"Writers' Workshops and the Work of Making Things,"
Addison-Wesley Press; and "Innovation Happens Else-
where: Open Source as Business Strategy," Morgan Kauf-
mann), and a poetry chapbook ("Drive On," Hollyridge
Press), with two books of poetry in preparation: "Leaf of
my Puzzled Desire" and "Drive On." He has published
more than 100 scientific, technical, and semi-popular pa-
pers, articles, and essays on computing. He has won several
awards, including the AAAI/ACM Allen Newell Award.
He is the lead guitarist in a rock 'n' roll band and a poet.

63

Design in the future will have two distinct and mutually
contradictory challenges. Remember: the future.

First, all the programs that can be written by a single

person or a team working together have already been writ-
ten, and every interesting new program cannot be subject to
whole-system design. Neither requirements nor design will
be consistent. Every designer will be limited to a narrow
part of the program's interface or to its interstitial glue. In
the past, design was like creating Esperanto - control of
every aspect - while now design is like adding a new slang
phrase to English - something akin to "Shatner texting."
One way to do this is like Siri: a small interface on the
iPhone designed by designers (using guidelines from Apple
and subject to their approval), plus a raft of code in the
cloud (put together over a decade or more by a team origi-
nally scattered and now long gone). This could be called
iceberg architecture.

Second, all the crap that goes with finding, acquiring,
installing, maintaining, upgrading, and using software and
that is not about the actual task (let's call it) the software's
user wants to accomplish has to be scraped away from
view, must be invisible to the buyer, user, and everyone on
that end of the whole transaction - this is a designer's task.
Some have called this "ready-to-hand." It's a kind of whole-
system design. More recently some corporations have taken
to calling this "consummability." Siri is a way to accom-
plish consummability by hiding all the crap in the cloud,
but can all software be cloudy?

3. Gail E. Harris

GAIL E. HARRIS was recently appointed Web Develop-
ment Manager and Architect at TVOntario (TVO), the
Province of Ontario's public educational media organiza-
tion. Gail is responsible for all technical aspects of TVO's
web and mobile presence, including long term strategy and
development methodologies. Prior to joining TVO, Gail
was a Principal and co-owner of Instantiated Software, a
company that applied agile methodologies and open source
technologies to successfully deliver custom applications to
start-up companies. Previous to Instantiated, Gail worked
for several larger organizations including the Department
of National Defence, and Deloitte Consulting. For the past
fifteen years Gail has been a regular contributor to
SPLASH/OOPSLA. Gail was the OOPSLA Conference
Chair in 2008.

Not too long ago, on a modest sized system that had

been running for a few years, a customer requested a seem-
ingly simple change to the text on a certain web page. The
complexity, and hence the design challenge and trade off,
showed up while doing the analysis. While the text needed
to vary according to the data being displayed, more im-
portantly, the web page in question was displaying an in-
voice. In addition to the required text change, there was
also an underlying constraint that an old invoice needed to
be presented exactly as it would have appeared at the time

it was issued. A backward compatibility requirement.
Backward compatibility may not be a new topic, nor a cool
topic. It does however force designers to think strategically
about the compromises they make. Should I put time and
effort (money) into programming the strategy pattern or the
facade pattern? Can I limit compatibility to no more than X
major historical releases? How will I maintain code reada-
bility and repair-ability?

In this particular example something interesting oc-
curred. Near the very beginning of the project the designers
had decided that all invoice data would be retrieved from
the business model objects and copied into a completely
separate set of read only database tables, allowing for his-
torical trend analysis. These tables would be queried to
display invoices, not the core model tables. Furthermore,
the text in question existed in the invoice template in the
view layer. Two main options were considered:

 detect the version in the view layer and generate

the appropriate text for invoices of different ages

 add a database field for the text, modify the view to
display it, modify the core model to generate the
text based on version, and populate all the old in-
voices.

The trade-off here is between effort (cost) and separa-
tion of concerns that keeps business logic separate from
view logic. After consulting with the customer the design-
ers chose the former option, because the nature of the busi-
ness suggested that it would be highly unlikely to have
another change. This meant that the changes would not
require backward compatibility of the core classes; the
programming changes were isolated in the view layer. The
less nice observation is that the view layer now has a smell:
date pollution. In a few places the code includes some con-
ditionals about the version needed for the invoice being
presented. The residual design dilemma is how much effort
to put into removing that smell, if it’s even possible.

The views expressed in this position statement are those of Gail E.

Harris and do not represent those of her employer.

4. Ricardo Lopez

RICARDO LOPEZ is a software architect and consult-
ant. Formerly he was a Principal Engineer at Qualcomm
CDMA Technologies and adjunct to the Office of the Chief
Scientist at Qualcomm. He was responsible for software
architecture, software process, and sometimes Just Good
Old Fashioned Software – AKA Code. Architecting and
designing Software for over thirty-five years (too old for
Google), he has been an evangelist for OO technology for
the last twenty-five years and he has the arrow heads to
prove it (time to become an early adopter of the next great
orientation)...

64

5. Dennis Mancl

DENNIS MANCL works for Alcatel-Lucent, where he is
involved in applying software modelling approaches, agile
development practices, and legacy software development
techniques to the development of large telecom systems.
He has worked with technologies from C++ to UML to
Scrum, with a preference for simple designs, simple tools,
and simple metrics.

Software design and software delivery are difficult. The

design process, which builds up the structure of a proposed
solution to a real world problem, requires a combination of
experience and creativity from the designer. The delivery
process, which reshapes the design and its implementation
to closely fit the current customer expectations, requires
patience and attention to detail.

How can we coordinate the design process and the de-
livery process, especially in a world of rapidly evolving
customer needs? A number of design approaches and pro-
cess models have been proposed over the years, from Ob-
ject Oriented Design to Extreme Programming, with some

success. Maybe any organized design approach will work,
as long as the developers believe in it.

6. William Opdyke

BILL OPDYKE has spent much of his career focusing
on the technical and organizational issues related to transi-
tioning advanced software technologies and software engi-
neering techniques into product development. He is cur-
rently on staff at JP Morgan Chase. Previously, at Mo-
torola, he was part of an advanced technology team focus-
ing on home networking related middleware and on tech-
niques for improving productivity and reducing costs of
software developments. While at Bell Labs, he was techni-
cal lead on several advanced development projects where
he gained a keen appreciation for the challenges in leverag-
ing emerging technologies and in extending existing prod-
ucts to meet emerging market needs. He also spent several
years as a faculty member at North Central College. His
doctoral research at the University of Illinois focused on
object-oriented refactoring (supporting the process of
change to object-oriented software).

65

