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Abstract
The PACC Starter Kit is an eclipse-based development en-
vironment that combines a model-driven development ap-
proach with reasoning frameworks that apply performance,
safety, and security analyses. These analyses predict runtime
behavior based on specifications of component behavior and
are accompanied by some measure of confidence.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification—Model checking,
Correctness proofs; C.4 [Performance of Systems]: Model-
ing techniques

General Terms Design, Performance, Reliability, Security,
Verification

Keywords Predictable assembly, components, performance,
model checking, model-driven development

1. Introduction
Many software systems have stringent quality attribute re-
quirements. For example, industrial robots must perform
tasks with strict deadlines, medical devices must comply
with safety requirements, and most software must minimize
security vulnerabilities. Although analysis theories and tech-
niques addressing these requirements have existed for many
years, they are not widely used because of the resources and
expertise required to create, maintain, and evaluate analysis
models. Consequently, developers usually rely on testing to
verify the satisfaction of these requirements, incurring ex-
pensive overruns when they are not met.

The PACC1 Starter Kit (PSK), shown in Figure 1, is
an eclipse-based development environment that combines a

1 The PSK was developed by the Predictable Assembly from Certifiable
Components (PACC) group at the Carnegie Mellon Software Engineering
Institute (http://www.sei.cmu.edu/pacc).
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model-driven development approach with reasoning frame-
works (RFs) that package the expertise needed to apply qual-
ity attribute analyses. A reasoning framework is used to
achieve some level of confidence (statistical or proof-based)
in predictions of runtime behavior based on specifications
of component behavior. RFs ensure that designs satisfy an-
alytic assumptions and then automatically generate analysis
models appropriate for reasoning about specific runtime be-
haviors.

Figure 1. PACC Starter Kit

The PSK demonstration focuses on two RFs. The perfor-
mance RF predicts latency in soft and hard real-time sys-
tems. The model checking RF analyzes runtime behavior for
safety properties, such as detecting buffer overflows, and can
generate proofs that binary code satisfies such properties.
The demonstration also touches on the included code gen-
erator and runtime environment.

2. Basic PSK Features
The PSK is designed for use in model-driven development
environments. As such, it includes tools supporting many
fundamental model-driven development tasks, the most im-
portant of which are

• A design language: CCL is a design language for specify-
ing the behavior of components and the manner in which
they are assembled to form systems [8]. CCL includes
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syntax for component wiring and a behavioral notation
based on UML statecharts and a C-like action language.

• An execution environment: CCL is specialized for use
with components built for the Pin component technol-
ogy [4]. Pin offers typical features, such as standard com-
ponent lifecycles and interaction mechanisms. Pin sits on
top of RTOS, a simple real-time operating system exten-
sion for Windows.

• A code generator: Complete component and assembly
implementations can be generated from CCL specifica-
tions for deployment in the Pin runtime environment.
Code generation is an important element of ensuring that
analysis results based on CCL specifications are applica-
ble to code executing in Pin.

3. Performance Reasoning Framework
The performance reasoning framework in the PSK can pre-
dict average and worst-case response times of a component-
based application. The performance analysis, which is com-
pletely automated, involves two steps. The first step, called
interpretation, transforms the specification of the assembly,
creating a performance model. The second step evaluates the
performance model using a suitable evaluation procedure.

In component-based designs, the response to some event
is usually realized by an assembly of components that inter-
act with each other either synchronously or asynchronously.
This results in non-linear sequences of interactions that in-
clude complex interactions between components and threads
of execution. The interpretation exploits the knowledge of
priority assignments, thread allocation, and interaction se-
mantics, and computes an equivalent model with linear se-
quences of interactions that can then be analyzed by using
real-time analysis theories [7] or simulation.

The RF supports several evaluation procedures to eval-
uate the performance model. Three different discrete-event
simulators can be used to predict average response time.
Worst-case prediction can be done using RMA for varying
priorities [3]. Also, a closed-formula evaluation procedure
predicts average response time of a sporadic server task [5].

4. Model Checking Reasoning Framework
The ComFoRT reasoning framework [6] uses software
model checking to determine whether a system satisfies de-
sired safety or security policies.2 ComFoRT uses component
behavior specifications written in CCL to generate equiva-
lent C programs for use with the Copper software model
checker. These programs are functionally equivalent to the
C programs that are generated for execution in the Pin run-
time environment, but are optimized for verification. The
generated C program (model) is then searched to determine
if all possible executions through the program (regardless of

2 A version of the PSK that includes ComFoRT can be downloaded from
http://www.sei.cmu.edu/pacc/comfort.html

event arrival order or concurrency interleavings) satisfy the
desired policies, which are expressed in a state/event linear
temporal logic (SE-LTL) [1].

When a policy is found to be violated, a counterexample
is generated as evidence. Counterexamples are sequences of
actions through the model that leads to a state in which a
policy does not hold and are shown in the PSK’s Counterex-
ample view.

When a policy is found to hold, a certified component can
be generated that includes a proof certificate as evidence [2].
The certified component is generated for execution in the
Pin runtime environment, and the embedded proof certificate
is automatically generated using certifying model checking
and proof-carrying code techniques.
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